Skip to main content

Assessing Flood Impacts, Wetland Changes and Climate Adaptation in Europe: The CLIMSAVE Approach

  • Chapter
  • First Online:

Abstract

This chapter presents the Coastal Fluvial Flood (CFFlood) meta-model that has been developed and integrated into a participatory integrated assessment tool to facilitate a two-way interactive process. The goal of the model is to allow users to explore flood impacts and adaptation options under a range of climate and socio-economic change scenarios in Europe. The tool enables users to understand the socio-economic flood impacts and wetland change/loss due to changes in model parameters within ranges that are designed to reflect future uncertainty. Changes in flood frequency due to changes in river flows and relative sea-level rise are used to determine the flood extent and depth, which are combined with information on urban land use, population density, and Gross Domestic Product (GDP) to estimate impacts. Wetland changes and losses in the floodplain are assessed considering three influencing factors of accommodation: space, sediment supply, and rate of relative sea-level rise. The benefits of a number of adaptation measures including flood protection upgrades, realignment of flood defenses, resilience measures, and mixed responses for reducing flood risks are assessed. Flood impact simulations show that future climate and socio-economic conditions significantly influence socio-economic impacts, especially when coastal flooding is increased due to sea-level rise. In contrast, impacts caused by fluvial flooding may decrease in Southern Europe and parts of Western Europe due to the decrease in precipitation. Incremental losses of coastal wetland habitats (i.e., saltmarsh and intertidal flats) are simulated with the increase of sea-level rise. Under high-end scenarios, impacts increase substantially unless there are corresponding adaptation efforts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alcamo JM, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003) Development and testing of the WaterGAP2 global model of water use and availability. Hydrol Sci J 48:317–337

    Article  Google Scholar 

  • Berkhout F, van den Hurk B, Bessembinder J, de Boer J, Bregman B, van Drunen M (2014) Framing climate uncertainty: socio-economic and climate scenarios in vulnerability and adaptation assessments. Reg Environ Chang 14:879–893

    Google Scholar 

  • Carmichael J, Tansey J, Robinson J (2004) An integrated assessment modeling tool. Glob Environ Chang 14:171–183

    Article  Google Scholar 

  • Dawson RJ, Dickson ME, Nicholls RJ, Hall JW, Walkden MJA, Stansby P, Mokrech M, Richards J, Zhou J, Milligan J, Jordan A, Pearson S, Rees J, Bates P, Koukoulas S, Watkinson A (2009) Integrated analysis of risks of coastal flooding and cliff erosion under scenarios of long term change. Clim Chang 95:249–288

    Article  Google Scholar 

  • Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134

    Article  Google Scholar 

  • EEA (2010) Mapping the impacts of natural hazards and technological accidents in Europe – an overview of the last decade. EEA Technical Report. European Environment Agency, Copenhagen, Denmark, p 144. doi:10.2800/62638. ISSN 1725-2237

  • Evans E, Ashley R, Hall J, Penning-Rowsell E, Saul A, Sayers P, Thorne C, Watkinson A (2004a) Foresight future flooding scientific summary: volume I—future risks and their drivers. Office of Science and Technology, London

    Google Scholar 

  • Evans E, Ashley R, Hall J, Penning-Rowsell E, Saul A, Sayers P, Thorne C, Watkinson A (2004b) Foresight future flooding scientific summary: volume II—managing future risks. Office of Science and Technology, London

    Google Scholar 

  • Feyen L, Dankers R, Bódis K, Salamon P, Barredo JI (2012) Fluvial flood risk in Europe in present and future climates. Clim Change. doi:10.1007/s10584-011-0339-7

  • Gramberger M, Zellmer K, Kok K, Metzger M (2015) Stakeholder Integrated Research (STIR): a new approach tested in climate change adaptation research. Clim Chang 128(3–4):201–214

    Article  Google Scholar 

  • Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J (2013) Future flood losses in major coastal cities. Nat Clim Chang 3(9):802–806

    Article  Google Scholar 

  • Harrison PA, Holman IP, Cojocaru G, Kok K, Kontogianni A, Metzger M, Gramberger M (2013) Combining qualitative and quantitative understanding for exploring cross-sectoral climate change impacts, adaptation and vulnerability in Europe. Reg Environ Change 13(4):761–780

    Google Scholar 

  • Harrison PA, Holman IP, Berry PM (2015) Assessing cross-sectoral climate change impacts, vulnerability and adaptation: an introduction to the CLIMSAVE project. Clim Chang 128(3–4):153–167

    Article  Google Scholar 

  • Hinkel J, Nicholls RJ, Vafeidis A, Tol RSJ, Avagianou T (2010) Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA. Mitig Adapt Strateg Glob Chang 5(7):1–17

    Google Scholar 

  • Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ, Tol RSJ, Marzeion B, Fettweis X, Ionescu C, Levermann A (2014) Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc Natl Acad Sci. doi:10.1073/pnas.1222469111

    Google Scholar 

  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Change 3:816–821. doi:10.1038/nclimate1911

    Article  Google Scholar 

  • Holman IP, Rounsevell MDA, Shackley S, Harrison PA, Nicholls RJ, Berry PM, Audsley E (2005a) A regional, multi-sectoral and integrated assessment of the impacts of climate and socioeconomic change in the UK. Part I. Methodology. Clim Chang 71:9–41

