Skip to main content

Modifications of Selected Clay Minerals Due to Activity of Filamentous Alkaline Cyanobacteria

  • Conference paper
  • First Online:
Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems

Abstract

The aim of the study was to investigate the transformations of clay minerals at the laboratory experiments under the growth and fossilization of alkaline cyanobacteria. The clays incubation with cyanobacteria resulted in different trends of their transformations. The direction and intensity of transformation depends on type of clay mineral. The observed processes were fast and completed within the first 10–60 days of experiments. Cyanobacteria most actively influenced the processes of mineral dissolution and the transformations during the stage of their photosynthesis. Formation of carbonate in the experiments with palygorskite, bentonite, and kaolinite was observed at the stage of cyanobacteria fossilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alekseeva T, Gerasimenko L, Sapova E, Alekseev A (2008) Transformational changes of clays due to cyanobacteria (Chap. 17). In: Dobretsov N et al (eds) Biosphere: origin and evolution. Springer, Berlin, pp 227–238

    Google Scholar 

  • Alekseeva T, Sapova E, Gerasimenko L, Alekseev A (2009) Transformation of clay minerals caused by an alkaliphilic cyanobacterial community. Microbiology 78(6):776–784

    Article  Google Scholar 

  • Banfield JP, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Nat Acad Sci USA 96:3404–3411

    Article  Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    Article  Google Scholar 

  • Bennett PC, Hiebert FK, Choi WJ (1996) Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater. Chem Geol 132:45–53

    Article  Google Scholar 

  • Bennett PC, Rogers JR, Choi WJ, Hiebert FK (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19

    Article  Google Scholar 

  • Dong H (2012) Clay–microbe interactions and implications for environmental mitigation. Elements 8:113–118

    Article  Google Scholar 

  • Dubinin AV, Gerasimenko LM, Gusev MV (1992) Physiological characteristics of Microcoleus chthonoplastes from hyper saline lake. Microbiology 61(1):63–69 (in Russian)

    Google Scholar 

  • Ehrlich HL, Newman DK (2009) Geomicrobiology, 5th edn. CRC Press, Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  Google Scholar 

  • Geptner AR, Ivanovskaya TA (1998) Biochemogenic genesis of the glauconite-nontronite series minerals in present-day sediments of the Pacific ocean. Lithol Min Resour 33(6):503–517

    Google Scholar 

  • Geptner A, Kristmannsdottir H, Kristjansson J, Marteinsson V (2002) Biogenic saponite from an active submarine hot spring, Iceland. Clays Clay Miner 50(2):174–185

    Google Scholar 

  • Gerasimenko LM, Nekrasova VK, Orleansky VK, Venetskaya SL, Zavarzin GA (1989) The primary production of halophilic Cyanobacterium cenoses. Microbiology 58(3):507–514 (in Russian)

    Google Scholar 

  • Gerasimenko LM, Dubinin AV, Zavarzin GA (1996) Alkaliphilic cyanobacteria from soda lakes of Tuva and their ecophysiology. Microbiology 65(6):736–740

    Google Scholar 

  • Gerbersdorf SU, Wieprecht S (2015) Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. Geobiology 13:68–97

    Article  Google Scholar 

  • Gionis V, Kacandes GH, Kastritis ID, Chryssikos GD (2006) On the structure of palygorskite by mid- and near-infrared spectroscopy. Am Mineral 91(7):1125–1133

    Article  Google Scholar 

  • Grantham MC, Dove PM (1996) Investigation of bacterial–mineral interactions using fluid tapping mode atomic force microscopy. Geochim Cosmochim Acta 60:2473–2480

    Article  Google Scholar 

  • Harrison J, Turner RJ, Marques L, Ceri H (2005) A new understanding of these mcirobial communities is driving a revolution that may transform the science of microbiology. Am Sci 93:508–515

    Article  Google Scholar 

  • Hiebert FK, Bennett PC (1992) Microbial control of silicate weathering in organic-rich ground water. Science 258:278–281

    Article  Google Scholar 

  • Kalinowski BE, Liermann LJ, Brantley SL, Barnes A, Pantano CG (2000) X-ray photoelectron evidence for bacteria enhanced dissolution of hornblende. Geochim Cosmochim Acta 64:1331–1343

    Article  Google Scholar 

  • Kawano M, Tomita K (2002) Microbiotic formation of silicate minerals in the weathering environment of a pyroclastic deposit. Clays Clay Miner 50(1):99–110

