Skip to main content

Approximate Furthest Neighbor in High Dimensions

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9371))

Included in the following conference series:

Abstract

Much recent work has been devoted to approximate nearest neighbor queries. Motivated by applications in recommender systems, we consider approximate furthest neighbor (AFN) queries. We present a simple, fast, and highly practical data structure for answering AFN queries in high-dimensional Euclidean space. We build on the technique of Indyk (SODA 2003), storing random projections to provide sublinear query time for AFN. However, we introduce a different query algorithm, improving on Indyk’s approximation factor and reducing the running time by a logarithmic factor. We also present a variation based on a query-independent ordering of the database points; while this does not have the provable approximation factor of the query-dependent data structure, it offers significant improvement in time and space complexity. We give a theoretical analysis, and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbar, S., Amer-Yahia, S., Indyk, P., Mahabadi, S.: Real-time recommendation of diverse related articles. In: Proc. 22nd International Conference on World Wide Web (WWW), pp. 1–12 (2013)

    Google Scholar 

  2. Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Computational Geometry 40(1), 14–22 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS (2008)

    Google Scholar 

  4. Bespamyatnikh, S.N.: Dynamic algorithms for approximate neighbor searching. In: Proceedings of the 8th Canadian Conference on Computational Geometry (CCCG 1996), pp. 252–257. Carleton University, August 12–15, 1996

    Google Scholar 

  5. Chávez, E., Navarro, G.: Measuring the dimensionality of general metric spaces. Tech. Rep. TR/DCC-00-1, Department of Computer Science, University of Chile (2000)

    Google Scholar 

  6. Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the dimension is small. Journal of the ACM (JACM) 42(2), 488–499 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proc. 20 Annual Symposium on Computational Geometry (SoCG), pp. 253–262 (2004)

    Google Scholar 

  8. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007) (online). http://www.sisap.org/Metric_Space_Library.html

  9. Goel, A., Indyk, P., Varadarajan, K.: Reductions among high dimensional proximity problems. In: Proc. 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 769–778 (2001)

    Google Scholar 

  10. Indyk, P.: Better algorithms for high-dimensional proximity problems via asymmetric embeddings. In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 539–545 (2003)

    Google Scholar 

  11. Indyk, P., Mahabadi, S., Mahdian, M., Mirrokni, V.S.: Composable core-sets for diversity and coverage maximization. In: Proc. 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pp. 100–108. ACM (2014)

    Google Scholar 

  12. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite programming. Journal of the ACM (JACM) 45(2), 246–265 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kumar, P., Mitchell, J.S., Yildirim, E.A.: Approximate minimum enclosing balls in high dimensions using core-sets. Journal of Experimental Algorithmics 8, 1–1 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Matoušek, J.: On variants of the Johnson-Lindenstrauss lemma. Random Structures and Algorithms 33(2), 142–156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16(4–5), 498–516 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Said, A., Fields, B., Jain, B.J., Albayrak, S.: User-centric evaluation of a k-furthest neighbor collaborative filtering recommender algorithm. In: Proc. Conference on Computer Supported Cooperative Work (CSCW), pp. 1399–1408 (2013)

    Google Scholar 

  17. Said, A., Kille, B., Jain, B.J., Albayrak, S.: Increasing diversity through furthest neighbor-based recommendation. In: Proceedings of the WSDM Workshop on Diversity in Document Retrieval (DDR 2012) (2012)

    Google Scholar 

  18. Skala, M.A.: Aspects of Metric Spaces in Computation. Ph.D. thesis, University of Waterloo (2008)

    Google Scholar 

  19. Williams, R.: A new algorithm for optimal constraint satisfaction and its implications. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1227–1237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Skala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pagh, R., Silvestri, F., Sivertsen, J., Skala, M. (2015). Approximate Furthest Neighbor in High Dimensions. In: Amato, G., Connor, R., Falchi, F., Gennaro, C. (eds) Similarity Search and Applications. SISAP 2015. Lecture Notes in Computer Science(), vol 9371. Springer, Cham. https://doi.org/10.1007/978-3-319-25087-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25087-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25086-1

  • Online ISBN: 978-3-319-25087-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics