Skip to main content

Neutron Stars Within the Pseudo-complex General Relativity

  • Chapter
  • First Online:
  • 968 Accesses

Part of the book series: FIAS Interdisciplinary Science Series ((FIAS))

Abstract

In this chapter, neutron stars within the extended theory are considered. A simple linear model is applied, describing the coupling between the dark energy to the matter density. Neutron stars with up to 6 solar masses will be obtained. Energy conditions and their derivation are explicitly presented, for isotropic and anisotropic fluids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.A. Abramowicz, W. Klu, No observational proof of the black-hole event horizon. A&A 396, L31 (2002)

    Article  ADS  MATH  Google Scholar 

  2. G. Chapline, E. Hohlfeld, R.B. Laughlin, D.I. Santiago, Quantum phase transitions and the breakdown of classical general relativity. Philos. Mag. Part B 81, 235 (2001)

    Article  ADS  Google Scholar 

  3. P. Mazur, E. Mottola, Gravitational Condensate Stars: an Alternative to Black Holes. arXiv:gr-qc/0109035 (2001)

  4. M. Visser, D.L. Wiltshire, Stable gravastars, an alternative to black holes. Class. Quantum Gravity 21 (2004)

    Google Scholar 

  5. C. Cattoen, T. Faber, M. Visser, Gravastars must have anisotropic pressure. Class. Quantum Gravity 2, 4189 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. I. Dymnikova, Vacuum nonsingular black hole. Gen. Relativ. Gravit. 24, 235 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  7. I. Dymnikova, The algebraic structure of a cosmological term in spherical symmetric solutions. Phys. Lett. B 472, 33 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. F.S.N. Lobo, Stable dark energy stars. Class. Quantum Gravity 23, 1525 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. C.R. Ghezzi, Anisotropic dark energy stars. Astrophys. Space Sci. 333, 437 (2011)

    Article  ADS  MATH  Google Scholar 

  10. M. Visser, Gravitational vacuum polarization I: energy conditions in the Hartle-Hawking vacuum. Phys. Rev. D 54, 5103 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Visser, Gravitational vacuum polarization II: energy conditions in the Bouleware vacuum. Phys. Rev. D 54, 5116 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Visser, Gravitational vacuum polarization III: energy conditions in the (1+)-dimensional Schawrzschild spacetime. Phys. Rev. D 54, 5123 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Visser, Gravitational vacuum polarization IV: energy conditions in the Unruh vacuum. Phys. Rev. D 56, 936 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Barceló, S. Liberati, S. Sonego, M. Visser, Fate of gravitational collapse in semiclassical gravity. Phys. Rev. D 77, 044032 (2008)

    Article  ADS  Google Scholar 

  15. I. Rodríguez, P.O. Hess, S. Schramm, W. Greiner, Neutron stars within pseudo-complex general relativity. J. Phys. G 41, 105201 (2014)

    Article  ADS  Google Scholar 

  16. R. Adler, M. Bazin, M. Schiffer, Introduction to General Relativity, 2nd edn. (McGraw Hill, New York, 1975)

    MATH  Google Scholar 

  17. J. Oppenheimer, G. Volkov, On massive neutron cores. Phys. Rev. Online Arch. 55, 374 (1939)

    ADS  MATH  Google Scholar 

  18. R.C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364 (1939)

    Article  ADS  MATH  Google Scholar 

  19. V. Dexheimer, S. Schramm, Proto-neutron and neutron stars in a chiral SU(3) model. Astrophys. J. 683, 943 (2008)

    Article  ADS  Google Scholar 

  20. P. Papazoglou, S. Schramm, J. Schaffner-Bielich, H. Stöcker, W. Greiner, Chiral Lagrangian for strange hadronic matter. Phys. Rev. C 57, 2576 (1998)

    Article  ADS  Google Scholar 

  21. P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stöcker, W. Greiner, Nuclei in a chiral SU(3) model. Phys. Rev. C 59, 411 (1999)

    Article  ADS  Google Scholar 

  22. S. Schramm, Deformed nuclei in a chiral model. Phys. Rev. C 66, 064310 (2002)

    Article  ADS  Google Scholar 

  23. J. Antoniadis, P.C.C. Freire, N. Wex et al., A massive pulsar in a compact relativistic binary. Science 340, 448 (2013)

    Article  ADS  Google Scholar 

  24. P.B. Demorest, T. Pennucci, S.M. Ramos, M.S.E. Roberts, J.W.T. Hessels, A two-solar mass neutron star measured using Shapiro delay. Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  25. W. Israel, Singular hypersurfaces and thin shells in general relativity Il. Nuovo Cim. B 571, 10 (1931)

    Google Scholar 

  26. F.S.N. Lobo, P. Crawford, Stability analysis of dynamic thin shells. Class. Quantum Gravity 22, 1 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Mazur, E. Mottala, Gravitational condensate stars: an alternative to black holes. PNAS 101, 9545 (2004)

    Article  ADS  Google Scholar 

  28. S. Carroll, Spacetime and Geometry, An introduction to general relativity (Addison-Wesley, San Francisco, 2004)

    MATH  Google Scholar 

  29. M. Visser, C. Barceló. Energy Conditions and their Cosmological Implications. arXiv:gr-qc/0001099 (2000)

  30. M.H. Daouda, M.E. Rodrigues, M. Houndjo, Anisotropic fluid for a set of non-diagonal tetrads in gravity. Phys. Lett B 715(241), (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter O. Hess .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hess, P.O., Schäfer, M., Greiner, W. (2016). Neutron Stars Within the Pseudo-complex General Relativity. In: Pseudo-Complex General Relativity. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-319-25061-8_6

Download citation

Publish with us

Policies and ethics