Skip to main content

The World of Plasmons

  • Chapter
  • First Online:
Optical Properties of Metallic Nanoparticles

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 232))

  • 2061 Accesses

Abstract

Many of the fundamental electronic properties of the solid state can be described by the concept of single electrons moving between an ion lattice . If we ignore the lattice, in a first approximation, we end up with a different approach where the free electrons of a metal can be treated as an electron liquid of high density [1, 2] . From this plasma model it follows that longitudinal density fluctuations, so-called plasma oscillations or Langmuir waves , with an energy of the order of 10 eV will propagate through the volume of the metal. These volume excitations have been studied in detail with Electron Energy Loss Spectroscopy (EELS)1 and have led to the discovery of surface plasmon polaritons.

The world is full of magical things patiently waiting for our wits to grow sharper.

Bertrand Russell

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A historical overview of electron beam experiments to study surface plasmons can be found in [3], p. 47.

  2. 2.

    Born 2nd May 1868 in Concord, Massachusetts; † 11th August 1955 in Amityville, New York.

  3. 3.

    Born 12th November 1842 in Langford Grove, Essex; † 30th June 1919 in Witham, Essex. Nobel Prize in Physics 1904.

  4. 4.

    Born 28th July 1912 in Turin; † 13th February 2001 in Chicago.

  5. 5.

    Recently it has been shown [1519] that also doped graphene may serve as an unique two-dimensional plasmonic material with certain advantages compared to metals (lower losses and much longer plasmon lifetimes).

  6. 6.

    Born 12th July 1863 in Braunschweig; † 5th July 1906 in Berlin.

  7. 7.

    Born 18th July 1853 in Arnheim; † 4th February 1928 in Haarlem. Nobel Prize in Physics 1902.

  8. 8.

    Born 5th December 1868 in Königsberg; † 26th April 1951 in München.

  9. 9.

    Born 2th July 1906 in Straßburg; † 6th March 2005 in Ithaca, New York. Nobel Prize in Physics 1967.

  10. 10.

    For gold at room temperature we have ne \(= 3/[4\pi (0.159 \times 10^{-9})^{3}] = 5.9 \times 10^{28}\;\mbox{ electrons}/\mbox{ m}^{3}\). With e \(= 1.602 \times 10^{-19}\) As, \(\varepsilon _{0} = 8.854 \times 10^{-12}\;\mbox{ A$^{2}$ s$^{4}$}/\mbox{ kg m$^{3}$}\), and me \(= 9.109 \times 10^{-31}\;\mbox{ kg}\) we obtain ω p = 13. 75 PHz or ℏ ω p = 9. 05 eV, respectively.

  11. 11.

    In general n \(= \pm \sqrt{\mbox{ $\mu \varepsilon $} /\mbox{ $\mu 0 \varepsilon 0$}} \approx \pm \sqrt{\mbox{ $\varepsilon $} /\mbox{ $\varepsilon 0$}}\) for optical frequencies and the positive sign is chosen for causality reasons in the system. A negative refractive index does not occur in nature but can be artificially generated with metamaterials (see Sect. 9 or e.g. [2426]).

  12. 12.

    In the literature most of the time the complex refractive index is tabulated, the connection to the dielectric function is given by \(\mbox{ $\varepsilon $}/\mbox{ $\varepsilon 0$} = \mbox{ $\varepsilon $}_{1} +\mathrm{ i}\mbox{ $\varepsilon $}_{2} =\) n \(^{2} = (\mbox{ $\tilde{n}$} +\mathrm{ i}\mbox{ $\tilde{k}$})^{2}\). The real and imaginary parts of \(\mbox{ $\varepsilon $}/\mbox{ $\varepsilon _{0}$}\) then follow as \(\varepsilon _{1} = \mbox{ $\tilde{n}$}^{2} -\mbox{ $\tilde{k}$}^{2}\) and ɛ 2 = 2˜n˜k.

  13. 13.

    The conversion factor between eV and nm is 1239.84 as discussed in Appendix A.1.

  14. 14.

    The abbreviations (s) and (p) come from the German words senkrecht (perpendicular) and parallel (parallel), respectively.

  15. 15.

    See [1] or [23] for a more detailed discussion.

  16. 16.

    Typically ζ m is one order of magnitude smaller than ζ b , e.g. for gold we obtain ζ m  ≈ 30 nm and ζ b  ≈ 280 nm at λ = 600 nm.

  17. 17.

    Since we solely discuss particle plasmon polaritons in this book, we will henceforth always refer to them.

