Semantic Bridges for Biodiversity Sciences

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9367)


Understanding the impact of climate change and humans on biodiversity requires the retrieval and integration of heterogeneous data sets for the generation of models that provide insights not possible with a single model. Scientists invest a significant amount of time collecting and manually pre-processing data for the generation of such models. The Earth Life and Semantic Web (ELSEWeb) project aims to create a semantic-based, open-source cyberinfrastructure to automate the ingestion of data by models. This paper describes the ontologies at the backbone of ELSEWeb that provide semantic bridges between environmental data sources and species distribution models.


Ontology Data-to-model integration Model web Biodiversity Climate change 


  1. 1.
    Krause, C., Pennington, D.: Strategic decisions in conservation: using species distribution modeling to match ecological requirements to available habitat. In: Maschinski, J., Haskins, K. (eds.) Plant Reintroduction in a Changing Climate: Promises and Perils, p. 432. Island Press, Washington (2012)Google Scholar
  2. 2.
    Settele, J., Carter, T.R., KüHN, I., Spangenberg, J.H., Sykes, M.T.: Scenarios as a tool for large-scale ecological research: experiences and legacy of the ALARM project. Glob. Ecol. Biogeogr. 21, 1–4 (2012)CrossRefGoogle Scholar
  3. 3.
    Nativi, S., Mazzetti, P., Geller, G.N.: Environmental model access and interoperability: The GEO Model Web initiative. Environ. Model Softw. 39, 214–228 (2013)CrossRefGoogle Scholar
  4. 4.
    Del Rio, N., Villanueva-Rosales, N., Pennington, D., Benedict, K., Stewart, A., Grady, C.: ELSEWeb meets SADI: Supporting data-to-model integration for biodiversity forecasting. In: AAAI Fall Symposium on Discovery Informatics (2013)Google Scholar
  5. 5.
    Kandel, S., Paepcke, A., Hellerstein, J.M., Heer, J.: Enterprise data analysis and visualization: An interview study. IEEE Trans. On. Vis. Comput. Graph. 18, 2917–2926 (2012)CrossRefGoogle Scholar
  6. 6.
    Villanueva-Rosales, N., Garnica Chavira, L., Del Rio, N., Pennington, D.: eScience through the integration of data and models: a biodiversity scenario. In: 11th IEEE International Conference on eScience (2015)Google Scholar
  7. 7.
    Dubois, G., Schulz, M., Skøien, J., Bastin, L., Peedell, S.: eHabitat, a multi-purpose Web Processing Service for ecological modeling. Environ. Model Softw. 41, 123–133 (2013)CrossRefGoogle Scholar
  8. 8.
    Gessler, D.D., Bulka, B., Sirin, E., Vasquez-Gross, H., Yu, J., Wegrzyn, J.: iPlant SSWAP (Simple Semantic Web Architecture and Protocol) enables semantic pipelines for biodiversity. Semant. Biodivers. S4BioDiv 2013 101 (2013)Google Scholar
  9. 9.
    Walls, R.L., Deck, J., Guralnick, R., Baskauf, S., Beaman, R., Blum, S., Bowers, S., Buttigieg, P.L., Davies, N., Endresen, D., Gandolfo, M.A., Hanner, R., Janning, A., Krishtalka, L., Matsunaga, A., Midford, P., Morrison, N., Tuama, É.Ó., Schildhauer, M., Smith, B., Stucky, B.J., Thomer, A., Wieczorek, J., Whitacre, J., Wooley, J.: Semantics in Support of Biodiversity Knowledge Discovery: An Introduction to the Biological Collections Ontology and Related Ontologies. PLoS ONE 9, e89606 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Cyber-ShARE Center of ExcellenceUniversity of Texas at El PasoEl PasoUSA
  2. 2.Department of Computer ScienceUniversity of Texas at El PasoEl PasoUSA
  3. 3.Air Force Research LabInformation DirectorateRomeUSA
  4. 4.Department of GeologyUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations