Skip to main content

Barycentric Subspaces and Affine Spans in Manifolds

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9389))

Included in the following conference series:

Abstract

This paper addresses the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. Current methods like Principal Geodesic Analysis (PGA) and Geodesic PCA (GPCA) minimize the distance to a “Geodesic subspace”. This allows to build sequences of nested subspaces which are consistent with a forward component analysis approach. However, these methods cannot be adapted to a backward analysis and they are not symmetric in the parametrization of the subspaces. We propose in this paper a new and more general type of family of subspaces in manifolds: barycentric subspaces are implicitly defined as the locus of points which are weighted means of \(k+1\) reference points. Depending on the generalization of the mean that we use, we obtain the Fréchet/Karcher barycentric subspaces (FBS/KBS) or the affine span (with exponential barycenter). This definition restores the full symmetry between all parameters of the subspaces, contrarily to the geodesic subspaces which intrinsically privilege one point. We show that this definition defines locally a submanifold of dimension k and that it generalizes in some sense geodesic subspaces. Like PGA, barycentric subspaces allow the construction of a forward nested sequence of subspaces which contains the Fréchet mean. However, the definition also allows the construction of backward nested sequence which may not contain the mean. As this definition relies on points and do not explicitly refer to tangent vectors, it can be extended to non Riemannian geodesic spaces. For instance, principal subspaces may naturally span over several strata in stratified spaces, which is not the case with more classical generalizations of PCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afsari, B.: Riemannian \(l^p\) center of mass: existence, uniqueness, and convexity. Proc. AMS 180(2), 655–673 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Brewin, L.: Riemann normal coordinate expansions using cadabra. Class. Quantum Gravity 26(17), 175017 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Damon, J., Marron, J.S.: Backwards principal component analysis and principal nested relations. J. Math. Imaging Vis. 50(1–2), 107–114 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Fletcher, P., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  5. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Annales de l’Institut Henri Poincaré 10, 215–310 (1948)

    MATH  Google Scholar 

  6. Gorban, A.N., Zinovyev, A.Y.: Principal graphs and manifolds. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods and Techniques, Chap. 2, pp. 28–59 (2009)

    Google Scholar 

  7. Jung, S., Dryden, I.L., Marron, J.S.: Analysis of principal nested spheres. Biometrika 99(3), 551–568 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karcher, H.: Riemannian Center of Mass and so called Karcher mean, July 2014. arXiv:1407.2087 [math]

  10. Kendall, W.: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proc. Lond. Math. Soc. 61(2), 371–406 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Le, H.: Estimation of Riemannian barycenters. LMS J. Comput. Math 7, 193–200 (2004)

    Article  MathSciNet  Google Scholar 

  12. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006). A preliminary appeared as INRIA RR-5093, January 2004

    Article  MathSciNet  Google Scholar 

  13. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006). A preliminary version appeared as INRIA Research. Report 5255, (July 2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huckemann, A.M.S., Hotz, T.: Intrinsic shape analysis: geodesic principal component analysis for Riemannian manifolds modulo Lie group actions. Statistica Sin. 20, 1–100 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Sommer, S.: Horizontal dimensionality reduction and iterated frame bundle development. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 76–83. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Sommer, S., Lauze, F., Nielsen, M.: Optimization over geodesics for exact principal geodesic analysis. Adv. Comput. Math. 40(2), 283–313 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, L.: Medians of probability measures in Riemannian manifolds and applications to radar target detection. Ph.D. thesis, Poitier University, December 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Pennec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pennec, X. (2015). Barycentric Subspaces and Affine Spans in Manifolds. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2015. Lecture Notes in Computer Science(), vol 9389. Springer, Cham. https://doi.org/10.1007/978-3-319-25040-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25040-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25039-7

  • Online ISBN: 978-3-319-25040-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics