Skip to main content

Invertebrates of Temperate-Zone River Floodplains

  • Chapter
  • First Online:
Invertebrates in Freshwater Wetlands

Abstract

Connectivity of floodplains with their river channels affects invertebrates and habitat quality, and many invertebrates move between rivers and floodplains. However, much of the invertebrate community comprises obligate wetland organisms that are not derived from river channels, but instead spend dry seasons in moist soils or permanent lentic water bodies on the floodplain. While most work focuses on aquatic invertebrates, the terrestrial component is being increasingly recognized. Different floodplains flood, pulse, and dry in different ways, depending on climate, weather, and topography. This variation in flood seasonality, extent, intensity, and duration affects the ecology of the resident invertebrates, implying that invertebrates might be useful bioindicators of anthropogenically induced alterations of floodplain hydrology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander KD, Whiles MR (2000) A new species of Ironoquia (Trichoptera: Limnephilidae) from an intermittent slough of the central Platte River, Nebraska. Entomol News 111:1–7

    Google Scholar 

  • Amoros C, Bornette G (1999) Antagonistic and cumulative effects of connectivity: a predictive model based on aquatic vegetation in riverine wetlands. Archiv Hydrobiol 115:311–327

    Google Scholar 

  • Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol 47:761–776

    Article  Google Scholar 

  • Anderson DH, Darring SD, Benke AC (1998) Growth of crustacean meiofauna in a forested floodplain swamp: implications for biomass turnover. J North Am Benthol Soc 17:21–36

    Article  Google Scholar 

  • Arscott DB, Keller B, Tockner K, Ward JV (2003) Habitat structure and Trichoptera diversity in two headwater flood plains, N.E. Italy. Internat Rev Hydrobiol 88:255–273

    Article  Google Scholar 

  • Arscott DB, Tockner K, Ward JV (2005) Lateral organization of aquatic invertebrates along the corridor of a braided floodplain river. J North Am Benthol Soc 24:934–954

    Article  Google Scholar 

  • Baldwin DS, Rees GN et al (2013) Provisioning of bioavailable carbon between the wet and dry phases in a semi-arid floodplain. Oecologia 172:539–550

    Article  PubMed  Google Scholar 

  • MDBA (Murray–Darling Basin Authority) (2012) Assessment of environmental water requirements for the proposed basin plan: Riverland-Chowilla Floodplain. Murray–Darling Basin Authority, Canberra, Publ 26/12. http://www.mdba.gov.au/sites/default/files/archived/proposed/EWR-Riverland-Chowilla.pdf. Accessed Aug 2014

  • Batzer DP, Baldwin AH (eds) (2012) Wetland habitats of North America: ecology and conservation concerns. University of California Press, BerkeleyBatzer DP, Ruhí A (2013) Is there a core set of organisms that structure macroinvertebrate assemblages in freshwater wetlands? Freshw Biol 88:1647-1659

    Google Scholar 

  • Batzer DP, Wissinger SA (1996) Ecology of insect communities in nontidal wetlands. Annu Rev Entomol 41:75–100

    Article  CAS  PubMed  Google Scholar 

  • Baxter CV, Fausch KD, Saunders WC (2005) Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50:201–220

    Article  Google Scholar 

  • Benke AC (2001) Importance of flood regime to invertebrate habitat in an unregulated river-floodplain ecosystem. J North Am Benthol Soc 20:225–240

    Article  Google Scholar 

  • Benke AC, Cushing CE (eds) (2005) Rivers of North America. Elsevier, New York

    Google Scholar 

  • Benke AC, Van Arsdall TC, Gillespie DM, Parrish FK (1984) Invertebrate productivity in a subtropical blackwater river: the importance of habitat and life history. Ecol Monogr 54:25–63

    Article  Google Scholar 

  • Benke AC, Chaubey I, Ward GM, Dunn EL (2000) Flood pulse dynamics of an unregulated river floodplain in the Southeastern U.S. coastal plain. Ecology 81:2730–2741

    Article  Google Scholar 

  • Boulton AJ, Lloyd LN (1991) Macroinvertebrate assemblages in floodplain habitats of the lower River Murray, South Australia. Regul Riv Res Manage 6:183–201

    Article  Google Scholar 

  • Boulton AJ, Lloyd LN (1992) Flooding frequency and invertebrate emergence from dry floodplain sediments of the River Murray, Australia. Regul Riv Res Manage 7:137–151

    Article  Google Scholar 

  • Boulton AJ, Sheldon F, Jenkins KM (2006) Natural disturbance and aquatic invertebrates in desert rivers. In: Kingsford RT (ed) Ecology of desert rivers. Academic, New York, pp 133–153

    Google Scholar 

  • Boulton AJ, Brock MA et al (2014) Australian freshwater ecology: processes and management, 2nd edn. Wiley-Blackwell, Chichester

    Google Scholar 

  • Braccia A, Batzer DP (2001) Invertebrates associated with woody debris in a southeastern forested floodplain wetland. Wetlands 21:18–31

    Article  Google Scholar 

  • Braccia A, Batzer DP (2008) Breakdown and invertebrate colonization of dead wood in wetland, upland, and river habitats. Can J Forest Res 38:2697–2704

    Article  CAS  Google Scholar 

  • Bright EG, Batzer DP, Garnett JA (2010) Variation in invertebrate and fish communities across floodplain ecotones of the Altamaha and Savannah Rivers. Wetlands 30:1117–1128

    Article  Google Scholar 

  • Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133

    Article  Google Scholar 

  • Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manage 30:492–507

    Article  PubMed  Google Scholar 

  • Burns A, Walker KF (2000) Effects of water level regulation on algal biofilms in the River Murray, South Australia. Regul Riv Res Manage 16:433–444

    Article  Google Scholar 

  • Cabezas A, González E et al (2008) Effects of hydrological connectivity on the substrate and understory structure of riparian wetlands in the Middle Ebro River (NE Spain): implications for restoration and management. Aquat Sci 70:361–376

    Article  Google Scholar 

  • Cabezas A, Comín FA, Beguería S, Trabucchi M (2009) Hydrologic and landscape changes in the Middle Ebro River (NE Spain): implications for restoration and management. Hydrol Earth Syst Sci 13:1–12

    Article  Google Scholar 

  • Chessman BC, Hardwick L (2014) Water regimes and macroinvertebrate assemblages in floodplain wetlands of the Murrumbidgee River, Australia. Wetlands 34:661–672

    Article  Google Scholar 

  • Cid N (2011) Ecology of the benthic macroinvertebrates in the Lower Ebro River: community characterization, population dynamics and bioaccumulation of pollutants in response to environmental factors. Ph.D. Dissertation, Universitat de Barcelona

    Google Scholar 

  • Cid N, Ibáñez C, Palanques A, Prat N (2010) Patterns of metal bioaccumulation in two filter-feeding macroinvertebrates: exposure distribution, inter-species differences and variability across developmental stages. Sci Total Environ 408:2795–2806

    Article  CAS  PubMed  Google Scholar 

  • Cole CA, Somerville DE (2014) United States wetland regulation, policy and assessment. In: Batzer DP, Sharitz RR (eds) Ecology of freshwater and estuarine wetlands, 2nd edn. University of California Press, Berkeley, pp 203–224

    Google Scholar 

  • CSIRO (2008) Water availability in the Murray. A report to the Australian government from the CSIRO Murray–Darling Basin Sustainable Yields Project. CSIRO, Canberra, Australia

    Google Scholar 

  • Davies PE, Harris JH, Hillman TJ, Walker KF (2008) SRA report 1: a report on the ecological health of rivers in the Murray–Darling Basin, 2004–2007. Murray–Darling Basin Commission, Canberra, Publ 16/08

    Google Scholar 

  • Davis CA, Austin JE, Buhl DA (2006) Factors influencing soil invertebrate communities in riparian grasslands of the central Platte River floodplain. Wetlands 26:438–454

    Google Scholar 

  • De Bono A, Del Pietro D et al (2004) Freshwater in Europe—facts, figures and maps. DEWA Europe/UNEP, Geneva

    Google Scholar 

  • Frenzel SA, Swanson RB et al (1998) Water quality in the Central Nebraska Basins, Nebraska, 1992–95. US Geological Survey, Washington, DC, Circular 1163

    Google Scholar 

  • Frisch D, Libman BS, D’Surney SJ, Threlkeld ST (2005) Diversity of floodplain copepods (Crustacea) modified by flooding: species richness, diapause strategies and population genetics. Arch Hydrobiol 162:1–17

