Sustainable Water and Land Management Under Global Change—The GLOWA Jordan River Project

  • Katja Tielbörger
  • Cornelia Claus
  • Daniela Schloz
  • Robin Twite
  • Emad Al-Karablieh
  • Amer Salman
  • Anan Jayyousi
  • Pinhas Alpert


Water scarcity has been a feature of life in the Jordan River basin from time immemorial. Over the last century the situation has become gradually worse because of the increasing population, its development for agriculture and changes in rainfall patterns and consequent droughts. The potential impact of global change on the region is likely to be very damaging unless steps are taken to adapt. The roughly forty interdisciplinary research teams taking part in the GLOWA Jordan River Project, whose membership is made up of scientists and stakeholders from Germany, Israel, Jordan and Palestine, produced numerous results of applied and basic research about the effects of global change and alternative options for responding to them. The results included regional climate change scenarios, scenarios for regional development under global change, improved understanding of the hydrological conditions in the region, and water management application tools such as the Water Evaluation and Planning (WEAP) tool. The project developed strategies and guidelines for sustainable water and land management under global change. It integrated among many different disciplines like climatology, hydrology, ecology, socio-economy, and agriculture and supported an active transboundary dialogue between science and stakeholders in the Jordan River region. A transdisciplinary approach was realized by developing jointly with stakeholders scenarios of the water situation and potential adaptation strategies via a scenario analysis approach, as well as by developing and establishing WEAP usage with regional stakeholders. The project can serve as an example for successful transboundary IWRM even in the most contentious setting.


Jordan river Global change Water management Land management Regional cooperation 



The GLOWA JR River Project was funded by the BMBF. Our gratitude goes to all partners who have not co-authored this manuscript but have significantly contributed to the success and results of the project. The overall project team is listed in


  1. Abusaada MJ (2011) Flow dynamics and management options in stressed carbonate aquifer system, the Western Aquifer Basin, Palestine. PhD thesis, Fakultät für Geowissenschaften und Geographie, University of Göttingen, Germany.
  2. Al-Assaf A, Salman AZ, Fisher FM, Al-Karablieh E (2007) A trade–off analysis for the use of different water sources for irrigation (The case of Southern Shounah in the Jordan Valley). Water Int 32(2):244–253. doi: 10.1080/02508060708692204 CrossRefGoogle Scholar
  3. Alcamo J (2009) Environmental futures: the practice of environmental scenario analysis. Elsevier, AmsterdamGoogle Scholar
  4. Al-Omari A, Salman A, Karablieh E (2014) The Red Dead Canal project: an adaptation option to climate change in Jordan. Desalin Water Treat 52(13–15):2833–2840. doi: 10.1080/19443994.2013.819168 CrossRefGoogle Scholar
  5. Alpert P, Krichak SO, Shafir H, Haim D, Osetinsky I (2008) Climatic trends to extremes employing regional modeling and statistical interpretation over the E. Mediterranean. Global Planet Change 63:163–170. doi: 10.1016/j.gloplacha.2008.03.003 CrossRefGoogle Scholar
  6. AQUASTAT database (2013) Food and Agriculture Organization of the United Nations (FAO). Accessed 20 Sept 2013
  7. Bonzi C, Onigkeit J, Hoff H, Joyce B, Tielbörger K (2016) Analysing stakeholder driven scenarios with a transboundary water planning tool for IWRM in the Jordan River Basin. In: Borchardt D, Bogardi J, Ibisch R (eds) Integrated water resources management: concept, research and implementation. Springer, BerlinGoogle Scholar
