Face Image Retrieval Revisited

  • Jan SedmidubskyEmail author
  • Vladimir Mic
  • Pavel Zezula
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9371)


The objective of face retrieval is to efficiently search an image database with detected faces and identify such faces that belong to the same person as a query face. Unlike most related papers, we concentrate on both retrieval effectiveness and efficiency. High retrieval effectiveness is achieved by proposing a new fusion approach which integrates existing state-of-the-art detection as well as matching methods. We further significantly improve a retrieval quality by employing the concept of multi-face queries along with optional relevance feedback. To be able to efficiently process queries on databases with millions of faces, we apply a specialized indexing algorithm. The proposed solutions are compared against four existing open-source and commercial technologies and experimentally evaluated on the standardized FERET dataset and on a real-life dataset of more than one million face images. The retrieval results demonstrate a significant gain in effectiveness and two-orders of magnitude more efficient query processing, with respect to a single technology executed sequentially.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chan, C.H., Tahir, M.A., Kittler, J., Pietikäinen, M.: Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. IEEE Trans. on Pattern Analysis and Mach. Int., 1164–1177 (2013)Google Scholar
  2. 2.
    Chen, B.C., Chen, Y.Y., Kuo, Y.H., Hsu, W.H.: Scalable face image retrieval using attribute-enhanced sparse codewords. IEEE Transactions on Multimedia 15(5), 1163–1173 (2013)CrossRefGoogle Scholar
  3. 3.
    Choi, W., Pantofaru, C., Savarese, S.: Detecting and tracking people using an rgb-d camera via multiple detector fusion. In: International Conference on Computer Vision Workshops, pp. 1076–1083 (2011)Google Scholar
  4. 4.
    Degtyarev, N., Seredin, O.: A geometric approach to face detector combining. In: Sansone, C., Kittler, J., Roli, F. (eds.) MCS 2011. LNCS, vol. 6713, pp. 299–308. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  5. 5.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences 66(4), 614–656 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Górecki, T.: Sequential combining in discriminant analysis. Journal of Applied Statistics, 398–408 (2015)Google Scholar
  7. 7.
    Hua, G., Yang, M.H., Learned-Miller, E., Ma, Y., Turk, M., Kriegman, D.J., Huang, T.S.: Introduction to the special section on real-world face recognition. IEEE Trans. on Pattern Analysis and Machine Int. 33(10), 1921–1924 (2011)CrossRefGoogle Scholar
  8. 8.
    Huang, Y., Liu, Q., Metaxas, D.N.: A component-based framework for generalized face alignment. IEEE Trans. on Systems, Man, and Cybernetics, 287–298 (2011)Google Scholar
  9. 9.
    Cech, J., Franc, V., Matas, J.: A 3d approach to facial landmarks: detection, refinement, and tracking. In: Int. Conf. on Pattern Recognition (ICPR 2014), p. 6 (2014)Google Scholar
  10. 10.
    Jafri, R., Arabnia, H.R.: A survey of face recognition techniques. Journal of Information Processing Systems, 41–68 (2009)Google Scholar
  11. 11.
    Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recognition, 1106–1122 (2007)Google Scholar
  12. 12.
    Klontz, J.C., Klare, B.F., Klum, S., Jain, A.K., Burge, M.J.: Open source biometric recognition. In: BTAS 2013, pp. 1–8 (2013)Google Scholar
  13. 13.
    Lai, J.H., Yuen, P.C., Feng, G.C.: Face recognition using holistic fourier invariant features. Pattern Recognition, 95–109 (2001)Google Scholar
  14. 14.
    Lampert, C.H., Blaschko, M.B., Hofmann, T.: Beyond sliding windows: object localization by efficient subwindow search. In: International Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–8 (2008)Google Scholar
  15. 15.
    Nanni, L., Lumini, A., Brahnam, S.: Likelihood ratio based features for a trained biometric score fusion. Expert Systems with Applications, 58–63 (2011)Google Scholar
  16. 16.
    Nanni, L., Lumini, A., Ferrara, M., Cappelli, R.: Combining biometric matchers by means of machine learning and statistical approaches. Neurocomputing, 526–535 (2015)Google Scholar
  17. 17.
    Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. on Pattern Analysis and Machine Int., 2106–2112 (2010)Google Scholar
  18. 18.
    Novak, D., Batko, M., Zezula, P.: Metric Index: An Efficient and Scalable Solution for Precise and Approximate Similarity Search. Inf. Sys. 36(4), 721–733 (2011)CrossRefGoogle Scholar
  19. 19.
    Segundo, M.P., Silva, L., Bellon, O.R.P., Queirolo, C.C.: Automatic face segmentation and facial landmark detection in range images. IEEE Transactions on Systems, Man, and Cybernetics, 1319–1330 (2010)Google Scholar
  20. 20.
    Park, U., Jain, A.K.: Face matching and retrieval using soft biometrics. IEEE Transactions on Information Forensics and Security, 406–415 (2010)Google Scholar
  21. 21.
    Sikora, T.: The mpeg-7 visual standard for content description-an overview. IEEE Transactions on Circuits and Systems for Video Technology 11(6), 696–702 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Subburaman, V.B., Marcel, S.: Alternative search techniques for face detection using location estimation and binary features. Computer Vision and Image Understanding, 551–570 (2013)Google Scholar
  23. 23.
    Tan, X., Chen, S., Zhou, Z.H., Zhang, F.: Face recognition from a single image per person: A survey. Pattern Recognition, 1725–1745 (2006)Google Scholar
  24. 24.
    Tsao, W.K., Lee, A.J.T., Liu, Y.H., Chang, T.W., Lin, H.H.: A data mining approach to face detection. Pattern Recognition, 1039–1049 (2010)Google Scholar
  25. 25.
    Uřičář, M., Franc, V., Hlaváč, V.: Detector of facial landmarks learned by the structured output SVM. In: Int. Conf. on Computer Vision, Imaging and Computer Graphics Theory and Applications. vol. 1, pp. 547–556. SciTePress (2012)Google Scholar
  26. 26.
    Wang, X., Han, T., Yan, S.: An hog-lbp human detector with partial occlusion handling. In: 12th International Conference on Computer Vision, pp. 32–39 (2009)Google Scholar
  27. 27.
    Wu, Z., Ke, Q., Sun, J., Shum, H.Y.: Scalable face image retrieval with identity-based quantization and multireference reranking. In: Int. Conf. on Computer Vision and Pattern Recognition (CVPR 2010), pp. 3469–3476. IEEE (2010)Google Scholar
  28. 28.
    Yang, J., Liu, C., Zhang, L.: Color space normalization: Enhancing the discriminating power of color spaces for face recognition. Pattern Recognition, 1454–1466 (2010)Google Scholar
  29. 29.
    Yang, M.H., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34–58 (2002)Google Scholar
  30. 30.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32. Springer (2006)Google Scholar
  31. 31.
    Zhang, L., Kalashnikov, D.V., Mehrotra, S.: A unified framework for context assisted face clustering. In: Int. Conf. on Multimedia Retrieval, pp. 9–16. ACM (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Masaryk UniversityBrnoCzech Republic

Personalised recommendations