  18. 18.

    The windows of Sainte-Chapelle in Paris are a very good example of this: Light transmission through the metal ions in the stained glass strongly depends on the incident and viewing angles. At sunset, the grazing-angle scattering of light by gold particles in the window creates a pronounced red glow that appears to slowly move downward, while intensities of blue tints from ions of copper or cobalt remain the same [39, 40].

  19. 19.

    Lycurgus cup, fourth century AD, British Museum, London.

  20. 20.

    A unified treatment of fluorescence and Raman scattering can be found in [56] for example.

  21. 21.

    Also an enhancement in polarizability due to chemical effects such as charge-transfer excited states can contribute to the huge SERS signal [55], but in the following we will just stick to the electromagnetic enhancement.

  22. 22.

    Some studies on isolated, homogeneous particles have shown that this assumption leads to a slight overestimate of the enhancement factor [55]. Also see [61] for example.

  23. 23.

    The usage of the refractive index in Eq. (2.17) is not consistent in the literature, see [70] for more details.

  24. 24.

    The formation of two hybridized modes (cf. bonding and antibonding modes in Fig. 2.26) oscillating at different energies is a typical indicator of strong coupling, if the involved damping is small. In the time domain the energy then oscillates between atom and cavity (Rabi oscillations, named after the Nobel laureate Isidor Isaac Rabi ) [91]. In the frequency domain we obtain Rabi splitting and anticrossing , see [88]. Rabi splitting is fundamental for the dynamics of two-state systems and can be easily modeled using the Jaynes-Cummings model [92] for example.

  25. 25.

    Fano interference occurs, when a resonant or discrete state interacts with a continuum of states–a very general effect that can be found in many different areas of physics and has been derived originally by Ugo Fano [93].

  26. 26.

    Since the heat capacity of the electronic system is much smaller than that of the ion lattice, an excitation by femtosecond laser pulses can generate extremely high electron temperatures [36].

  27. 27.

    At the beginning of this section we have seen that d-band absorption for gold starts around 620 nm, in silver around 400 nm.

  28. 28.

    This fundamental constant can be interpreted in several ways, e.g. as the electromagnetic coupling strength for the interaction between electrons and photons, as a ratio of charges, energies, or characteristic lengths. When Arnold Sommerfeld introduced this dimensionless number in 1916 to explain the splitting or fine structure of the energy levels of the hydrogen atom, which had been observed, he considered the ratio of the velocity of the electron in the first circular orbit of the Bohr model to the speed of light in vacuum.

  29. 29.

    Numerical value for gold and silver particles vF \(\approx 1.4\;\mbox{ nm}/\mbox{ fs} = 1400\;\mbox{ km}/\mbox{ s}\), Fermi energy EF ≈ 5. 53 eV respectively [22]. In contrast, the typical drift velocity of electrons in an electric wire is of the order of \(\mbox{ mm}/\mbox{ hour}\).

  30. 30.

    Optical damage of metal nanoparticles usually starts at laser energies around 25 GW/cm2 for antenna structures. For single particles this intensity might be doubled because of the lower field enhancement, see e.g. [111].

  31. 31.

    In real-life applications some kind of active control over the properties of the corresponding nanosystem is usually required to achieve signal switching, modulation or amplification, for example. For a passive device these properties are fixed by the nanostructure parameters, in active plasmonics typically hybridized systems (see e.g. [114]) are used, where metallic nanostructures are combined with functional materials.

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111 (Springer, Berlin, 1988). ISBN 978-0387173634

  2. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons. Springer Tracts in Modern Physics, vol. 88 (Springer, Berlin, 1980). ISBN 978-3540096771

  3. F.J. García de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209 (2010).

    Google Scholar 

  4. J. Dostálek, J. Homola, S. Jiang, J. Ladd, S. Löfås, A. McWhirter, D.G. Myszka, I. Navratilova, M. Piliarik, J. Štěpánek, A. Taylor, H. Vaisocherová, Surface Plasmon Resonance Based Sensors . Springer Series on Chemical Sensors and Biosensors (Springer, Berlin/Heidelberg, 2006). ISBN 978-3642070464

  5. R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos. Mag. 4(21), 396–402 (1902).

  6. L. Rayleigh, On the dynamical theory of gratings. Proc. R. Soc. Lond. A 79(532), 399–416 (1907).

    Google Scholar 

  7. R.B. Schasfoort, A.J. Tudos (eds.), Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, Cambridge, 2008). ISBN 978-0854042678