  8. Calder IR (2005) Blue revolution: integrated land and water resource management. Earthscan, LondonGoogle Scholar
  9. Claus C, Braun A, Schloz D, Tielbörger K (eds) (2014) GLOWA JR Atlas: results of the GLOWA Jordan River Project.
  10. Doppler W, Salman AZ, Al-Karablieh E, Wolff H-P (2002) The impact of water price strategies on irrigation water allocation under risk: the case of Jordan Valley. Agric Water Manage 55(3):171–182. doi: 10.1016/S0378-3774(01)00193-7 CrossRefGoogle Scholar
  11. EXACT (1998) Overview of middle east water resources: water resources of Palestinian, Jordanian and Israeli interest. Executive Action Team, Middle East Data Banks Project (EXACT). Accessed 21 Oct 2013
  12. Falkenmark M (1986) Fresh water—time for a modified approach. Ambio 15(4):192–200Google Scholar
  13. Falkenmark M (2003) Water management and ecosystems: living with change. Global water partnership technical committee background papers no 9Google Scholar
  14. Falkenmark M, Röckström J (2006) The new blue and green water paradigm: breaking new ground for water resources planning and management. J Water Resour Planning Manage 132(3):129–132. doi: 10.1061/(ASCE)0733-9496(2006)132:3(129)
  15. FAO (2000) New dimensions in water security: water, society and ecosystem services in the 21st century. Land and Water Development Division, Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  16. FAO (2003) Review of world water resources by country. Water reports vol 23. Food and Agricultural Organization of the United Nations, Rome, ItalyGoogle Scholar
  17. FAO (2009) Irrigation in the Middle East region in figures: AQUASTAT survey—2008. Food and Agriculture Organization of the United Nations (FAO). Accessed 19 Sept 2013
  18. FAOSTAT (2013) Food and Agricultural Organization of the United Nations (FAO) (pilot version). Accessed 29 Sept 2013
  19. Fleischer A, Sternberg M (2006) The economic impact of global climate change on Mediterranean rangeland ecosystems: a space-for-time approach. Ecol Econ 59(3):287–295. doi: 10.1016/j.ecolecon.2005.10.016 CrossRefGoogle Scholar
  20. Fleischer A, Lichtman I, Mendelsohn R (2008) Climate change, irrigation, and Israeli agriculture: will warming be harmful? Ecol Econ 65(3):508–515. doi: 10.1016/j.ecolecon.2007.07.014 CrossRefGoogle Scholar
  21. Fleischer A, Kurukulasuriya P, Mendelsohn R (2011) Reducing the impact of global climate change on agriculture—the use of endogenous irrigation and protected agriculture technology. In: Dinar A, Mendelsohn R (eds) Handbook on climate change and agriculture. Edward Elgar Publishing, pp 355–381. doi: 10.4337/9780857939869.00026
  22. Giorgi F, Hewitson B, Christensen J, Hulme M, Von Storch H, Whetton P, Jones R, Mearns L, Fu C (2001) Regional climate information—evaluation and projections. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 881 ppGoogle Scholar
  23. Grodek T, Lange J, Lekach J, Husary S (2011) Urban hydrology in mountainous Middle Eastern cities. Hydrol Earth Syst Sci 15(3):953–966. doi: 10.5194/hess-15-953-2011 CrossRefGoogle Scholar
  24. Gunkel A, Lange J (2012) New insights into the natural variability of water resources in the Lower Jordan River Basin. Water Resour Manage 26(4):963–980. doi: 10.1007/s11269-011-9903-1 CrossRefGoogle Scholar
  25. Hijawi T (2003) Economics and management of the use of different water qualities in irrigation in the West Bank (Farming systems and resource economics in the tropics 50). Margraf, 180 ppGoogle Scholar
  26. IPCC (2007) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007. Impacts, adaptation and vulnerability. Contribution of the working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  27. Kaminski J, Kan I, Fleischer A (2012) A structural land-use analysis of agricultural adaptation to climate change: a proactive approach. Am J Agric Econ 95(1):70–93. doi: 10.1093/ajae/aas075 CrossRefGoogle Scholar
