Skip to main content

The Theory of Transit Assignment: Basic Modelling Frameworks

Part of the Springer Tracts on Transportation and Traffic book series (STTT)

Abstract

In this chapter, the different basic assumptions for the development of assignment models to transit networks (frequency-based, schedule-based) are presented together with the possible approaches to the simulation of the dynamic system (steady state, macroscopic flows, agent-based).

Keywords

  • Transit Assignment
  • Transit Network
  • Diachronic Graph
  • Hyperarc
  • Route Choice Model (RCM)

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25082-3_6
  • Chapter length: 100 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-25082-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9
Fig. 6.10
Fig. 6.11
Fig. 6.12
Fig. 6.13
Fig. 6.14
Fig. 6.15
Fig. 6.16
Fig. 6.17
Fig. 6.18
Fig. 6.19
Fig. 6.20
Fig. 6.21
Fig. 6.22

References

  • Alfa AS, Chen MY (1995) Temporal distribution of public transport demand during the peak period. Eur J Oper Res 83:137–153

    CrossRef  MATH  Google Scholar 

  • Amin-Naseri MR, Baradaran V (2014) Accurate estimation of average waiting time in public transportation systems. Transp Sci 49:213–222

    CrossRef  Google Scholar 

  • Andreasson I. (1976) A method for the analysis of transit networks. In: Roubens M (ed) Proceedings of the 2nd European congress on operations research, North Holland, Amsterdam

    Google Scholar 

  • Balmer M, Rieser M, Meister K, Charypar D, Lefebvre N, Nagel K (2008) MATSim-T: architecture and simulation times. In: Bazzan ALC, Klügl F (ed) Multi-agent systems for traffic and transportation engineering. Information science reference, Hershey, pp 57–78

    Google Scholar 

  • Bellei G, Gentile G, Papola N (2005) A within-day dynamic traffic assignment model for urban road networks. Transp Res B 39:1–29

    CrossRef  Google Scholar 

  • Bellei G, Gentile G, Meschini L, Papola N (2006) A demand model with departure time choice for within-day dynamic traffic assignment. Eur J Oper Res 175:1557–1576

    CrossRef  MATH  Google Scholar 

  • Bellman R (1958) On a routing problem. Q Appl Math 16:87–90

    MATH  Google Scholar 

  • Bowman LA, Turnquist MA (1981) Service frequency, schedule reliability and passenger wait times at transit stops. Transportation Research A 15:465–471

    CrossRef  Google Scholar 

  • Cantarella GE (1997) A general fixed-point approach to multimode multi-user equilibrium assignment with elastic demand. Transp Sci 31:107–128

    CrossRef  MATH  Google Scholar 

  • Cantarella GE, Cascetta E (1995) Dynamic processes and equilibrium in transportation networks: towards a unifying theory. Transp Sci 29:305–329

    CrossRef  MATH  Google Scholar 

  • Cats O (2013) Multi-agent transit operations and assignment model. Proc Comput Sci 19:809–814

    CrossRef  Google Scholar 

  • Cats O, Burghout W, Toledo T, Kousopoulos HN (2010) Mesoscopic modeling of bus public transportation. Transp Res Rec 2188:9–18

    CrossRef  Google Scholar 

  • Cats O, Kousopoulos HN, Burghout W, Toledo T (2011) Effect of real-time transit information on dynamic path choice of passengers. Transp Res Rec 2217:46–54

    CrossRef  Google Scholar 

  • Chriqui C, Robillard P (1975) Common bus lines. Transp Sci 9:115–121

    CrossRef  Google Scholar 

  • De Cea J, Fernandez JE (1989) Transit assignment to minimal routes: an efficient new algorithm. Traffic Eng Control 30:491–494

    Google Scholar 

  • Dial RB (1967) Transit pathfinder algorithm. Highw Res Board 205:67–85

    Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Ettema D, Jong K, Timmermans H, Bakema A (2007) PUMA: multi-agent modelling of urban systems. In: Koomen E et al (eds) Modelling land-use change, pp 237–258

    Google Scholar 

  • Fearnside K, Draper DP (1971) Public transport assignment—a new approach. Traffic Eng Control 13:298–299

    Google Scholar 

  • Friedrich M, Hofsaess I, Wekeck S (2001) Timetable-based transit assignment using branch and bound techniques. Transp Res Rec 1752:100–107

    CrossRef  Google Scholar 

  • Gallo G, Longo G, Nguyen S, Pallottino S (1993) Directed hypergraphs and applications. Discrete Appl Math 42:177–201

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Gao W, Balmer M, Miller EJ (2010) Comparisons between MATSim and EMME/2 on the greater Toronto and Hamilton area network. Transp Res Rec 2197:118–128

    CrossRef  Google Scholar 

  • Gentile G (2010) The general link transmission model for dynamic network loading and a comparison with the due algorithm. In: Immers LGH, Tampere CMJ, Viti F (eds) New developments in transport planning: advances in Dynamic Traffic Assignment (selected papers from the DTA 2008 conference, Leuven). Transport economics, management and policy series. Edward Elgar Publishing, MA, pp 153–178

    Google Scholar 

  • Gentile G (2015) Using the general link transmission model in a dynamic traffic assignment to simulate congestion on urban networks. Transp Res Proc 5:66–81

    CrossRef  Google Scholar 

  • Gentile G, Papola A (2006) An alternative approach to route choice simulation: the sequential models. In: Proceedings of the European transport conference, Strasbourg, France

    Google Scholar 

  • Gentile G, Meschini L, Papola N (2005) Spillback congestion in dynamic traffic assignment: a macroscopic flow model with time-varying bottlenecks. Transp Res B 41:1114–1138

