International Semantic Web Conference

The Semantic Web - ISWC 2015 pp 180-196 | Cite as

Serving DBpedia with DOLCE – More than Just Adding a Cherry on Top

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9366)

Abstract

Large knowledge bases, such as DBpedia, are most often created heuristically due to scalability issues. In the building process, both random as well as systematic errors may occur. In this paper, we focus on finding systematic errors, or anti-patterns, in DBpedia. We show that by aligning the DBpedia ontology to the foundational ontology DOLCE-Zero, and by combining reasoning and clustering of the reasoning results, errors affecting millions of statements can be identified at a minimal workload for the knowledge base designer.

Keywords

Data quality Formal ontologies Foundational ontologies Anti-pattern DBpedia DOLCE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., Lehmann, J.: Crowdsourcing linked data quality assessment. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 260–276. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Bail, S., Parsia, B., Sattler, U.: Declutter your justifications: determining similarity between OWL explanations. In: 1st International Workshop on Debugging Ontologies and Ontology Mappings, pp. 13–24 (2012)Google Scholar
  3. 3.
    Carlson, A., Betteridge, J., Wang, R.C., Hruschka Jr., E.R., Mitchell, T.M.: Coupled semi-supervised learning for information extraction. In: International Conference on Web Search and Data Mining, pp. 101–110. ACM (2010)Google Scholar
  4. 4.
    Chellas, B.F.: Modal logic: an introduction, vol. 316. Cambridge Univ Press (1980)Google Scholar
  5. 5.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96, 226–231 (1996)Google Scholar
  6. 6.
    Fleischhacker, D., Paulheim, H., Bryl, V., Völker, J., Bizer, C.: Detecting errors in numerical linked data using cross-checked outlier detection. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 357–372. Springer, Heidelberg (2014) Google Scholar
  7. 7.
    Gangemi, A., Pisanelli, D., Steve, G.: An ontological framework to represent norm dynamics. In: Proceedings of the 2001 Jurix Conference, Workshop on Legal Ontologies (2001)Google Scholar
  8. 8.
    Gangemi, A., Fisseha, F., Keizer, J., Lehmann, J., Liang, A., Pettman, I., Sini, M., Taconet, M.: A core ontology of fishery and its use in the fishery ontology service project. In: CEUR Proceedings, vol. 118 (2004)Google Scholar
  9. 9.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.: Sweetening WordNet with DOLCE. AI Magazine (Fall) (2003)Google Scholar
  10. 10.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  11. 11.
    Gangemi, A., Mika, P.: Understanding the semantic web through descriptions and situations. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 689–706. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  12. 12.
    Gangemi, A., Navigli, R., Velardi, P.: The OntoWordNet project: extension and axiomatization of conceptual relations in WordNet. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 820–838. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  13. 13.
    Gangemi, A., Nuzzolese, A.G., Presutti, V., Draicchio, F., Musetti, A., Ciancarini, P.: Automatic typing of DBpedia entities. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 65–81. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Genesereth, M.R., Fikes, R.E.: Knowledge interchange format-version 3.0: reference manual. Tech. rep. (1992)Google Scholar
  15. 15.
    Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.P.: Linked data is merely more data. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence, vol. 11 (2010)Google Scholar
  16. 16.
    Lehmann, J., Bühmann, L.: ORE - a tool for repairing and enriching knowledge bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 177–193. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    Lehmann, J., Gerber, D., Morsey, M., Ngonga Ngomo, A.-C.: DeFacto - deep fact validation. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 312–327. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  18. 18.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web Journal (2013)Google Scholar
  19. 19.
    Ma, Y., Gao, H., Wu, T., Qi, G.: Learning disjointness axioms with association rule mining and its application to inconsistency detection of linked data. In: Zhao, D., Du, J., Wang, H., Wang, P., Ji, D., Pan, J.Z. (eds.) CSWS 2014. CCIS, vol. 480, pp. 29–41. Springer, Heidelberg (2014) Google Scholar
  20. 20.
    Mika, P., Oberle, D., Gangemi, A., Sabou, M.: Foundations for service ontologies: aligning OWL-S to dolce. In: Staab, S., Patel-Schneider, P. (eds.) Proceedings of the World Wide Web Conference (WWW2004) (2004)Google Scholar
  21. 21.
    Nuzzolese, A.G., Gangemi, A., Presutti, V., Ciancarini, P.: Type inference through the analysis of wikipedia links. In: LDOW (2012)Google Scholar
  22. 22.
    Paulheim, H.: Identifying wrong links between datasets by multi-dimensional outlier detection. In: International Workshop on Debugging Ontologies and Ontology Mappings (2014)Google Scholar
  23. 23.
    Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  24. 24.
    Paulheim, H., Bizer, C.: Improving the quality of linked data using statistical distributions. International Journal on Semantic Web and Information Systems (IJSWIS) 10(2), 63–86 (2014)CrossRefGoogle Scholar
  25. 25.
    Piantadosi, S.T., Tily, H., Gibson, E.: The communicative function of ambiguity in language. Cognition 122(3), 280–291 (2012)CrossRefGoogle Scholar
  26. 26.
    Pisanelli, D., Gangemi, A., Steve, G.: An Ontological Analysis of the UMLS Metathesaurus. J. of American Medical Informatics Association 5 (1998)Google Scholar
  27. 27.
    Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014) Google Scholar
  28. 28.
    Shearer, R., Motik, B., Horrocks, I.: Hermit: A highly-efficient OWL reasoner. In: OWLED, vol. 432 (2008)Google Scholar
  29. 29.
    Sheng, Z., Wang, X., Shi, H., Feng, Z.: Checking and handling inconsistency of DBpedia. In: Wang, F.L., Lei, J., Gong, Z., Luo, X. (eds.) WISM 2012. LNCS, vol. 7529, pp. 480–488. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  30. 30.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: 16th International Conference on World Wide Web, pp. 697–706 (2007)Google Scholar
  31. 31.
    Töpper, G., Knuth, M., Sack, H.: DBpedia ontology enrichment for inconsistency detection. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 33–40. ACM (2012)Google Scholar
  32. 32.
    Waitelonis, J., Ludwig, N., Knuth, M., Sack, H.: Whoknows? evaluating linked data heuristics with a quiz that cleans up dbpedia. Interactive Technology and Smart Education 8(4), 236–248 (2011)CrossRefGoogle Scholar
  33. 33.
    Weaver, G., Strickland, B., Crane, G.: Quantifying the accuracy of relational statements in wikipedia: a methodology. JCDL 6, 358–358 (2006)Google Scholar
  34. 34.
    Wienand, D., Paulheim, H.: Detecting incorrect numerical data in DBpedia. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 504–518. Springer, Heidelberg (2014) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Research Group Data and Web ScienceUniversity of MannheimMannheimGermany
  2. 2.Université Paris 13 - Sorbonne Paris Cité - CNRSParisFrance
  3. 3.STLabISTC-CNRRomeItaly

Personalised recommendations