  28. Kan I, Zeitouni N (2013) Impacts of changes in regional rainfall-distribution patterns on winter agriculture in Israel. In: Becker N (ed) Water policy in Israel, vol 4. Springer Netherlands, pp 193–207. doi: 10.1007/978-94-007-5911-4_13
  29. Klepper G (ed) (2011) Global change research in Germany 2011. German National Committee on Global Change Research (NKGCF), Kiel Institute for the World Economy. Accessed 11 Sept 2013
  30. Koch J, Wimmer F, Onigkeit J, Schaldach R (2012) An integrated land-use system model for the Jordan River region. In: Appiah-Opoku S (ed) Environmental land use planning. InTech Open Science, RijekaGoogle Scholar
  31. Köchy M (2008) Effects of simulated daily precipitation patterns on annual plant populations depend on life stage and climatic region. BMC Ecol 8:4. doi: 10.1186/1472-6785-8-4 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Köchy M, Mathaj M, Jeltsch F, Malkinson D (2008) Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes. Reg Environ Change 8(2):73–87. doi: 10.1007/s10113-008-0048-6 CrossRefGoogle Scholar
  33. Krichak SO, Breitgand JS, Samuels R, Alpert P (2011) A double-resolution transient RCM climate change simulation experiment for near-coastal eastern zone of the Eastern Mediterranean region. Theoret Appl Climatol 103(1–2):167–205. doi: 10.1007/s00704-010-0279-6 CrossRefGoogle Scholar
  34. Kunstmann H (2010) Available GLOWA JR climate change scenarios. Accessed 28 Oct 2013]
  35. Lange J, Gunkel A, Bastian D (2012a) Hydrology in the lower Jordan River basin. About actual water resources and new water resources—an analysis based on the TRAIN-ZIN model.
  36. Lange J, Husary S, Gunkel A, Bastian D, Grodek T (2012b) Potentials and limits of urban rainwater harvesting in the Middle East. Hydrol Earth Syst Sci 16(3):715–724. doi: 10.5194/hess-16-715-2012 CrossRefGoogle Scholar
  37. Liebe J, Laube W, Leemhuis C, Youkhana E, Rogmann A, Arntz C, Vlek PLG, (2008) Volta: implementation of a Volta Basin water allocation system for transboundary water management. In: German National Committee for the International Hydrological Programme (IHP) of UNESCO, Hydrology and Water Resources Programme (HWRP) of WMO (eds) GLOWA global change and the hydrological cycle. IHP/HWRP-Berichte, Heft 7, 50–51Google Scholar
  38. Ludwig F, van Slobbe E, Cofino W (2013) Climate change adaptation and integrated water resources management in the water sector. J Hydrol. doi: 10.1016/j.jhydrol.2013.08.010
  39. Mauser W, Stoeber S, Barthel R, Ernst A (2008) Danube: the future of low-flow in the Upper-Danube basin. In: German National Committee for the International Hydrological Programme (IHP) of UNESCO, Hydrology and Water Resources Programme (HWRP) of WMO (eds) GLOWA Global change and the hydrological cycle. IHP/HWRP-Berichte, Heft 7, 35–36Google Scholar
  40. Menzel L, Törnros T (2012) The water resources of the Eastern Mediterranean: present and future conditions. In: Rausch R, Schüth C, Himmelsbach T (eds) Hydrogeology of arid environments. Borntraeger Science Publishers, Stuttgart, pp 97–100Google Scholar
  41. Menzel L, Koch J, Onigkeit J, Schaldach R (2009) Modelling the effects of land-use and land-cover change on water availability in the Jordan River region. Adv Geosci 21:73–80. doi: 10.5194/adgeo-21-73-2009 CrossRefGoogle Scholar
  42. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858.
  43. Nortcliff S, Black E, Potter R (2011) Current water demands and future strategies under changing climatic conditions. In: Mithen S, Black E (eds) Water, life and civilisation: climate, environment, and society in the Jordan Valley. International hydrology series. Cambridge University Press, New YorkGoogle Scholar
  44. Onigkeit J, Twite R (2011) Future management of the Jordan River basin’s water and land resources under climate change—a scenario analysis. Center for Environmental Systems Research (CESR), Israel Palestine Center for Research and Information (IPCRI), Kassel, Jerusalem.