    Google Scholar 

  8. U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31, 213–222 (1941).

    Google Scholar 

  9. R. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106(5), 874 (1957).

    Google Scholar 

  10. C.J. Powell, J.B. Swan, Origin of the characteristic electron energy losses in aluminum. Phys. Rev. 115, 869 (1959).

    Google Scholar 

  11. C.J. Powell, J.B. Swan, Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Phys. Rev. 118, 640–643 (1960).

    Google Scholar 

  12. T. Turbadar, Complete absorption of light by thin metal films. Proc. Phys. Soc. 73(1), 40 (1959).

    Google Scholar 

  13. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeits. Phys. 216(4), 398–410 (1968).

    Google Scholar 

  14. E. Kretschmann, H. Raether, Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A 23, 2135–2136 (1968)

    ADS  Google Scholar 

  15. F.H.K. Koppens, D.E. Chang, F.J. García de Abajo, Graphene plasmonics: a platform for strong light-matter interaction. Nano Lett. 11, 3370–3377 (2011).

    Google Scholar 

  16. A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat. Photonics 6(11), 749–758 (2012).

    Google Scholar 

  17. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332(6035), 1291–1294 (2011).

    Google Scholar 

  18. F.J. García de Abajo, Graphene nanophotonics. Science 339(6122), 917–918 (2013).

    Google Scholar 

  19. F.J. García de Abajo, Graphene plasmonics: challenges and opportunities. ACS Photon. 1(3), 135–152 (2014).

  20. P. Drude, Zur Elektronentheorie der Metalle. Ann. Phys. 306(3), 566–613 (1900).

    Google Scholar 

  21. P. Drude, Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte. Ann. Phys. 3, 369–402 (1900).

    Google Scholar 

  22. N.W. Ashcroft, N.D. Mermin, Festkörperphysik. Oldenbourg, München, 2007. ISBN 978-3-48658273-4

  23. L. Novotny, B. Hecht, Principles of Nano-Optics, 2nd edn. (Cambridge University Press, Cambridge, 2012). ISBN 978-1107005464

  24. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Google Scholar 

  25. H.J. Lezec, J.A. Dionne, H.A. Atwater, Negative refraction at visible frequencies. Science 316, 5823 (2007).

    Google Scholar 

  26. N.I. Zheludev, A roadmap for metamaterials. Opt. Photonics News 22, 30–35 (2011).

    Google Scholar 

  27. F. Ladstädter, U. Hohenester, P. Puschnig, C. Ambrosch-Draxl, First-principles calculation of hot-electron scatterings in metals. Phys. Rev. B 70, 235125 (2004).

  28. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 12 (1972).

    Google Scholar 

  29. C. Sönnichsen, Plasmons in metal nanostructures. Ph.D. thesis, Fakultät für Physik der Ludwig-Maximilians-Universität München, 2001.

  30. E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, New York, 1985). ISBN 978-0125444200

  31. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters. Springer Series in Material Science, vol. 25 (Springer, Berlin, 1995). ISBN 978-3-540-57836-9

  32. R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, M. Raschke, Optical dielectric function of gold. Phys. Rev. B 86, 235147 (2012).

  33. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007). ISBN 978-0-387-33150-8

  34. F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J.R. Krenn, Universal dispersion of surface plasmons in flat nanostructures. Nat. Commun. 5, 3604 (2014).

  35. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003).

    Google Scholar 

  36. B. Lamprecht, Ultrafast plasmon dynamics in metal nanoparticles. Ph.D. thesis, Institut für Physik, Karl-Franzens-Universität Graz, 2000.

  37. G. Baffou, R. Quidant, Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898–3907 (2014).

    Google Scholar 

  38. J.B. Khurgin, How to deal with the loss in plasmonics and metamaterials. Nat. Nano. 10(1), 2–6 (2015).

    Google Scholar 

  39. M.I. Stockman, Nanoplasmonics: the physics behind the applications. Phys. Today 64, 39–44 (2011).

    Google Scholar 

  40. M.I. Stockman, Dark-hot resonances. Nature 467, 541–542 (2010).

    Google Scholar 

  41. U. Leonhardt, Optical metamaterials: invisibility cup. Nat. Photonics 1, 207–208 (2007).

    Google Scholar 

  42. H. Tait (ed.), Five Thousand Years of Glass, revised edition (University of Pennsylvania Press, Pennsylvania, 2004). ISBN 978-0-8122-1888-6

  43. J. Becker, A. Trügler, A. Jakab, U. Hohenester, C. Sönnichsen, The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2), 161–167 (2010).

