A Reasoning Module for Distributed Clinical Decision Support Systems

  • Tiago OliveiraEmail author
  • Ken Satoh
  • Paulo Novais
  • José Neves
  • Pedro Leão
  • Hiroshi Hosobe
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 616)


One of the main challenges in distributed clinical decision support systems is to ensure that the flow of information is kept. The failure of one or more components should not bring down an entire system. Moreover, it should not impair any decision processes that are taking place in a functioning component. This work describes a decision module that is capable of managing states of incomplete information which result from the failure of communication between components or delays in making the information available. The framework is also capable of generating scenarios for situations in which there are information gaps. The proposal is described through an example about colon cancer staging.


Decision Module Speculative Computation Clinical Decision Support System Execution Trace Clinical Information System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Benson, A., Bekaii-Saab, T., Chan, E., Chen, Y.J., Choti, M., Cooper, H., Engstrom, P.: NCCN Clinical Practice Guideline in Oncology Colon Cancer. Technical Report, National Comprehensive Cancer Network (2009)Google Scholar
  2. 2.
    Boxwala, A.A., Peleg, M., Tu, S., Ogunyemi, O., Zeng, Q.T., Wang, D., Patel, V.L., Greenes, R.A., Shortliffe, E.H.: GLIF3: a representation format for sharable computer-interpretable clinical practice guidelines. J. Biomed. Inf. 37(3), 147–161 (2004)CrossRefGoogle Scholar
  3. 3.
    Fox, J., Ma, R.T.: Decision support for health care : the PROforma evidence base. Inf. Prim. Care 14(1), 49–54 (2006)Google Scholar
  4. 4.
    Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer-Verlag, New York (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hosobe, H., Satoh, K., Codognet, P.: Agent-Based speculative constraint processing. IEICE Trans. Inf. Syst. E90-D(9), 1354–1362 (2007)Google Scholar
  6. 6.
    Hua, Z., Gong, B., Xu, X.: A dsahp approach for multi-attribute decision making problem with incomplete information. Expert Syst. Appl. 34(3), 2221–2227 (2008)CrossRefGoogle Scholar
  7. 7.
    Kononenko, I.: Inductive and bayesian learning in medical diagnosis. Appl. Artif. Intell. 7(4), 317–337 (1993)CrossRefGoogle Scholar
  8. 8.
    Korb, K., Nicholson, A.: Bayesian Artifical Intelligence, 2nd edn. CRC Press, London (2003)CrossRefGoogle Scholar
  9. 9.
    Oliveira, T., Novais, P., Neves, J.: Representation of clinical practice guideline components in owl. In: Trends in Practical Applications of Agents and Multiagent Systems, Advances in Intelligent Systems and Computing, vol. 221, pp. 77–85. Springer (2013)Google Scholar
  10. 10.
    Peleg, M.: Computer-Interpretable clinical guidelines: a methodological review. J. Biomed. Inf. 46(4), 744–763 (2013)CrossRefGoogle Scholar
  11. 11.
    Shortliffe, E.H., Davis, R., Axline, S.G., Buchanan, B.G., Green, C., Cohen, S.N.: Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the mycin system. Comput. Biomed. Res. 8(4), 303–320 (1975)CrossRefGoogle Scholar
  12. 12.
    Straszecka, E.: Combining uncertainty and imprecision in models of medical diagnosis. Inf. Sci. 176(20), 3026–3059 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tu, S.W., Campbell, J.R., Glasgow, J.: Nyman, M.a., McClure, R., McClay, J., Parker, C., Hrabak, K.M., Berg, D., Weida, T., Mansfield, J.G., Musen, M.a., Abarbanel, R.M.: The SAGE guideline model: achievements and overview. J. Am. Med. Inf. Assoc. JAMIA 14(5), 589–98 (2007)Google Scholar
  14. 14.
    Van der Heijden, M., Lucas, P.J.F.: Describing disease processes using a probabilistic logic of qualitative time. Artif. Intell. Med. 59(3), 143–155 (2013)CrossRefGoogle Scholar
  15. 15.
    Visscher, S., Lucas, P.J.F., Schurink, C.A.M., Bonten, M.J.M.: Modelling treatment effects in a clinical Bayesian network using boolean threshold functions. Artif. Intell. Med. 46(3), 251–266 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tiago Oliveira
    • 1
    Email author
  • Ken Satoh
    • 2
  • Paulo Novais
    • 1
  • José Neves
    • 1
  • Pedro Leão
    • 3
  • Hiroshi Hosobe
    • 4
  1. 1.Algoritmi Centre/Department of InformaticsUniversity of MinhoBragaPortugal
  2. 2.National Institute of InformaticsSokendai UniversityTokyoJapan
  3. 3.ICVS/3B’s—PT Government Associate LaboratoryBraga/guimarãesPortugal
  4. 4.Department of Digital MediaHosei UniversityTokyoJapan

Personalised recommendations