International Semantic Web Conference

The Semantic Web - ISWC 2015 pp 640-655 | Cite as

Type-Constrained Representation Learning in Knowledge Graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9366)

Abstract

Large knowledge graphs increasingly add value to various applications that require machines to recognize and understand queries and their semantics, as in search or question answering systems. Latent variable models have increasingly gained attention for the statistical modeling of knowledge graphs, showing promising results in tasks related to knowledge graph completion and cleaning. Besides storing facts about the world, schema-based knowledge graphs are backed by rich semantic descriptions of entities and relation-types that allow machines to understand the notion of things and their semantic relationships. In this work, we study how type-constraints can generally support the statistical modeling with latent variable models. More precisely, we integrated prior knowledge in form of type-constraints in various state of the art latent variable approaches. Our experimental results show that prior knowledge on relation-types significantly improves these models up to 77% in link-prediction tasks. The achieved improvements are especially prominent when a low model complexity is enforced, a crucial requirement when these models are applied to very large datasets. Unfortunately, type-constraints are neither always available nor always complete e.g., they can become fuzzy when entities lack proper typing. We show that in these cases, it can be beneficial to apply a local closed-world assumption that approximates the semantics of relation-types based on observations made in the data.

Keywords

Knowledge graph Representation learning Latent variable models Type-constraints Local closed-world assumption Link-prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math compiler in Python. In: Proceedings of the 9th Python in Science Conference, pp. 3–10 (2010)Google Scholar
  2. 2.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  3. 3.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia - a crystallization point for the web of data. Web Semant. 7(3), 154–165 (2009)CrossRefGoogle Scholar
  4. 4.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD, pp. 1247–1250. ACM (2008)Google Scholar
  5. 5.
    Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)Google Scholar
  6. 6.
    Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI. AAAI Press (2010)Google Scholar
  7. 7.
    Chang, K., Yih, W., Yang, B., Meek, C.: Typed tensor decomposition of knowledge bases for relation extraction. In: EMNLP, pp. 1568–1579 (2014)Google Scholar
  8. 8.
    Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: SIGKDD, pp. 601–610. ACM (2014)Google Scholar
  9. 9.
    Hoffart, J., Suchanek, F.M., Berberich, K., Lewis-Kelham, E., de Melo, G., Weikum, G.: Yago2: exploring and querying world knowledge in time, space, context, and many languages. In: WWW, pp. 229–232. ACM (2011)Google Scholar
  10. 10.
    Krompaß, D., Nickel, M., Tresp, V.: Large-scale factorization of type-constrained multi-relational data. In: DSAA, pp. 18–24. IEEE (2014)Google Scholar
  11. 11.
    Krompaß, D., Nickel, M., Tresp, V.: Querying factorized probabilistic triple databases. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., et al. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 114–129. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81(1), 53–67 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax Specification. W3c recommendation, W3C (1999)Google Scholar
  14. 14.
    Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)Google Scholar
  15. 15.
    Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  16. 16.
    Nickel, M., Jiang, X., Tresp, V.: Reducing the rank in relational factorization models by including observable patterns. In: NIPS, pp. 1179–1187 (2014)Google Scholar
  17. 17.
    Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs: From multi-relational link prediction to automated knowledge graph construction. CoRR, abs/1503.00759 (2015)Google Scholar
  18. 18.
    Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816. ACM (2011)Google Scholar
  19. 19.
    Nickel, M., Tresp, V., Kriegel, H.: Factorizing yago: scalable machine learning for linked data. In: WWW, pp. 271–280. ACM (2012)Google Scholar
  20. 20.
    Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: NIPS (2013)Google Scholar
  21. 21.
    Swartz, A.: Musicbrainz: a semantic web service. IEEE Intell. Syst. 17(1), 76–77 (2002)CrossRefGoogle Scholar
  22. 22.
    Wan, L., Zeiler, M.D., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural networks using dropconnect. In: ICML, vol. 28, pp. 1058–1066. JMLR.org (2013)Google Scholar
  23. 23.
    Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)Google Scholar
  24. 24.
    Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. CoRR, abs/1412.6575 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Siemens AG Corporate TechnologyMunichGermany
  2. 2.Ludwig Maximilian UniversityMunichGermany

Personalised recommendations