    Google Scholar 

  44. J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán, P. Mulvaney, Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev. 249, 1870–1901 (2005).

  45. A. Jakab, C. Rosman, Y. Khalavka, J. Becker, A. Trügler, U. Hohenester, C. Sönnichsen, Highly sensitive plasmonic silver nanorods. ACS Nano 5(9), 6880–6885 (2011).

    Google Scholar 

  46. S.K. Mitra, N. Dass, N.C. Varshneya, Temperature dependence of the refractive index of water. J. Chem. Phys. 57, 1798 (1972).

    Google Scholar 

  47. J. Becker, Plasmons as Sensors. Ph.D. thesis, Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes-Gutenberg Universität Mainz, 2010.

  48. A. Ohlinger, S. Nedev, A.A. Lutich, F.J., Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Lett. 11, 1770 (2010).

    Google Scholar 

  49. S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J.R. Krenn, A. Leitner, Tailoring light emission properties of fluorophores by coupling to resonance–tuned metallic nanostructures. Phys. Rev. B 75, 073404 (2007).

  50. U. Hohenester, A. Trügler, Interaction of single molecules with metallic nanoparticles. IEEE J. Sel. Top. Quantum Electron. 14, 1430 (2008).

    Google Scholar 

  51. L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5(2), 83–90 (2011).

    Google Scholar 

  52. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009).

    Google Scholar 

  53. M.A. Cooper, Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 1, 515–528 (2002).

  54. P. Johansson, H. Xu, M. Käll, Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Phys. Rev. B 72, 035427 (2005).

  55. K. Kneipp, M. Moskovits, H. Kneipp (eds.), Surface-Enhanced Raman Scattering. Topics in Applied Physics, vol. 103 (Springer, Heidelberg/New York, 2006). ISBN 978-3-540-33566-5

  56. H. Xu, X.-H. Wang, M.P. Persson, H.Q. Xu, M. Käll, P. Johansson, Unified treatment of fluorescence and raman scattering processes near metal surfaces. Phys. Rev. Lett. 93, 243002 (2004).

  57. M. Fleischmann, P. Hendra, A. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974).

    Google Scholar 

  58. D.L. Jeanmaire, R.P. Van Duyne, Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1–20 (1977).

    Google Scholar 

  59. M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99(15), 5215–5217 (1977).

    Google Scholar 

  60. M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783 (1985).

    Google Scholar 

  61. E.C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J.R. Krenn, E. Blackie, P.G. Etchegoin, Experimental verification of the SERS electromagnetic model beyond the | E |4 approximation: polarization effects. J. Phys. Chem. C 112, 8117–8121 (2008).

    Google Scholar 

  62. M. Kerker, Estimation of surface-enhanced raman scattering from surface-averaged electromagnetic intensities. J. Colloid Interf. Sci. 118(2), 417–421 (1987).

    Google Scholar 

  63. E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, Surface enhanced raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111(37), 13794–13803 (2007).

    Google Scholar 

  64. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface enhanced Raman scattering. Science 275, 1102 (1997).

    Google Scholar 

  65. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997).

    Google Scholar 

  66. W. Hoppe, W. Lohmann, H. Markl, H. Ziegler (eds.), Biophysics (Springer, Berlin/New York, 1983). ISBN 978-3-642-61816-1

    Google Scholar 

  67. T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 437(1–2), 55–75 (1948).

    Google Scholar 

  68. R. Roy, S. Hohng, T. Ha, A practical guide to single-molecule FRET. Nat. Meth. 5(6), 507–516 (2008).

    Google Scholar 

  69. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21(5), 836 (1953).

    Google Scholar 

  70. R.S. Knox, H. van Amerongen, Refractive index dependence of the Förster resonance excitation transfer rate. J. Phys. Chem. B 106(20), 5289–5293 (2002).

    Google Scholar 

  71. P. Wu, L. Brand, Resonance energy transfer: methods and applications. Anal. Biochem. 218(1), 1–13 (1994).

    Google Scholar 

  72. F. Reil, U. Hohenester, J.R. Krenn, A. Leitner, Förster-type resonant energy transfer influenced by metal nanoparticles. Nano Lett. 8(12), 4128–4133 (2008).