  45. Onigkeit J, Simon KH, Alcamo J, Gramberger M, Tielman K, Tielbörger K (2013) Strategic participative scenario development as a method to integrate science and IWRM—lessons learnt from a case study in the Jordan River regionGoogle Scholar
  46. Phillips SJ, Anderson RP Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259. doi: 10.1016/j.ecolmodel.2005.03.026
  47. Reichmann O, Chen Y, Litaor IM (2016) the impact of high-flow events on the water quality in the agro-management catchment of the Upper Jordan Valley, IsraelGoogle Scholar
  48. Rieland M (2004) Das BMBF-Programm GLOWA: Instrumente für ein vorausschauendes Management großer Flusseinzugsgebiete. Hydrol Wasserbewirtsch 48(H2):83–84Google Scholar
  49. Rimmer A (2007) Systems hydrology models for the Upper Catchments of the Jordan River and Lake Kinneret, Israel. Israel J Earth Sci 56(1):1–17. doi: 10.1560/IJES.56.1.1 CrossRefGoogle Scholar
  50. Rimmer A, Salingar Y (2006) Modelling precipitation-streamflow processes in karst basin: the case of the Jordan River sources, Israel. J Hydrol 331(3–4):524–542. doi: 10.1016/j.jhydrol.2006.06.003 CrossRefGoogle Scholar
  51. Rimmer A, Givati A, Samuels R, Alpert P (2011) Using ensemble of climate models to evaluate future water and solutes budgets in Lake Kinneret, Israel. J Hydrol 410(3–4):248–259. doi: 10.1016/j.jhydrol.2011.09.025 CrossRefGoogle Scholar
  52. Rockström J, Lannerstad M, Falkemark M (2007) Assessing the water challenge of a new green water revolution in developing countries. Proc Natl Acad Sci USA 104(15):6253–6260. doi: 10.1073/pnas.0605739104 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sade R, Rimmer A, Samuels R, Salinger Y, Denisyuk M, Alpert P (2016) Water management in a complex hydrological basin—application of water evaluation and planning tool (WEAP) to the Lake Kinneret watershed, IsraelGoogle Scholar
  54. Salah A (2008) Intercropping annual fields with perennial plants—a strategy to reduce land degradation in semi-arid regions. PhD thesis, Department of Environmental Planning, University of Hannover.
  55. Salman AZ, Al-Karablieh EK, Al-Zoubi AS, Tabieh MA (2013) An assessment of the potential consequences of climate change on the economics of irrigated agriculture in Northern Jordan Valley. SWUP-MED final conference. Sustainable water use for securing food production in the Mediterranean region under changing climate. Agadir, Morocco, 11–15 March 2013.
  56. Samuels R, Rimmer A, Alpert P (2009) Effect of extreme rainfall events on the water resources of the Jordan River. J Hydrol 375(3–4):513–523. doi: 10.1016/j.jhydrol.2009.07.001 CrossRefGoogle Scholar
  57. Samuels R, Smiatek G, Krichak S, Kunstmann H, Alpert P (2011) Extreme value indicators in highly resolved climate change simulations for the Jordan River area. J Geophys Res Atmos 116. doi: 10.1029/2011JD016322
  58. Schacht K, Gönster S, Jüschke E, Chen Y, Tarchitzky J, Al-Bakri J, Al-Karablieh E, Marschner B (2011) Evaluation of soil sensitivity towards the irrigation with treated wastewater in the Jordan River region. Water 3(4):1092–1111. doi: 10.3390/w3041092 CrossRefGoogle Scholar
  59. Schacht K, Chen Y, Tarchitzky J, Marschner B (2016) The use of treated wastewater for irrigation as a component of IWRM: reducing environmental implications on soil and groundwater by evaluating site-specific soil suitabilityGoogle Scholar
  60. SIWI (2007) Water overview: transboundary cooperation, IWRM and opportunities for Swedish engagement, Paper 12. Accessed 15 Sept 2013
