Rock Fragment Boundary Detection Using Compressed Random Features

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 550)

Abstract

Sections of the mining industry depend on regular analysis of rock fragmentation to detect trends that may affect safety or production. The limitations inherent in 2D imaging analysis mean that human input is typically needed for delineating individual rock fragments. Although recent advances in 3D image processing have diminished the need for human input, it is often infeasible for many mines to upgrade their existing 2D imaging systems to 3D. Hence there is still a need to improve delineation in 2D images. This paper proposes a method for delineating rock fragments by classifying compressed Haar-like features extracted from small image patches. The optimum size of the image patches and the number of compressed features are determined empirically. Experimental results show the proposed method gives superior results to the commonly used watershed algorithm, and compressing features improves computational efficiency such that a machine learning approach is practical.

Keywords

Compressed sensing Random projections Sparse representation Image patches Feature extraction Image segmentation Classification 

Notes

Acknowledgements

The research is sponsored by the Newcrest Mining Project at CSU and the Compact Grant from the Faculty of Business at CSU.

References

  1. 1.
    Achlioptas, D.: Database-friendly random projections. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2001, pp. 274–281. ACM, New York (2001)Google Scholar
  2. 2.
    Amankwah, A., Aldrich, C.: Automatic ore image segmentation using mean shift and watershed transform. In: 2011 21st International Conference on Radioelektronika (RADIOELEKTRONIKA), pp. 1–4 (2011)Google Scholar
  3. 3.
    Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constructive Approximation 28(3), 253–263 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beucher, S., Lantuejoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing, Real-time Edge and Motion Detection/Estimation (1979)Google Scholar
  5. 5.
    Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 245–250. ACM, New York (2001)Google Scholar
  6. 6.
    Bull, G., Gao, J., Antolovich, M.: Image segmentation using random features. In: The 2013 5th International Conference on Graphic and Image Processing (ICGIP 2013) (2013)Google Scholar
  7. 7.
    Calderbank, R., Jafarpour, S., Schapire, R.: Compressed learning: universal sparse dimensionality reduction and learning in the measurement domain. In: Manuscript (2009)Google Scholar
  8. 8.
    Candes, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/cjlin/libsvmCrossRefGoogle Scholar
  10. 10.
    Comaniciu, D., Meer, P.: Mean shift analysis and applications. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 1197–1203 (1999)Google Scholar
  11. 11.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)MATHGoogle Scholar
  12. 12.
    Demenegas, V.: Fragmentation analysis of optimized blasting rounds in the aitik mine: effect of specic charge. Masters thesis, Luleå Tekniska Universitet (2008)Google Scholar
  13. 13.
    Dollar, P., Tu, Z., Tao, H., Belongie, S.: Feature mining for image classication. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007 (CVPR 2007), pp. 1–8 (2007)Google Scholar
  14. 14.
    Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gao, J., Shi, Q., Caetano, T.S.: Dimensionality reduction via compressive sensing. Pattern Recogn. Lett. 33(9), 1163–1170 (2012)CrossRefGoogle Scholar
  16. 16.
    Girdner, K., Kemeny, J., Srikant, A., McGill, R.: The split system for analyzing the size distribution of fragmented rock. In: Franklin, J.A., Katsabanis, T. (eds.) Measurement of Blast Fragmentation - Proceedings of the FRAGBLAST 5 Workshop, pp. 101–108. CRC Press/Balkema, Boca Raton, Fla (1996)Google Scholar
  17. 17.
    Li, P., Hastie, T.J., Church, K.W.: Very sparse random projections. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 287–296. ACM, New York (2006)Google Scholar
  18. 18.
    Liu, L., Fieguth, P.: Texture classication from random features. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 574–586 (2012)CrossRefGoogle Scholar
  19. 19.
    Meyer, F., Beucher, S.: Morphological segmentation. J. Vis. Commun. Image Represent. 1(1), 21–46 (1990)CrossRefGoogle Scholar
  20. 20.
    Noy, M.J.: Automated rock fragmentation measurement with close range digital photogrammetry. In: Blanco, J.A.S., Singh, A.K. (eds.) Measurement and Analysis of Blast Fragmentation: Workshop FRAGBLAST 10 - The 10th International Symposium on Rock Fragmentation by Blasting, pp. 13–21. CRC Press/Balkema, Boca Raton, Fla (2013)Google Scholar
  21. 21.
    Siddiqui, F., Shah, S.A., Behan, M.: Measurement of size distribution of blasted rock using digital image processing. Eng. Sci. 20(2), 81–93 (2009)Google Scholar
  22. 22.
    Thurley, M.J.: Fragmentation size measurement using 3D surface imaging. In: Blanco, J.A.S. (ed.) Fragblast 9 : Rock Fragmentation By Blasting, Proceedings of the 9th International Symposium On Rock Fragmentation by Blasting, pp. 229–237. CRC Press/Balkema, Boca Raton, Fla (2009)Google Scholar
  23. 23.
    Thurley, M.J.: Automated, on-line, calibration-free, particle size measurement using 3D prole data. In: Blanco, J.A.S., Singh, A.K. (eds.) Measurement and Analysis of Blast Fragmentation: FRAGBLAST 10 - The 10th International Symposium on Rock Fragmentation by Blasting, pp. 23–32. CRC Press/Balkema, Boca Raton, Fla (2013)Google Scholar
  24. 24.
    Thurley, M.J., Ng, K.C.: Identifying, visualizing, and comparing regions in irregularly spaced 3D surface data. Comput. Vis. Image Underst. 98(2), 239–270 (2005)CrossRefGoogle Scholar
  25. 25.
    Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vision 57(2), 137–154 (2002)CrossRefGoogle Scholar
  26. 26.
    Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Bengio, Y., Schuurmans, D., Laerty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 2080–2088 (2009)Google Scholar
  27. 27.
    Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.School of Computing and MathematicsCharles Sturt UniversityBathurstAustralia

Personalised recommendations