Skip to main content

Modeling the Optical Response of Metallic Nanoparticles

  • Chapter
  • First Online:
Optical Properties of Metallic Nanoparticles

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 232))

Abstract

A formal solution of rigorous scattering theory for nanoparticles is unfortunately only possible for restricted geometries. There exist analytical solutions for light scattering problems if we expand the electromagnetic potentials and fields to spherical harmonics and limit ourselves to spherical or spheroidal particle shapes. In reality, however, we want to work with arbitrary shaped nanostructures and take advantage of certain structure dependent qualities like the hot spots in the gap regions of bowtie antennas or the magnetic response of split-ring resonators. So in general a more sophisticated numerical method for solving Maxwell’s equations is essential and inevitable. Several different techniques are available and some of them will be discussed in the next sections.

Prediction is very difficult, especially if it’s about the future. Niels Bohr

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Consult [3] for a derivation and discussion of the theorem, also see [4].

  2. 2.

    When the light from our sun reaches earth, the electromagnetic waves get scattered, mostly elastically, by the molecules and suspensoids in our atmosphere which causes the diffuse sky radiation (the characteristic Fraunhofer lines provoked by spectral absorption also occur in a blue sky spectrum of course). Such atmospheric particles are usually much smaller than the light wavelength and thus are a typical example of Rayleigh scattering . Since the short-wavelength part of the radiation becomes more strongly scattered than the longer wavelengths, the bluish part dominates and yields the color of our sky .

  3. 3.

    Born 29th September 1868 in Rostock; † 13th February 1957 in Freiburg im Breisgau.

  4. 4.

    At this point usually a little pedantry sets in and we should not speak of it as a theory but rather call it Mie oder Mie-Gans solution, since it is just a result of Maxwell’s equations under certain circumstances. Nevertheless the name “Mie theory” has become established.

  5. 5.

    We follow the notation of Debye here, otherwise the first Riccati-Bessel function is usually denoted as \(S_{l}(\mbox{ $z$}) = \mbox{ $z$}j_{l}(\mbox{ $z$})\).

  6. 6.

    Examples of application cover the fields of elasticity, geomechanics, structural mechanics, electromagnetics, acoustics, hydraulics, biomechanics, and much more.

  7. 7.

    A short overview about the historical development of the BEM can be found in [29] for example.

References

  1. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzán, F.J.G. de Abajo, Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008).

    Google Scholar 

  2. W.L. Barnes, Comparing experiment and theory in plasmonics. J. Opt. A Pure Appl. Opt. 11(11), 114002, (2009).

    Google Scholar 

  3. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962). ISBN 978-0-471-30932-1

  4. R.G. Newton, Optical theorem and beyond. Am. J. Phys. 44, 639–642 (1976).

    Google Scholar 

  5. N.W. Ashcroft, N.D. Mermin, Festkörperphysik (Oldenbourg, München, 2007). ISBN 978-3-48658273-4

  6. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983). ISBN 978-0471293408

  7. U. Kreibig, Hundert Jahre Mie-Theorie. Phys. Unserer Zeit 39(6), 281–287 (2008).

    Google Scholar 

  8. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metalllösungen. Ann. Phys. 330(3), 377–445 (1908).

    Google Scholar 

  9. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981). ISBN 978-0486642284

  10. J.A. Stratton, Electromagnetic Theory. (Wiley-IEEE Press, New York, 2007). ISBN 978-0-470-13153-4

  11. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 12 (1972).

    Google Scholar 

  12. C. Sönnichsen, Plasmons in metal nanostructures. Ph.D. thesis, Fakultät für Physik der Ludwig-Maximilians-Universität München, 2001.

  13. A. Tcherniak, J.W. Ha, S. Dominguez-Medina, L.S. Slaughter, S. Link, Probing a century old prediction one plasmonic particle at a time. Nano Lett. 10(4), 1398–1404 (2010).

    Google Scholar 

  14. J. Al-Khalili, In retrospect: book of optics. Nature 518(7538), 164–165 (2015).

    Google Scholar 

  15. H.M. Nussenzveig, The theory of the rainbow. Sci. Am. 236, 116–127 (1977).

    Google Scholar 

  16. J.D. Walker, Multiple rainbows from single drops of water and other liquids. Am. J. Phys. 44(5), 421–433 (1976).

    Google Scholar 

  17. J.A. Adam, The mathematical physics of rainbows and glories. Phys. Rep. 356(4–5), 229–366 (2002).

    Google Scholar 

  18. R. Dawkins, Unweaving the Rainbow (Mariner Books, New York, 2000). ISBN 978-0618056736

  19. B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11(4), 1491 (1994).

    Google Scholar 

  20. B.T. Draine, P.J. Flatau, User guide to the discrete dipole approximation code DDSCAT 7.3. Physics.comp-ph 1–102 (2013), arXiv:1305.6497.