    Article  Google Scholar 

  • Holman IP, Nicholls RJ, Berry PM, Harrison PA, Audsley E, Shackley S, Rounsevell MDA (2005b) A regional, multi-sectoral and integrated assessment of the impacts of climate and socioeconomic change in the UK, Part II, results. Clim Chang 71:43–73

    Article  Google Scholar 

  • Holman IP, Rounsevell MDA, Cojacaru G, Shackley S, McLachlan C, Audsley E, Berry PM, Fontaine C, Harrison PA, Henriques C, Mokrech M, Nicholls RJ, Pearn KR, Richards JA (2008) The concepts and development of a participatory regional integrated assessment tool. Clim Chang 90:5–30

    Article  Google Scholar 

  • IPCC: Climate Change (2007) The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, NY, USA

    Google Scholar 

  • IPCC: Climate Change (2013) The physical science basis. In: Stocker TF et al (ed) Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5). Cambridge University Press

    Google Scholar 

  • Jongman B, Ward PJ, Aerts JCJH (2012) Global exposure to river and coastal flooding: long term trends and changes. Glob Environ Chang 22:823–835

    Article  Google Scholar 

  • Jongman B, Hochrainer-Stigler S, Feyen L, Aerts JCJH, Mechler R, Botzen WJW, Bouwer LM, Pflug G, Rojas R, Ward PJ (2014) Increasing stress on disaster risk finance due to large floods. Nat Clim Chang 4:264–268. doi:10.1038/nclimate2124

    Article  Google Scholar 

  • Linham M, Green C, Nicholls RJ (2010) Costs of adaptation to the effects of climate change in the world’s large port cities. AVOID - Avoiding dangerous climate change report AV/WS1/D1/02. Department of Energy and Climate Change (DECC) and Department for Environment Food and Rural Affairs (DEFRA), London

    Google Scholar 

  • Lowe JA, Gregory JM, Flather RA (2001) Changes in the occurrence of storm surges around the United Kingdom under a future climate scenario using a dynamic storm surge model driven by the Hadley Centre climate models. Clim Dyn 18:179–188

    Article  Google Scholar 

  • MAFF (1999) Flood and coastal defense project appraisal guidance (FCDPAG3), vol 3. Economic appraisal. Defra publications ref. PB 4650, Defra, London

    Google Scholar 

  • McFadden L, Spencer T, Nicholls RJ (2007) Broad-scale modeling of coastal wetlands: what is required? Hydrobiolgica 577:5–15

    Article  Google Scholar 

  • Meyer V et al (2013) Review article: assessing the costs of natural hazards-state of the art and knowledge gaps. Natl Hazards Earth Syst Sci 13(5):1351–1373

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Mokrech M, Nicholls RJ, Richards JA, Henriques C, Holman IP, Shackley S (2008) Regional impact assessment of flooding under future climate and socio-economic scenarios for East Anglia and North West England. Clim Chang 90:31–55

    Article  Google Scholar 

  • Mokrech M, Kebede AS, Nicholls RJ, Wimmer F, Feyen L (2015) An integrated approach for assessing flood impacts due to future climate and socio-economic conditions and the scope of adaptation in Europe. Clim Chang 128(3–4):245–260

    Article  Google Scholar 

  • Nicholls RJ, Hanson S, Lowe JA, Warrick RA, Lu X, Long AJ (2014) Sea-level scenarios for evaluating coastal impacts. Wiley Interdiscip Rev Clim Chang 5(1):129–150

    Article  Google Scholar 

  • Rapport D, Friend A (1979) Towards a comprehensive framework for environmental statistics: a stress-response approach. Statistics Canada, Ottawa

    Google Scholar 

  • Richards JA, Mokrech M, Berry PM, Nicholls RJ (2008) Climate change and floodplain ecosystems: regional assessment and adaptation potential. Clim Chang 90:141–167

    Article  Google Scholar 

  • Rojas R, Feyen L, Watkiss P (2013) Climate change and river floods in the European Union: socio-economic consequences and the costs and benefits of adaptation. Glob Environ Chang 23:1737–1751

    Article  Google Scholar 

  • Vafeidis AT, Nicholls RJ, McFadden L, Tol RSJ, Spencer T, Grashoff PS, Boot G, Klein RJT (2008) A new global coastal database for impact and vulnerability analysis to sea-level rise. J Coast Res 24(4):917–924

    Article  Google Scholar 

  • Verzano K (2009) Climate change impacts on flood related hydrological processes: further development and application of a global scale hydrological model. Reports on Earth System Science, 71-2009, Max Planck Institute for Meteorology, Hamburg

    Google Scholar 

  • Wimmer F, Audsley E, Savin CM, Malsy M, Dunford R, Harrison PA, Schaldach R, Flörke M (2015) Modeling the effects of cross-sectoral water allocation schemes in Europe. Clim Chang 128(3–4):153–167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mokrech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mokrech, M., Kebede, A.S., Nicholls, R.J. (2017). Assessing Flood Impacts, Wetland Changes and Climate Adaptation in Europe: The CLIMSAVE Approach. In: Gray, S., Paolisso, M., Jordan, R., Gray, S. (eds) Environmental Modeling with Stakeholders. Springer, Cham. https://doi.org/10.1007/978-3-319-25053-3_16

Download citation

Publish with us

Policies and ethics