    Google Scholar 

  73. D. Bergman, M. Stockman, Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90(2), 027402 (2003).

  74. M.I. Stockman, Spasers explained. Nat. Photonics 2(6), 327–329 (2008).

    Google Scholar 

  75. N.I. Zheludev, S.L. Prosvirnin, N. Papasimakis, V.A. Fedotov, Lasing spaser. Nat. Photonics 2(6), 351–354 (2008).

    Google Scholar 

  76. V. Apalkov, M.I. Stockman, Proposed graphene nanospaser. Light Sci. Appl. 3, e191 (2014).

    Google Scholar 

  77. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaser-based nanolaser. Nature 460(7259), 1110–1112 (2009).

    Google Scholar 

  78. V.E. Ferry, L.A. Sweatlock, D. Pacifici, H.A. Atwater, Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391 (2008).

    Google Scholar 

  79. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mat. 9, 205–213 (2010).

    Google Scholar 

  80. S. Divitt, L. Novotny, Spatial coherence of sunlight and its implications for light management in photovoltaics. Optica 2(2), 95–103 (2015).

    Google Scholar 

  81. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzán, F.J.G. de Abajo, Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008).

    Google Scholar 

  82. J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, B. Hecht, Mode imaging and selection in strongly coupled nanoantennas. Nano Lett. 10, 2105 (2010).

    Google Scholar 

  83. D.E. Chang, A.S. Sorensen, P.R. Hemmer, M.D. Lukin, Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

  84. I.A. Akimov, J.T. Andrews, F. Henneberger, Stimulated emission from the biexciton in a single self-assembled II–VI quantum dot. Phys. Rev. Lett. 96, 067401 (2006).

  85. A. Trügler, U. Hohenester, Strong coupling between a metallic nanoparticle and a single molecule. Phys. Rev. B 77, 115403 (2008).

  86. Q.A. Turchette, C.J. Hood, W. Lange, H. Mabuchi, H.J. Kimble, Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995).

    Google Scholar 

  87. J.M. Raimond, M. Brunce, S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys 73, 565 (2001).

    Google Scholar 

  88. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A. Imamoglu, Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896 (2007).

    Google Scholar 

  89. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, Y. Yamamoto, Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime. Phys. Rev. Lett. 98, 117402 (2007).

  90. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004).

    Google Scholar 

  91. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, A. Scherer, Vacuum Rabi splitting in semiconductors. Nat. Phys. 2(2), 81–90 (2006).

    Google Scholar 

  92. S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Clarendon, Oxford, 1997). ISBN 0-19-856362-0

  93. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961). .

    Google Scholar 

  94. J.A. Faucheaux, J. Fu, P.K. Jain, Unified theoretical framework for realizing diverse regimes of strong coupling between plasmons and electronic transitions. J. Phys. Chem. C 118(5), 2710–2717 (2014).

    Google Scholar 

  95. P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single–molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

  96. A. Manjavacas, F.J. García de Abajo, P. Nordlander, Quantum plexcitonics: strongly interacting plasmons and excitons. Nano Lett. 11(6), 2318–2323 (2011).

    Google Scholar 

  97. B. Gallinet, O.J.F. Martin, Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys. Rev. B 83, 235427 (2011). doi:10.1103/PhysRevB.83.235427. http://journals.aps.org/prb/pdf/10.1103/PhysRevB.83.235427

    Article  ADS  Google Scholar 

  98. B. Gallinet, O.J.F. Martin, Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. ACS Nano 5, 8999–9008 (2011). doi:10.1021/nn203173r. http://pubs.acs.org/doi/pdf/10.1021/nn203173r

    Article  Google Scholar 

  99. A. Lovera, B. Gallinet, P. Nordlander, O.J.F. Martin, Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7, 4527–4536 (2013). doi:10.1021/nn401175j. http://pubs.acs.org/doi/pdf/10.1021/nn401175j

    Article  Google Scholar 

  100. M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10(1), 25–34 (2015).

    Google Scholar 

  101. C.-K. Sun, F. Vallée, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 50, 15337–15348 (1994).

    Google Scholar 

  102. M. Wolf, Femtosecond dynamics of electronic excitations at metal surfaces. Surf. Scie. 377–379, 343–349 (1997).

    Google Scholar 

  103. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, R. Bratschitsch, Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett. 12(2), 992–996 (2012).

    Google Scholar 

  104. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009).

    Google Scholar 

  105. H. Giessen, R. Vogelgesang, Glimpsing the weak magnetic field of light. Science 23, 529–530 (2009).

    Google Scholar 

  106. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962). ISBN 978-0-471-30932-1

  107. A. Zangwill, Modern Electrodynamics (Cambridge University Press, Cambridge, 2012). ISBN 9780521896979

  108. M. Pelton, G.W. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley/Science Wise, Hoboken, 2013). ISBN 9781118060407 .