  21. B. Draine, The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J. 333, 848–872 (1988).

    Google Scholar 

  22. E.M. Purcell, C.R. Pennypacker, Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J. 186, 705–714 (1973).

    Google Scholar 

  23. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House antennas and propagation library, 3rd edn. (Artech House, Boston, 2005). ISBN 1580538320

  24. U.S. Inan, R.A. Marshall, Numerical Electromagnetics – The FDTD Method (Cambridge University Press, Cambridge, 2011). ISBN 978-0521190695. http://www.cambridge.org/us/academic/subjects/engineering/electromagnetics/numerical-electromagnetics-fdtd-method?format=HB%26isbn=9780521190695

    Book  Google Scholar 

  25. M. Pelton, G.W. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, Hoboken, 2013). ISBN 9781118060407

  26. K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966).

  27. K. Umashankar, A. Taflove, A Novel Method To Analyze Electromagnetic Scattering Of Complex Objects. IEEE Trans. Electromagn. Compat. EMC-24(4), 397–405 (1982).

    Google Scholar 

  28. J.H. Mathews, Numerical Methods Using MATLAB, 4th edn. (Pearson, Upper Saddle River, 2004). ISBN 0130652482

  29. A. Sutradhar, G.H. Paulino, L.J. Gray, Symmetric Galerkin Boundary Element Method (Springer, Berlin/Heidelberg, 2008). ISBN 978-3-540-68770-2

  30. U. Hohenester, A. Trügler, MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370 (2012).

    Google Scholar 

  31. U. Hohenester, Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Comput. Phys. Commun. 185(3), 1177–1187 (2014).

    Google Scholar 

  32. J. Waxenegger, A. Trügler, U. Hohenester, Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comput. Phys. Commun. 193, 138–150 (2015).

    Google Scholar 

  33. M. Paulus, P. Gay-Balmaz, O.J.F. Martin, Accurate and efficient computation of the Green’s tensor for stratified media. Phys. Rev. E 62, 5797 (2000). doi:10.1103/PhysRevE.62.5797. http://journals.aps.org/pre/pdf/10.1103/PhysRevE.62.5797

    Article  ADS  Google Scholar 

  34. P. Gay-Balmaz, O.J.F. Martin, A library for computing the filtered and non-filtered 3D Green’s tensor associated with infinite homogeneous space and surfaces. Comput. Phys. Commun. 144, 111–120 (2002). doi:http://dx.doi.org/10.1016/S0010-4655(01)00471-4. http://ac.els-cdn.com/S0010465501004714/1-s2.0-S0010465501004714-main.pdf?_tid=aab6a980-e476-11e5-9af0-00000aab0f01%26acdnat=1457363582_2b3036286ce443a5d0bafda934d16e13

    Google Scholar 

  35. L. Novotny, B. Hecht, Principles of Nano-Optics, 2nd edn. (Cambridge University Press, Cambridge, 2012). ISBN 978-1107005464

  36. W.C. Chew, Waves and Fields in Inhomogeneous Media . IEEE PRESS Series on Electromagnetic Waves (IEEE Press, New York, 1995). ISBN 0-7803-4749-8

  37. F.J. García de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209 (2010).

    Google Scholar 

  38. M.A. Yurkin, A.G. Hoekstra, The discrete dipole approximation: an overview and recent developments. J. Quant. Spectrosc. Radiat. Transf. 106, 558–589 (2007). Also available at arXiv:0704.0038v1.

  39. T. Wriedt, U. Comberg, Comparison of computational scattering methods. J. Quant. Spectrosc. Radiat. Transf. 60(3), 411–423 (1998).

    Google Scholar 

  40. J.W. Hovenier, K. Lumme, M.I. Mishchenko, N.V. Voshchinnikov, D.W. Mackowski, J. Rahola, Computations of scattering matrices of four types of non-spherical particles using diverse methods. J. Quant. Spectrosc. Radiat. Transf. 55(6), 695–705 (1996).

    Google Scholar 

  41. M.R. Gonçalves, Plasmonic nanoparticles: fabrication, simulation and experiments. J. Phys. D: Appl. Phys. 47(21), 213001 (2014).

    Google Scholar 

  42. U. Kreibig, Interface-induced dephasing of Mie plasmon polaritons. Appl. Phys. B 93, 79–89 (2008).

    Google Scholar 

  43. W. Śmigaj, S. Arridge, T. Betcke, J. Phillips, M. Schweiger, Solving boundary integral problems with BEM++. ACM Trans. Math. Softw. 41, 6:1–6:40 (2015).

    Google Scholar 

  44. E. van ’t Wout, P. Gélat, T. Betcke, S. Arridge, A fast boundary element method for the scattering analysis of high-intensity focused ultrasound. J. Acoust. Soc. Am. 138, 2726 (2015).

  45. S.P. Groth, A.J. Baran, T. Betcke, S. Havemann, W. Śmigaj, The boundary element method for light scattering by ice crystals and its implementation in BEM++. J. Quant. Spectrosc. Radiat. Transf. 167, 40–52 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trügler, A. (2016). Modeling the Optical Response of Metallic Nanoparticles. In: Optical Properties of Metallic Nanoparticles. Springer Series in Materials Science, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-25074-8_4

Download citation

Publish with us

Policies and ethics