Evolutionary Algorithms: Perspectives on the Evolution of Parallel Models

  • F. Fernández de VegaEmail author
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 616)


This chapter discusses the inherent parallel nature of evolutionary algorithms, and the role this parallelism can take when implementing them on different hardware architectures. We show the interest in studying ephemeral behaviors that distributed computing resources may feature and some EA’s self-properties of interest, such as the fault-tolerant nature that helps to fight the churn phenomenon. Moreover, interactive versions of EAs, which require distributed computing systems, allow to incorporate human based knowledge within the algorithm at different levels, providing new means for improving their computing capabilities while also requiring a proper analysis of human behavior under an EA framework. A proper understanding of ephemeral properties of hardware resources, human behavior in interactive applications and intrinsic parallel behaviors of population based algorithms will lead to significant improvements.


Evolutionary Algorithm Genetic Programming Fitness Evaluation Desktop Grid Volunteer Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by EU Merie Curie actions, FP7-PEOPLE-2013-IRSES, Grant 612689 ACoBSEC; MINECO project EphemeCH (TIN2014-56494-C4-P) and Gobierno de Extremadura,Consejería de Economía-Comercio e Innovación y FEDER, proyect GRU10029.


  1. 1.
    Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996)zbMATHGoogle Scholar
  2. 2.
    Bertoni, A., Dorigo, M.: Implicit parallelism in genetic algorithms. Artif. Intell. 61(2), 307–314 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    González, D.L., de Vega, F.F., Trujillo, L., Olague, G., Araujo, L., Castillo, P., Sharman, K.: Increasing gp computing power for free via desktop grid computing and virtualization. In 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing, IEEE, pp. 419–423 (2009)Google Scholar
  4. 4.
    Cantu-Paz, E.: Efficient and accurate parallel genetic algorithms. Springer (2000)Google Scholar
  5. 5.
    Andre, D., Koza, J.R.: Parallel genetic programming: a scalable implementation using the transputer network architecture. Advances in Genetic Programming, pp. 317–337. MIT Press, Cambridge (1996)Google Scholar
  6. 6.
    Lim, D., Ong, Y.S., Jin, Y., Sendhoff, B., Lee, B.S.: Efficient hierarchical parallel genetic algorithms using grid computing. Future Gener. Comput. Syst. 23(4), 658–670 (2007)CrossRefGoogle Scholar
  7. 7.
    Wong, M.L., Wong, T.T., Fok, K.L.: Parallel evolutionary algorithms on graphics processing unit. In The 2005 IEEE Congress on Evolutionary Computation, IEEE, vol. 3, pp. 2286–2293 September 2005Google Scholar
  8. 8.
    García-Valdez, M., Trujillo, L., Merelo, J.J., de Vega, F.F., Olague, G.: The EvoSpace model for pool-based evolutionary algorithms. J. Grid Comput., 1–21 (2014)Google Scholar
  9. 9.
    Tomassini, M.: Spatially Structured Evolutionary Algorithms. Springer, Berlin (2005)zbMATHGoogle Scholar
  10. 10.
    Fernández, F., Tomassini, M., Vanneschi, L.: An empirical study of multipopulation genetic programming. Genet. Program. Evolvable Mach. 4(1), 21–51 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Folino, G., Pizzuti, C., Spezzano, G.: A Cellular Genetic Programming Approach to Classification. In GECCO, pp. 1015–1020, July 1999Google Scholar
  12. 12.
    Fernández, F., Tomassini, M., Vanneschi, L., Bucher, L.: A distributed computing environment for genetic programming using MPI. Recent Advances in Parallel Virtual Machine and Message Passing Interface, pp. 322–329. Springer, Berlin (2000)CrossRefGoogle Scholar
  13. 13.
    Anderson, D. P. Boinc: A system for public-resource computing and storage. In Grid Computing. 2004. Proceedings. Fifth IEEE/ACM International Workshop on (pp. 4–10). IEEEGoogle Scholar
  14. 14.
    Cole, N., Desell, T., González, D.L., de Vega, F.F., Magdon-Ismail, M., Newberg, H., Varela, C.: Evolutionary algorithms on volunteer computing platforms: the milkyway@ home project. Parallel and Distributed Computational Intelligence, pp. 63–90. Springer, Berlin (2010)Google Scholar
  15. 15.
    González, D.L., Laredo, J.L.J., de Vega, F.F., Guervós, J.J.M.: Characterizing fault-tolerance of genetic algorithms in desktop grid systems. Evolutionary Computation in Combinatorial Optimization, pp. 131–142. Springer, Berlin (2010)CrossRefGoogle Scholar
  16. 16.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)zbMATHGoogle Scholar
  17. 17.
    Alfaro-Cid, E., Merelo, J.J., de Vega, F.F., Esparcia-Alcázar, A.I., Sharman, K.: Bloat control operators and diversity in genetic programming: a comparative study. Evol. Comput. 18(2), 305–332 (2010)CrossRefGoogle Scholar
  18. 18.
    Fernandez, F., Vanneschi, L., Tomassini, M.: The effect of plagues in genetic programming: a study of variable-size populations. Genetic Programming, pp. 317–326. Springer, Berlin (2003)CrossRefGoogle Scholar
  19. 19.
    Laredo, J.J., Bouvry, P., González, D.L., de Vega, F.F., Arenas, M.G., Merelo, J.J., Fernandes, C.M.: Designing robust volunteer-based evolutionary algorithms. Genet. Program. Evolvable Mach. 15(3), 221–244 (2014)Google Scholar
  20. 20.
    Laredo, J.L.J., Eiben, A.E., van Steen, M., Castillo, P.A., Mora, A.M., Merelo, J.J.: P2P evolutionary algorithms: A suitable approach for tackling large instances in hard optimization problems. Euro-Par 2008-Parallel Processing, pp. 622–631. Springer, Berlin (2008)CrossRefGoogle Scholar
  21. 21.
    Secretan, J., Beato, N., D Ambrosio, D.B., Rodriguez, A., Campbell, A., Stanley, K.O.: Picbreeder: evolving pictures collaboratively online. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, pp. 1759–1768 (2008)Google Scholar
  22. 22.
    Frade, M., Fernandez de Vega, F., Cotta, C. (2012). Automatic evolution of programs for procedural generation of terrains for video games: accessibility and edge length constraintsGoogle Scholar
  23. 23.
    de Fernandez Vega, F., Cruz, C., Navarro, L., Hernández, P., Gallego, T., Espada, L.: Unplugging evolutionary algorithms: an experiment on human-algorithmic creativity. Genet. Program. Evolvable Mach. 15(4), 379–402 (2014)CrossRefGoogle Scholar
  24. 24.
    Fernendez de Vega, F., Navarro, L., Cruz, C., Chavez, F., Espada, L., Hernandez, P., Gallego, T.: Unplugging evolutionary algorithms: on the sources of novelty and creativity. In IEEE Congress on Evolutionary Computation (CEC), pp. 2856–2863 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centro Universitario de MéridaUniversidad de ExtremaduraMérida (Badajoz)Spain

Personalised recommendations