Mass Transfer Equipment

  • George Saravacos
  • Athanasios E. Kostaropoulos
Part of the Food Engineering Series book series (FSES)


Mass transfer operations are used in several food process industries in various physical separations of components from liquids or solids for recovering valuable products, or for removing undesirable food or nonfood components. They differ from mechanical separations (Chap.  5) in the controlling transport mechanism, which is mass transfer at the molecular level, while mechanical separations are based on differences in macroscopic size, shape, and density of solid particles or pieces.


Distillation equipment Ethanol distillation Essence recovery systems Solvent extraction Gas absorption Adsorption and ion exchange Crystallization 


  1. AIChE (1958) Bubble tray manual. American Institute of Chemical Engineers, New YorkGoogle Scholar
  2. AIChE (2000) Distillation in practice. CD-ROM. American Institute of Chemical Engineers, New YorkGoogle Scholar
  3. Aquilera JM, Stanley DW (1999) Microstructural principles of food processing and engineering, 2nd edn. Aspen, GaithersburgGoogle Scholar
  4. Billet R (1973) Industrielle destillation. Verlag Chemie, WeinheimGoogle Scholar
  5. Bischoff G et al (1978) Fleischverarbeitung. Mermann Schroedel Verlag KG, HannoverGoogle Scholar
  6. Bomben JL, Mannheim HC, Morgan AI Jr (1967) Operating conditions for aroma recovery by new vacuum stripping method and evaluation of aroma solutions. Fruchtsaft Ind 12(2):44–53Google Scholar
  7. Bomben JL, Bruin S, Thijssen HAC, Merson LR (1973) Aroma recovery and retention in concentration and drying of foods. Adv Food Res 20:1–112CrossRefGoogle Scholar
  8. Brennan JC, Butters JR, Cowell NP, Lilly AEV (1990) Food engineering operations, 3rd edn. Applied Science Publ, LondonGoogle Scholar
  9. Bruin S (1969) Activity coefficients and plate efficiencies in distillation of multicomponent aqueous solutions. Doctoral thesis, Wageningen University, Wageningen, Holland: H. Veenman and Zonen N.V.Google Scholar
  10. Casimir DJ, Craig AM (1990) Flavor recovery using the Australian spinning cone column. In: Spiess WEL, Schubert H (eds) Engineering and food, vol 3. Elsevier Applied Science, New York, pp 100–117Google Scholar
  11. Cheryan M (1998) Ultrafiltration and microfiltration handbook. Technomic, LancasterGoogle Scholar
  12. Cussler E (1997) Diffusion mass transfer in fluid systems, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  13. Frendeslund J, Gmehling JA, Rasmussen R (1977) Vapor-liquid equilibria using UNIFAC. Elsevier, AmsterdamGoogle Scholar
  14. Gekas V (1992) Transport phenomena of foods and biological materials. CRC Press, New YorkGoogle Scholar
  15. Gmehling J, Onken U, Arlt W (1984) Vapor-liquid equilibrium data collection. Chemistry data series vol 1, parts 1–8. DECHEMA, Frankfurt/MainGoogle Scholar
  16. Grandison AS, Lewis MJ (1996) Separation processes in the food and biotechnology industries. Technomic, LancasterCrossRefGoogle Scholar
  17. Gray C (1993) History of the spinning cone column. In: Downing DL (ed) Juice technology workshop. NY State Agr. Exp. Station, Cornell University, New York, pp 31–37. Special report no. 67Google Scholar
  18. Heiss R (1991) Lebensmitteltechnologie. Springer, BerlinCrossRefGoogle Scholar
  19. Heldman DR, Hartel RW (1997) Principles of food processing. Chapman and Hall, New YorkGoogle Scholar
  20. Holland CD (1981) Fundamentals of multicomponent distillation. McGraw-Hill, New YorkGoogle Scholar
  21. Hui YH (ed) (1996) Bailey’s industrial oil and fat products, vol 4, 5th edn, Edible oil and fat products. Wiley, New YorkGoogle Scholar
  22. Karlsson HOE, Tragardh G (1997) Aroma recovery during beverage processing. J Food Eng 34:179–178CrossRefGoogle Scholar
  23. Kimball DA (1999) Citrus processing, 2nd edn. Aspen, GaithersburgCrossRefGoogle Scholar
  24. King CJ (1982) Separation processes. McGraw-Hill, New YorkGoogle Scholar
  25. Kirschbaum E (1969) Destillier und Rektifiziertechnik. Springer, BerlinCrossRefGoogle Scholar
  26. Lazarides H, Iakovidis A, Scwartzberg HG (1990) Aroma loss and recovery during falling film evaporation. In: Spiess WEL, Schubert H (eds) Engineering and food, vol 3. Elsevier Applied Science, New York, pp 96–105Google Scholar
  27. Lewis MJ (1990) Physical properties of foods and food processing systems. Ellis Horwood, AmsterdamCrossRefGoogle Scholar
  28. Marinos-Kouris D, Saravacos GD (1974) Distillation of volatile compounds from aqueous solutions in an agitated film evaporator. In: Proceedings joint GVC/AIChE meeting, vol IV, paper G5-3, Munich, GermanyGoogle Scholar
  29. Mermelstein NH (2000) Removing alcohol from wine. Food Technol 54(11):89–92Google Scholar