    Article  CAS  Google Scholar 

  • Galat DL, Berry CRJ, Peters EJ, White RG (2005) The Missouri River basin. In: Benke AC, Cushing CE (eds) Rivers of North America. Elsevier Academic Press, San Diego, pp 427–480

    Google Scholar 

  • Galatowitsch ML, Batzer DP (2011) Benefits and costs of Leptophlebia (Ephemeroptera) mayfly movements between river channels and floodplain wetlands. Can J Zool 89:714–723

    Article  Google Scholar 

  • Gallardo B, Garcia M et al (2008) Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquat Sci 70:248–258

    Article  CAS  Google Scholar 

  • Gallardo B, Gascón S, García M, Comín FA (2009a) Testing the response of the macroinvertebrate functional structure and biodiversity to flooding and confinement. J Limnol 68:315–326

    Article  Google Scholar 

  • Gallardo B, González-Sanchís M et al (2009b) Modelling the response of floodplain aquatic communities across the lateral hydrological gradient. Mar Freshw Res 60:924–935

    Article  Google Scholar 

  • Gallardo B, Cabezas Á, Gonzalez E, Comín FA (2012) Effectiveness of a newly created oxbow lake to mitigate habitat loss and increase biodiversity in a regulated floodplain. Restor Ecol 20:387–394

    Article  Google Scholar 

  • Gallardo B, Dolédec S et al (2014) Response of benthic macroinvertebrates to gradients in hydrological connectivity: a comparison of temperate, subtropical, Mediterranean and semiarid river floodplains. Freshw Biol 59:630–648

    Article  Google Scholar 

  • Garnett JA, Batzer DP (2014) Longitudinal variation in community structure of floodplain fishes along two rivers of the Southeastern USA. Can J Fish Aquat Sci 71:1291–1302

    Article  Google Scholar 

  • Gladden JE, Smock LA (1990) Macroinvertebrate distribution and production on the floodplains of two headwater streams. Freshw Biol 24:533–545

    Article  Google Scholar 

  • Goldowitz BS, Whiles MR (1999) Investigations of fishes, amphibians, and aquatic invertebrate species within the middle Platte River system. Final report, Platte Watershed Program Cooperative Agreement X99708101. USEPA Region VII, Kansas City, MO

    Google Scholar 

  • González E, González-Sanchis M et al (2010) Recent changes in the riparian forest of a large regulated Mediterranean River: implications for management. Environ Manage 45:669–681

    Article  PubMed  Google Scholar 

  • Goonan PM, Beer JA, Thompson TB, Suter PJ (1992) Wetlands of the River Murray floodplain, South Australia. 1. Preliminary survey of the biota and physico-chemistry of ten wetlands from Chowilla to Mannum. Trans R Soc South Australia 116:81–94

    Google Scholar 

  • Harner MJ, Geluso K (2012) Effects of cattle grazing on Platte River caddisflies (Ironoquia plattensis) in central Nebraska. Freshw Sci 31:389–394

    Article  Google Scholar 

  • Heino J (2008) Patterns of functional biodiversity and function-environment relationships in lake littoral macroinvertebrates. Limnol Oceanogr 53:1446–1455

    Article  Google Scholar 

  • Hillman TJ, Quinn GP (2002) Temporal changes in macroinvertebrate assemblages following experimental flooding in permanent and temporary wetlands in an Australian floodplain forest. Riv Res Appl 18:37–154

    Article  Google Scholar 

  • Hladyz S, Nielsen DJ, Suter PJ, Krull ES (2012) Temporal variations in organic carbon utilization by consumers in a lowland river. Riv Res Appl 28:513–528

    Article  Google Scholar 

  • Jenkins KM, Boulton AJ (2003) Connectivity in a dryland river: short-term aquatic microinvertebrate recruitment following floodplain inundation. Ecology 84:2708–2723

    Article  Google Scholar 

  • Jenkins KM, Boulton AJ (2007) Detecting impacts and setting restoration targets in arid-zone rivers: aquatic microinvertebrate responses to reduced floodplain inundation. J Appl Ecol 44:823–832

    Article  Google Scholar 

  • Junk WJ, Wantzen KM (2006) Flood pulsing and the development and maintenance of biodiversity in floodplains. In: Batzer DP, Sharitz RR (eds) Ecology of freshwater and estuarine wetlands. University of California Press, Berkeley, pp 407–435

