Skip to main content

Control of Synchronization Transitions by Balancing Excitatory and Inhibitory Coupling

  • Chapter
  • First Online:
Controlling Synchronization Patterns in Complex Networks

Part of the book series: Springer Theses ((Springer Theses))

  • 1197 Accesses

Abstract

Determining the stability of synchronization in large and complex networks is very challenging due to the high dimensionality of the problem. In the previous chapter, I have given an introduction to the master stability function (MSF) which allows for decoupling of the topology and the local dynamics. In this way the originally very high-dimensional problem is reduced to (i) solving the problem for one node with a rescaled coupling strength and (ii) determining the eigenvalues of the network’s coupling matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Argyris, G. Faust, M. Haase, R. Friedrich, An Exploration of Dynamical Systems and Chaos: Completely Revised and Enlarged, 2nd edn. (Springer, Berlin, 2015)

    MATH  Google Scholar 

  • S. Barbay, R. Kuszelewicz, A.M. Yacomotti, Excitability in a semiconductor laser with saturable absorber. Opt. Lett. 36, 4476 (2011)

    Article  ADS  Google Scholar 

  • E.E. Benoit, J.L. Callot, F. Diener, M.M. Diener, Chasse au canard (première partie). Collect. Math. 32, 37 (1981)

    MathSciNet  MATH  Google Scholar 

  • J.A. Connor, D. Walter, R. McKown, Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons, Biophys. J. 18, 81 (1977). ISSN 0006-3495

    Google Scholar 

  • M.A. Dahlem, G. Hiller, A. Panchuk, E. Schöll, Dynamics of delay-coupled excitable neural systems. Int. J. Bifurc. Chaos 19, 745 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • H. Dale, Pharmacology and nerve endings (Walter Ernest Dixon Memorial Lecture). Proc. R. Soc. Med. 28, 319 (1935)

    Google Scholar 

  • P. Dayan, L.F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, Computational Neuroscience (Massachusetts Institute of Technology Press, Cambridge, 2005)

    MATH  Google Scholar 

  • J. Eccles, From electrical to chemical transmission in the central nervous system. Notes Rec. R. Soc. Lond. 30, 219 (1976). ISSN 0035-9149

    Google Scholar 

  • G.B. Ermentrout, N. Kopell, Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46, 233 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961)

    Article  ADS  Google Scholar 

  • V. Flunkert, S. Yanchuk, T. Dahms, E. Schöll, Synchronizing distant nodes: a universal classification of networks. Phys. Rev. Lett. 105, 254101 (2010)

    Article  ADS  Google Scholar 

  • A. Ganopolski, S. Rahmstorf, Abrupt glacial climate changes due to stochastic resonance. Phys. Rev. Lett. 88, 038501 (2002)

    Article  ADS  Google Scholar 

  • D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J.G. McInerney, D. Rachinskii, G. Huyet, Excitability in a quantum dot semiconductor laser with optical injection. Phys. Rev. Lett. 98, 153903 (2007)

    Article  ADS  Google Scholar 

  • J. Guckenheimer, P. Holme, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42 (Springer, Berlin, 1983)

    Google Scholar 

  • J.L. Hindmarsh, R.M. Rose, A model of the nerve impulse using two first-order differential equations. Nature 296, 162 (1982)

    Article  ADS  Google Scholar 

  • J.L. Hindmarsh, R.M. Rose, A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. B 221, 87 (1984)

    Article  ADS  Google Scholar 

  • J. Hizanidis, R. Aust, E. Schöll, Delay-induced multistability near a global bifurcation. Int. J. Bifurc. Chaos 18, 1759 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • A.L. Hodgkin, The local electric changes associated with repetitive action in a medullated axon. J. Physiol. 107, 165 (1948)

    Article  Google Scholar 

  • A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  • G. Hu, T. Ditzinger, C.Z. Ning, H. Haken, Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807 (1993)

    Article  ADS  Google Scholar 

  • E.M. Izhikevich, Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171 (2000a)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Keane, T. Dahms, J. Lehnert, S.A. Suryanarayana, P. Hövel, E. Schöll, Synchronisation in networks of delay-coupled type-I excitable systems. Eur. Phys. J. B 85, 407 (2012) ISSN 1434-6028

    Google Scholar 

  • J. Lehnert, Dynamics of neural networks with delay, master’s thesis, Technische Universität Berlin (2010)

    Google Scholar 

  • J. Lehnert, T. Dahms, P. Hövel, E. Schöll, Loss of synchronization in complex neural networks with delay. Europhys. Lett. 96, 60013 (2011)

    Article  ADS  Google Scholar 

  • B. Lindner, J. García-Ojalvo, A.B. Neiman, L. Schimansky-Geier, Effects of noise in excitable systems. Phys. Rep. 392, 321 (2004)

    Article  ADS  Google Scholar 

  • A.S. Mikhailov, V.A. Davydov, V.S. Zykov, Complex dynamics of spiral waves and motion of curves. Phys. D 70(1–2), 1–39 (1994). ISSN 0167-2789

    Article  MathSciNet  MATH  Google Scholar 

  • C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193 (1981)

    Article  ADS  Google Scholar 

  • J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE 50, 2061–2070 (1962)

    Google Scholar 

  • E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  • J. Rinzel, G.B. Ermentrout, Analysis of neural excitability and oscillations, in Methods in Neuronal Modeling, ed. by C. Koch, I. Segev (MIT Press, Cambridge, 1989), pp. 251–291

    Google Scholar 

  • D.P. Rosin, K.E. Callan, D.J. Gauthier, E. Schöll, Pulse-train solutions and excitability in an optoelectronic oscillator. Europhys. Lett. 96, 34001 (2011)

    Article  ADS  Google Scholar 

  • D.P. Rosin, D. Rontani, D.J. Gauthier, E. Schöll, Excitability in autonomous Boolean networks. Europhys. Lett. 100, 30003 (2012)

    Article  ADS  Google Scholar 

  • E. Schöll, G. Hiller, P. Hövel, M.A. Dahlem, Time-delayed feedback in neurosystems. Philos. Trans. R. Soc. A 367, 1079 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A.C.U. Schwarze, Controlling desynchronization in complex network topologies by the balance of excitation and inhibition. Master’s thesis, Technische Universität Berlin (2014)

    Google Scholar 

  • J. Sonnenschein, Synchrony in delay-coupled excitable networks of type I and II. (Bachelor Thesis, TU Berlin 2013)

    Google Scholar 

  • S.H. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, Boulder, 1994)

    Google Scholar 

  • X.-J. Wang, G. Buzsáki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402 (1996)

    Google Scholar 

  • E.P. Wigner, On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  • C. Wille, J. Lehnert, E. Schöll, Synchronization-desynchronization transitions in complex networks: an interplay of distributed time delay and inhibitory nodes. Phys. Rev. E 90, 032908 (2014)

    Article  ADS  Google Scholar 

  • H.J. Wünsche, O. Brox, M. Radziunas, F. Henneberger, Excitability of a semiconductor laser by a two-mode homoclinic bifurcation. Phys. Rev. Lett. 88, 023901 (2001)

    Article  Google Scholar 

  • Y. Yang, Z. Wang, Control of cardiac excitability by microRNAs. Cardiovasc. Res. 79, 571 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Lehnert .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lehnert, J. (2016). Control of Synchronization Transitions by Balancing Excitatory and Inhibitory Coupling. In: Controlling Synchronization Patterns in Complex Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-25115-8_4

Download citation

Publish with us

Policies and ethics