    CrossRef  Google Scholar 

  • Hickman MD, Bernstein DH (1997) Transit service and path choice models in stochastic and time-dependent networks. Transp Sci 31:129–146

    CrossRef  MATH  Google Scholar 

  • Jolliffe JK, Hutchinson TP (1975) A behavioral explanation of the association between bus and passenger arrivals at a bus stop. Transp Sci 9:248–282

    CrossRef  Google Scholar 

  • Larson RC, Odoni AR (1981) Urban operations research. Prentice-Hall, Englewoods Cliffs

    Google Scholar 

  • Last A, Leak SE (1976) Transept: a bus model. Traffic Eng Control 17:14–20

    Google Scholar 

  • Le Clercq F (1972) A public transport assignment method. Traffic Eng Control 14:91–96

    Google Scholar 

  • Meignan D, Simonin O, Koukam A (2007) Simulation and evaluation of urban bus-networks using a multiagent approach. Simul Model Pract Theory 15:659–671

    CrossRef  Google Scholar 

  • Meschini L, Gentile G, Papola N (2007) A frequency based transit model for dynamic traffic assignment to multimodal networks. In: Allsop R, Bell MGH, Heydecker BG (eds) Proceedings of the 17th international symposium on transportation and traffic theory (ISTTT). Elsevier, London, pp 407–436

    Google Scholar 

  • Moller-Pedersen J (1999) Assignment model of timetable based systems (TPSCHEDULE). In: Proceedings of 27th European transportation forum, seminar F, Cambridge, England, pp 159–168

    Google Scholar 

  • Nguyen S, Pallottino S, Malucelli F (2001) A modeling framework for passenger assignment on a transport network with timetables. Transp Sci 35:238–249

    CrossRef  MATH  Google Scholar 

  • Nielsen OA (2000) A stochastic transit assignment model considering differences in passengers utility functions. Transp Res B 34:377–402

    CrossRef  Google Scholar 

  • Nielsen OA (2004) A large-scale stochastic multi-class schedule-based transit model with random coefficients. In: Wilson NHM, Nuzzolo A (eds) Schedule-based dynamic transit modeling: theory and applications. Kluwer Academic Publisher, Dordrecht, pp 53–78

    CrossRef  Google Scholar 

  • Nielsen OA, Jovicic G (1999) A large-scale stochastic timetable-based transit assignment model for route and sub-mode choices. Transp Plann Methods 434:169–184

    Google Scholar 

  • Nuzzolo A, Russo F (1998) A dynamic network loading model for transit services. In: Proceedings of TRAISTAN III, San Juan, Puerto Rico

    Google Scholar 

  • Nuzzolo A, Russo F, Crisalli U (2001) A doubly dynamic schedule-based assignment model for transit networks. Transp Sci 35:268–285

    CrossRef  MATH  Google Scholar 

  • Osuna E, Newell G (1972) Control strategies for an idealized public transportation system. Transp Sci 6:52–72

    CrossRef  Google Scholar 

  • Pallottino S, Scutellà MG (1998) Shortest path algorithms in transportation models: classical and innovative aspects. In: Marcotte P, Nguyen S (eds) Equilibrium and advanced transportation modelling. Kluwer Academic Publishers, Dordrecht, pp 245–281

    Google Scholar 

  • Salvini P, Miller EJ (2005) ILUTE: an operational prototype of a comprehensive microsimulation model of urban systems. Netw Spat Econ 5:217–234

    CrossRef  Google Scholar 

  • Sheffi Y (1984) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice-Hall, NJ

    Google Scholar 

  • Sumi T, Matsumoto Y, Miyaki Y (1990) Departure time and route choice of commuters on mass transit systems. Transp Res B 24:247–262

    CrossRef  Google Scholar 

  • Toledo T, Cats O, Burghout W, Koutsopoulos HN (2010) Mesoscopic simulation for transit operations. Transp Res C 18:896–908

    CrossRef  Google Scholar 

  • Tong CO, Wong SC (1999) A stochastic transit assignment model using a dynamic schedule-based network. Transp Res B 33:107–121

    CrossRef  Google Scholar 

  • TRB (2013) TCRP Report 165–Transit Capacity and Quality of Service Manual, 3rd Edition

    Google Scholar 

  • Wahba M, Shalaby A (2005) Multiagent learning-based approach to transit assignment problem a prototype. Transp Res Rec 1926:96–105

    CrossRef  Google Scholar 

  • Wang J, Wahba M, Miller EJ (2010) A comparison of an agent-based transit assignment procedure (MILATRAS) with conventional approaches city of Toronto transit network. In: Proceedings of the 89th transportation research board annual meeting, Washington DC

    Google Scholar 

  • Watling D (1999) Stability of the stochastic equilibrium assignment problem: a dynamical systems approach. Transp Res B 33:281–312

    CrossRef  Google Scholar 

  • Yperman I (2007) The link transmission model for dynamic network loading. PhD thesis, Katholieke Universiteit Leuven

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Gentile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gentile, G., Florian, M., Hamdouch, Y., Cats, O., Nuzzolo, A. (2016). The Theory of Transit Assignment: Basic Modelling Frameworks. In: Gentile, G., Noekel, K. (eds) Modelling Public Transport Passenger Flows in the Era of Intelligent Transport Systems. Springer Tracts on Transportation and Traffic. Springer, Cham. https://doi.org/10.1007/978-3-319-25082-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25082-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25080-9

  • Online ISBN: 978-3-319-25082-3

  • eBook Packages: EngineeringEngineering (R0)