    Article  Google Scholar 

  • Konhauser KO, Urrutia MM (1999) Bacterial clay authigenesis: a common biogeochemical process. Chem Geol 161: 399–413

    Google Scholar 

  • Kuang W, Glenn AF, Detellier C (2004) Dehydration and rehydration of Palygorskite and the influence of water on the nanopores. Clays Clay Miner 52: 635–642

    Google Scholar 

  • Likhoshway EV, Sorokovikova EG, Bel’kova NL, Belykh OI, Titov AT, Sakirko MV, Parfenova VV (2006) Silicon mineralization in the culture of cyanobacteria from hot springs. Doklady Biol Sci 407:201–205

    Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1130

    Article  Google Scholar 

  • Madejová J, Jankovič L, Pentrák M, Komadel P (2011) Benefits of near-infrared spectroscopy for characterization of selected organo-montmorillonites. Vib Spectrosc 57(1):8–14

    Google Scholar 

  • Phoenix VR, Adams DG, Konhauser KO (2000) Cyanonacterial viability during hydrothermal biomineralisation. Chem Geol 169:329–338

    Article  Google Scholar 

  • Ransom B, Bennet RH, Baerwald R, Hulbert MH, Burkett P-J (1999) In situ conditions and interactions between microbes and minerals in fine-grained marine sediments: a TEM microfabric perspective. Am Mineral 84:183–192

    Article  Google Scholar 

  • Rozanov AY (2003) Fossil bacteria, sedimentogenesis, and the early biospheric evolution. Paleontol Zh 39(6):41–49 [Paleontol J (Engl. Transl.) 39(6):600–609]

    Google Scholar 

  • Singer A (1989) Palygorskite and sepiolite group minerals, in Dixon JB , Weed SB (eds.) Minerals in soil environments, Soil Science Society of America, Madison, WI, 2nd Ed., p. 829–872

    Google Scholar 

  • Schultze-Lam S, Forris FG, Konhauser KO, Wiese RG (1995) In situ silicification of an Icelandic hot spring microbial mat: implications for microfossil formation. Can J Earth Sci 32:2021–2026

    Article  Google Scholar 

  • Tazaki K (1998) A New world in the science of biomineralization—environmental biomineralization in microbial mats in Japan. The Science Reports of Kanazawa University, Japan. XLII (N 1, 2)

    Google Scholar 

  • Tazaki K, Okrugin V, Okuno M, Belkova N, Islam AR, Chaerun SK, Wakimoto R, Sato K, Moriichi S (2003) Heavy metallic concentration in microbial mats found at hydrothermal systems, Kamchatka, Russia. Science reports of Kanazawa University, Japan. 47 (N 1–2)

    Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1995) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol 119:139–160

    Article  Google Scholar 

  • Trebst A (1980) Inhibitors in electron flow: tools for the functional and structural localization of carriers and energy conversation sites. Methods Enzymol 69:675–715

    Article  Google Scholar 

  • Ueshima M, Tazaki K (2001) Possible role of microbial polysaccharides in nontronite formation. Clays Clay Miner 49(4):292–299

    Article  Google Scholar 

  • Ushatinskaya GT, Zaitseva LV, Orleansky VK, Gerasimenko LM (2006) Significance of bacteria in natural and experimental sedimentation of carbonates, phosphates and silicates. Paleontol J 40(Suppl 4):524–531

    Article  Google Scholar 

  • Vandevivere P, Welch SA, Ullman WJ, Kirchman DL (1994) Enhanced dissolution of silicate minerals by bacteria at near-neutral pH. Microb Ecol 27:241–251

    Article  Google Scholar 

  • Zavarzin GA (1993) Development of microbial community in the history of Earth. In: Problems of before anthropogenic evolution of biosphere. Nauka, Moscow, pp 212–222 (in Russian)

    Google Scholar 

Download references

Acknowledgments

The investigation was supported by Program N28 of the Russian Academy of Sciences «Biosphere Origin and Evolution».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andery O. Alekseev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Alekseev, A.O., Alekseeva, T.V., Gerasimenko, L.M., Orleanskiy, V.K., Ushatinskaya, G.T. (2016). Modifications of Selected Clay Minerals Due to Activity of Filamentous Alkaline Cyanobacteria. In: Frank-Kamenetskaya, O., Panova, E., Vlasov, D. (eds) Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems. Lecture Notes in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-24987-2_4

Download citation

Publish with us

Policies and ethics