Skip to main content

Soil-like Patterns Inside the Rocks: Structure, Genesis, and Research Techniques

Part of the Lecture Notes in Earth System Sciences book series (LNESS)

Abstract

Microprofiles established due to the activity of endolithic communities inside the solid rocks of East Antarctica were studied with the approaches of soil science. Major products of endolithic rock transformation in situ are the silty-sandy fine earth and abundant organo-mineral films that are formed within the porous space of endolithic system. Such films are the result of interaction between biofilms and mineral surfaces and reflect elemental composition of both components, mainly comprising C, O, Si, Al, Fe, K, Ca, Na, and Mg. Morphology observed on different hierarchical levels and microtomography data indicated that different layers of endolithic system are connected with the fracture network serving for the elements transfer in the subsurface part of solid rocks. Examined profiles in granites with high quartz content had clear eluvial–illuvial differentiation patterns similar to macroprofile of a common Podzol (Spodsol) on loose substrates. It is shown, that subaerial segment of hard rocks is not sealed and is potentially permeable for dissolved products of endolithic weathering and pedogenesis. As a unique result—the soil-like pattern is established inside the massive, crystalline rock. Understanding modern processes in endolithic systems is of fundamental importance to decrypt paleosol record, as such systems may be the closest modern analogues of protosoils that existed on our planet before the higher vascular plants with root systems established.

Keywords

  • Extreme environment
  • Endoliths
  • Soil-like bodies
  • Exfoliation
  • Eluvial–illuvial differentiation
  • Podzols

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-24987-2_17
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-24987-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Brehm U, Gorbushina A, Mottershead D (2005) The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeogr Palaeoclimatol Palaeoecol 219(1):117–129

    CrossRef  Google Scholar 

  • De Los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environ Microbiol 5(4):231–237

    CrossRef  Google Scholar 

  • De Los Ríos A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59(2):386–395

    CrossRef  Google Scholar 

  • De Los Ríos A, Wierzchos J, Ascaso C (2014) The lithic microbial ecosystems of Antarctica’s McMurdo Dry Valleys. Antarct Sci 26(05):459–477

    CrossRef  Google Scholar 

  • Dmitriev EA (1996) Soils and soil-like bodies. Eurasian Soil Sci 29(3):275–282

    Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96(3):141–162

    CrossRef  Google Scholar 

  • Edwards HG, Wynn-Williams DD, Villar SEJ (2004) Biological modification of haematite in Antarctic cryptoendolithic communities. J Raman Spectrosc 35(6):470–474

    CrossRef  Google Scholar 

  • Edwards HG, Moody CD, Villar SEJ, Wynn-Williams DD (2005) Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars Lander missions. Icarus 174(2):560–571

    CrossRef  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215(4536):1045–1053

    CrossRef  Google Scholar 

  • Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science 193(4259):1247–1249

    CrossRef  Google Scholar 

  • Friedman I, Lipkin Y, Roseli OP (1967) Desert algae of the Negev. Phycologia 6:185–200

    CrossRef  Google Scholar 

  • Gilichinsky D, Abakumov E, Abramov A, Fyodorov-Davydov D, Goryachkin S, Lupachev A, Mergelov N, Zazovskaya E (2010) Soils of mid and low Antarctic: diversity, geography, temperature regime. In: Proceedings of the 19th world congress of soil science. Published on DVD. www.iuss.org. Symposium WG 1.4. Cold soils in a changing world. Brisbane, Australia, pp 32–35

  • Glazovskaya MA (1958) Weathering and initial soil formation in Antarctica. Nauch Dokl Vyssh Shkoly Geol Geogr-Nauki 1:63–76 (in Russian)

    Google Scholar 

  • Golubic S, Schneider J (2003) Microbial endoliths as internal biofilms. In: Fossil and recent biofilms. Springer, Netherlands

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res 51(2):475–478

    Google Scholar 

  • Hopkins DW, Sparrow AD, Gregorich EG, Elberling B, Novis P, Fraser F, … Greenfield LG (2009) Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys. Environ Microbiol 11(3):597–608