  30. Moyer JC, Saravacos GD (1968) Scientific and technical aspects of fruit juice aroma recovery. In: Proceedings of 7th international fruit juice congress, Cannes FranceGoogle Scholar
  31. Mullin J (1993) Crystallization, 3rd edn. Butterworths, LondonGoogle Scholar
  32. Nagy S, Chen CS, Shaw PE (eds) (1993). Fruit juice processing technology. Agscience, AuburndaleGoogle Scholar
  33. Nursten HE, Williams AA (1967) Fruit aromas: a survey of compounds identified. In: Chemistry and Industry (UK), March 25, pp 486–497Google Scholar
  34. Nyvlt J (1971) Industrial crystallization from solution. Butterworths, LondonGoogle Scholar
  35. Perry RH, Green D (1997) Chemical engineers’ handbook, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  36. Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1999) Molecular thermodynamics of fluid phase equilibria, 3rd edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  37. Prospectus of companies: (a) GEA Food solutions, (b) DCE Inc., (c) Stork Food and Dairy SystemsGoogle Scholar
  38. Randolph AD, Larson MA (1971) Theory of particulate processes. Academic, New YorkGoogle Scholar
  39. Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  40. Robinson C, Gilliland E (1950) Elements of fractional distillation. McGraw-Hill, New YorkGoogle Scholar
  41. Roger NF, Turkot VA (1965) Designing distillation equipment for volatile fruit aromas. Food Technol 19(1):69–73Google Scholar
  42. Sancho MF, Rao MA (1993) Factors influencing aroma recovery and concentration. In: Downing DL (ed) Juice technology workshop. N.Y. State Agr. Exp. Station, Cornell University, Geneva, New York, pp 47–53. Special report no. 67Google Scholar
  43. Sancho MF, Rao MA, Downing DL (1997) Infinite dilution activity coefficients of apple juice aroma compounds. J Food Eng 34:145–158CrossRefGoogle Scholar
  44. Saravacos GD (1970) Volatility of wine aroma components in ethanol solutions. New York State Agricultural Experiment Station, Cornell University, Geneva, New York. Personal communicationGoogle Scholar
  45. Saravacos GD (1974) Recovery of volatile aroma compounds during evaporation of fruit juices. In: Proceedings of 12th international congress agricultural and food industries. C.I.I.A, ParisGoogle Scholar
  46. Saravacos GD (1995) Mass transport properties of foods. In: Rao MA, Rizvi SSH (eds) Engineering properties of foods, 2nd edn. Marcel Dekker, New York, pp 169–221Google Scholar
  47. Saravacos GD, Maroulis ZB (2001) Transport properties of foods. Marcel Dekker, New YorkGoogle Scholar
  48. Saravacos GD, Moyer JC (1968) Volatility of some aroma compounds during vacuum-drying of fruit juices. Food Technol 22(5):89–95Google Scholar
  49. Saravacos GD, Moyer JC, Wooster GD (1969) Stripping of high-boiling aroma compounds from aqueous solutions. In: Paper presented at the 62nd annual meeting of the American Institute of Chemical Engineers (AIChE), Washington, DCGoogle Scholar
  50. Saravacos GD, Karathanos VT, Marinos-Kouris D (1990) Volatility of fruit aroma compounds in sugar solutions. In: Charalambous G (ed) Flavors and off-flavors. Elsevier, Amsterdam, pp 729–738Google Scholar
  51. Schormueller J (1966) Die Erhaltung der Lebensmittel. Ferdinand Enke Verlag, StuttgartGoogle Scholar
  52. Schwartzberg HG (1980) Continuous countercurrent extraction in the food industry. Chem Eng Prog 76(4):67Google Scholar
  53. Schwartzberg HG (1987) Leaching. Organic materials. In: Rousseau RW (ed) Handbook of separation process technology. Wiley, New York, pp 540–577Google Scholar
  54. Schwartzberg HG, Chao RY (1982) Solute diffusivities in the leaching processes. Food Technol 36(2):73–86Google Scholar
  55. Schweitzer PA (ed) (1988) Handbook of separation techniques for chemical engineers, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  56. Sherwood TK, Pigford RL, Wilke CR (1975) Mass transfer. McGraw-Hill, New YorkGoogle Scholar
  57. Sulc O (1984) Fruchtsaftkonzentrierung und Fruchtsaftaromaseparierung. Confructa Studien 28(3):258–318Google Scholar
  58. Treybal R (1980) Mass transfer operations, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  59. Tscheuschner HD (1986) (Herausgeber)Lebensmitteltechnik. Steinkopff VerlagGoogle Scholar
  60. Van Smith JM, Nesh HC, Abbot NM (1996) Introduction to chemical engineering thermodynamics, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  61. Van Winkle M (1967) Distillation. McGraw-Hill, New YorkGoogle Scholar
  62. Walas SM (1985) Phase equilibria in chemical engineering. Butterworths, LondonGoogle Scholar
  63. Walas S (1988) Chemical processing equipment. Butterworths, LondonGoogle Scholar
  64. Wankat PC (1990) Rate-controlled separations. Elsevier Science, New YorkCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • George Saravacos
    • 1
  • Athanasios E. Kostaropoulos
    • 2
  1. 1.NauplionGreece
  2. 2.AthensGreece

Personalised recommendations