  109. G. Armelles, A. Cebollada, A. García-Martín, M.U. González, Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 1(1), 10–35 (2013).

    Google Scholar 

  110. V.V. Temnov, Ultrafast acousto-magneto-plasmonics. Nat. Photonics 6(11), 728–736 (2012).

    Google Scholar 

  111. P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, U. Hohenester, Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. 13(2), 674–678 (2013).

    Google Scholar 

  112. H. Gehan, C. Mangeney, J. Aubard, G. Lévi, A. Hohenau, J.R. Krenn, E. Lacaze, N. Félidj, Design and optical properties of active polymer-coated plasmonic nanostructures. J. Phys. Chem. Lett. 2(8), 926–931 (2011).

    Google Scholar 

  113. R.A. Álvarez-Puebla, R. Contreras-Cáceres, I. Pastoriza-Santos, J. Pérez-Juste, L.M. Liz-Marzán, Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angewandte Chemie International Edition 48(1), 138–143 (2009).

    Google Scholar 

  114. Y. Fedutik, V.V. Temnov, O. Schops, U. Woggon, M.V. Artemyev, Exciton-plasmon-photon conversion in plasmonic nanostructures. Phys. Rev. Lett. 99, 136802 (2007).

  115. C. Kittel, Introduction to Solid State Physics, 8th edn. Wiley, New York, 2004) ISBN 978-0471415268

  116. A. Arbouet, C. Voisin, D. Christofilos, P. Langot, N.D. Fatti, F. Vallée, J. Lermé, G. Celep, E. Cottancin, M. Gaudry, M. Pellarin, M. Broyer, M. Maillard, M.P. Pileni, M. Treguer, Electron-phonon scattering in metal clusters. Phys. Rev. Lett. 90, 177401 (2003).

  117. E.H. Hwang, R. Sensarma, S. Das Sarma, Plasmon-phonon coupling in graphene. Phys. Rev. B 82(19), 195406 (2010).

  118. R. Hillenbrand, T. Taubner, F. Keilmann, Phonon-enhanced light-matter interaction at the nanometre scale. Nature 418(6894), 159–162 (2002).

    Google Scholar 

  119. U. Guler, V.M. Shalaev, A. Boltasseva, Nanoparticle plasmonics: going practical with transition metal nitrides. Mater. Today 18(4), 227–237 (2015).

    Google Scholar 

  120. U. Guler, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Plasmonics on the slope of enlightenment: the role of transition metal nitrides. Faraday Discuss. 178, 71–86 (2015).

    Google Scholar 

  121. A. Hohenau, H. Ditlbacher, B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg, Electron beam lithography, a helpful tool for nanooptics. Microelectron. Eng. 83(4–9), 1464–1467 (2006).

    Google Scholar 

  122. M.R. Gonçalves, Plasmonic nanoparticles: fabrication, simulation and experiments. J. Phys. D: Appl. Phys. 47(21), 213001 (2014).

    Google Scholar 

  123. B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003).

    Google Scholar 

  124. Q. Li, T. Bürgi, H. Chen, Preparation of gold nanorods of high quality and high aspect ratio. J. Wuhan Univer. Technology – Mater. Sci. Ed. 25, 104–107 (2010).

    Google Scholar 

  125. J.-C. Tinguely, The influence of nanometric surface morphology on surface plasmon resonances and surface enhanced effects of metal nanoparticles. Ph.D. thesis, Institut für Physik, Karl-Franzens-Universität Graz, 2012.

  126. L.M. Liz-Marzán, Nanometals: formation and color. Mater. Today 7(2), 26–31 (2004).

    Google Scholar 

  127. A.R. Siekkinen, J.M. McLellan, J. Chen, Y. Xia, Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem. Phys. Lett. 432(4–6), 491–496 (2006).

    Google Scholar 

  128. Y. Sun, Y. Xia, Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv. Mat. 15(9), 695–699 (2003).

    Google Scholar 

  129. D. Koller, Luminescence coupling to dielectric and metallic nanostructures. Ph.D. thesis, Institut für Physik, Karl-Franzens-Universität Graz, 2009.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trügler, A. (2016). The World of Plasmons. In: Optical Properties of Metallic Nanoparticles. Springer Series in Materials Science, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-25074-8_2

Download citation

Publish with us

Policies and ethics