    Google Scholar 

  • Horath T, Bachofen R (2009) Molecular characterization of an endolithic microbial community in dolomite rock in the Central Alps (Switzerland). Microb Ecol 58(2):290–306

    CrossRef  Google Scholar 

  • Ivlev AM, Nesterova OV (2004) On the study of aquasols. Vestn DVO RAN 4:47–52 (in Russian)

    Google Scholar 

  • Johnston CG, Vestal JR (1991) Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities: are they the slowest-growing communities on earth? Appl Environ Microbiol 57(8):2308–2311

    Google Scholar 

  • Knoll AH, Canfield DE, Konhauser KO (eds) (2012) Fundamentals of geobiology. Wiley, New York

    Google Scholar 

  • Kögel‐Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, … Leinweber P (2008) Organo‐mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171(1):61–82

    Google Scholar 

  • Kudinova AG, Lysak LV, Soina VS, Mergelov NS, Dolgikh AV, Shorkunov IG (2015) Bacterial communities in the soils of cryptogamic barrens of East Antarctica (the Larsemann Hills and Thala Hills oases). Eurasian Soil Sci 48(3):276–287

    CrossRef  Google Scholar 

  • Mergelov NS, Goryachkin SV, Shorkunov IG, Zazovskaya EP, Cherkinsky AE (2012) Endolithic pedogenesis and rock varnish on massive crystalline rocks in East Antarctica. Eurasian Soil Sci 45(10):901–917

    CrossRef  Google Scholar 

  • Roslikova VA (2006) Modern notions on the subaqual pedogenesis. Tikhookean Geol 25(4):97–103

    Google Scholar 

  • Russell NC, Edwards HGM, Wynn-Williams DD (1998) FT-Raman spectroscopic analysis of endolithic microbial communities from Beacon sandstone in Victoria Land, Antarctica. Antarct Sci 10(01):63–74

    CrossRef  Google Scholar 

  • Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, … Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56

    Google Scholar 

  • Semikolennykh AA, Targulian VO (2010) Soil-like bodies of autochemolithotrophic ecosystems in the caves of the Kugitangtau Ridge, eastern Turkmenistan. Eurasian Soil Sci 43(6):614–627

    CrossRef  Google Scholar 

  • Sigler WV, Bachofen R, Zeyer J (2003) Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ Microbiol 5(7):618–627

    CrossRef  Google Scholar 

  • Sokolov IA (1996) The paradigm of pedology from Dokuchaev to the present day. Eurasian Soil Sci 29(3):222–232

    Google Scholar 

  • Sun HJ, Friedmann EI (1999) Growth on geological time scales in the Antarctic cryptoendolithic microbial community. Geomicrobiol J 16(2):193–202

    CrossRef  Google Scholar 

  • Targulian VO, Goryachkin SV (2011) The 19th world congress of soil science. Eurasian Soil Sci 44(9):1041–1047

    CrossRef  Google Scholar 

  • Villar SEJ, Edwards HG, Cockell CS (2005) Raman spectroscopy of endoliths from Antarctic cold desert environments. Analyst 130(2):156–162

    CrossRef  Google Scholar 

  • Walker JJ, Pace NR (2007) Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems. Appl Environ Microbiol 73(11):3497–3504

    CrossRef  Google Scholar 

  • Wierzchos J, Ascaso C (2001) Life, decay and fossilisation of endolithic microorganisms from the Ross Desert, Antarctica. Polar Biol 24(11):863–868

    CrossRef  Google Scholar 

  • Wierzchos J, Sancho LG, Ascaso C (2005) Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection. Environ Microbiol 7(4):566–575

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Russian Science Foundation; project no. 14-27-00133. Authors are grateful to Prof. Sofia Lessovaia and Prof. Dmitry Vlasov from Saint Petersburg State University for their assistance in micromorphology studies and inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita S. Mergelov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mergelov, N.S. et al. (2016). Soil-like Patterns Inside the Rocks: Structure, Genesis, and Research Techniques. In: Frank-Kamenetskaya, O., Panova, E., Vlasov, D. (eds) Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems. Lecture Notes in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-24987-2_17

Download citation