  61. Smiatek G, Kunstmann H, Heckl A (2011) High-resolution climate change simulations for the Jordan River area. J Geophys Res Atmos 116. doi: 10.1029/2010JD015313
  62. Speth P, Christoph M, Diekkrüger B (eds) (2010) Impacts of global change on the hydrological cycle in West and Northwest Africa. Springer, New York, 675 ppGoogle Scholar
  63. Tielbörger K, Fleischer A, Menzel L, Metz J, Sternberg M (2010) The aesthetics of water and land: a promising concept for managing scarce water resources under climate change. Philos Trans R Soc A 368(1931):5323–5337. doi: 10.1098/rsta.2010.0143 CrossRefGoogle Scholar
  64. Tielbörger K, Bilton MC, Metz J, Kigel J, Holzapfel C, Lebrija-Trejos E, Konsens I, Parag HA, Sternberg M (2014) Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nat Commun 5:5102. doi: 10.1038/ncomms6102 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Törnros T, Menzel L (2013) Characterizing droughts under current and future climates in the Jordan River region. Hydrol Earth Syst Sci Dis 10:5875–5902. doi: 10.5194/hessd-10-5875-2013 CrossRefGoogle Scholar
  66. UN (2013) World population prospects: the 2012 revision, DVD edition. United Nations (UN) Department of Economic and Social Affairs, Population Division. Accessed 18 Sept 2013
  67. UNDP (2013) Water governance in the Arab Region—managing scarcity and securing the future. United Nations Development Programme, Nairobi. Accessed 09 May 2014
  68. Verner D, Lee DR, Ashwill M, Wilby R (2013) Increasing resilience to climate change in the agricultural sector of the Middle East: the cases of Jordan and Lebanon. World Bank, Washington, DC. doi: 10.1596/978-0-8213-9844-9
  69. Volland J, Koch J, Onigkeit J, Wimmer F, Schaldach R (2014) Land-use modeling in the GLOWA-Jordan River Project. Documentation of models and simulation results, CESR (Centre for Environmental System Research)—Paper 7.
  70. Von Witsch U (2008) GLOWA: a German initiative to meet a global challenge. The innovative GLOWA approach. In: German National Committee for the International Hydrological Programme (IHP) of UNESCO, Hydrology and Water Resources Programme (HWRP) of WMO (eds) GLOWA global change and the hydrological cycle. IHP/HWRP-Berichte, Heft 7, 12–14Google Scholar
  71. Wechsung F, Kaden S, Behrendt H, Klöcking B (eds) (2008) Integrated analysis of the impacts of global change on environment and society in the Elbe River Basin. Weißensee Verlag, Berlin, 401 ppGoogle Scholar
  72. Yates D, Sieber J, Purkey D, Huber-Lee A (2005) WEAP21—a demand-, priority-, and preference-driven water planning model Part 1: Model characteristics. Water Int 30(4):487–500CrossRefGoogle Scholar
  73. Yates D, Purkey D, Sieber J, Huber-Lee A, Galbraith H, West J, Herrod-Julius S, Young C, Joyce B, Rayej M (2009) Climate driven water resources model of the Sacramento Basin, California. J Water Resour Planning Manage. doi: 10.1061/(ASCE)0733-9496(2009)135:5(303)

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Katja Tielbörger
    • 1
  • Cornelia Claus
    • 1
  • Daniela Schloz
    • 1
  • Robin Twite
    • 2
  • Emad Al-Karablieh
    • 3
  • Amer Salman
    • 3
  • Anan Jayyousi
    • 4
  • Pinhas Alpert
    • 5
  1. 1.Plant Ecology GroupUniversity of TübingenTübingenGermany
  2. 2.Israel Palestine Centre for Research and Information (IPCRI)JerusalemIsrael
  3. 3.Department of Agricultural Economics & Agribusiness ManagementThe University of JordanAmmanJordan
  4. 4.Water and Environmental Studies InstituteAn Najah National UniversityNablusPalestine
  5. 5.Porter School of Environmental StudiesTel Aviv UniversityTel AvivIsrael

Personalised recommendations