    Google Scholar 

  • Junk WJ, Bailey PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Special Publ Can J Fish Aquat Sci 106:110–127

    Google Scholar 

  • Karaus U, Larsen S, Guillong H, Tockner K (2013) The contribution of lateral aquatic habitats to insect diversity along river corridors in the Alps. Landscape Ecol 28:1755–1767

    Article  Google Scholar 

  • King SL, Battaglia LL et al (2012) Floodplain wetlands of the Southeastern Coastal Plain. In: Batzer DP, Baldwin AH (eds) Wetland habitats of North America: ecology and conservation concerns. University of California Press, Berkeley, pp 253–266

    Google Scholar 

  • Kingsford RT (2000) Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecol 25:109–127

    Article  Google Scholar 

  • Kohler SL, Corti D, Slamecka MC, Schneider DW (1999) Prairie floodplain ponds: mechanisms affecting invertebrate community structure. In: Batzer DP, Rader RB, Wissinger SA (eds) Invertebrates in freshwater wetlands of North America: ecology and management. Wiley, New York, pp 711–732

    Google Scholar 

  • Langhans SD, Tockner K (2006) The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147:501–509

    Article  PubMed  Google Scholar 

  • Libby B (2013) Impacts of macroconsumers on leaf breakdown and detritivores in wet and dry wetlands of a Southeastern US Coastal Plain floodplain. M.S. thesis, Coastal Carolina University, Conway, SC

    Google Scholar 

  • Malard F, Uehlinger U, Zah R, Tockner K (2006) Flood-pulse and riverscape dynamics in a braided glacial river. Ecology 87:704–716

    Article  PubMed  Google Scholar 

  • MDBC (Murray–Darling Basin Commission) (2006) The Chowilla Floodplain and Lindsay–Wallpolla Islands icon site environmental management plan. Murray–Darling Basin Commission, Canberra

    Google Scholar 

  • Meyer CK, Whiles MR (2008) Macroinvertebrate communities in restored and natural Platte River slough wetlands. J North Am Benthol Soc 27:626–639

    Article  Google Scholar 

  • Meyer CK, Whiles MR, Baer SG (2010) Plant community recovery following restoration in temporally variable riparian wetlands. Restor Ecol 18:52–64

    Article  Google Scholar 

  • Muñoz I, Prat N (1994) Macroinvertebrate community in the lower Ebro River (NE Spain). Hydrobiologia 286:65–78

    Article  Google Scholar 

  • Olivier JM, Carrel G et al (2009) The Rhône river basin. In: Tockner K, Uehlinger U, Robinson CT (eds) Rivers of Europe. Academic, London, pp 247–295

    Chapter  Google Scholar 

  • Ollero A (2007) Channel adjustments, floodplain changes and riparian ecosystems of the middle Ebro River: assessment and management. Internat J Water Resour Devel 23:73–90

    Article  Google Scholar 

  • Overton I, Doody T (2008) Groundwater, surface water, salinity and vegetation response to a proposed regulator on Chowilla Creek. CSIRO, Glen Osmond, South Australia

    Google Scholar 

  • Paetzold A, Tockner K (2005) Effects of riparian arthropod predation on the biomass and abundance of aquatic insect emergence. J North Am Benthol Soc 24:395–402

    Article  Google Scholar 

  • Paetzold A, Schubert CJ, Tockner K (2005) Aquatic terrestrial linkage along a braided-river: riparian arthropods feeding on aquatic insects. Ecosystems 8:748–759

    Article  Google Scholar 

  • Paetzold A, Bernet JF, Tockner K (2006) Consumer-specific responses to riverine subsidy pulse in a riparian arthropod assemblage. Freshw Biol 51:1103–1115

    Article  Google Scholar 

  • Paetzold A, Yoshimura C, Tockner K (2008) Riparian arthropod responses to flow regulation and river channelization. J Appl Ecol 45:894–903

    Article  Google Scholar 

  • Paillex A, Castella E, Carron G (2007) Aquatic macroinvertebrate response along a gradient of lateral connectivity in river floodplain channels. J North Am Benthol Soc 26:779–796

    Article  Google Scholar 

  • Persson Vinnersten TZ, Ӧstman Ӧ, Schäfer ML, Lunström JO (2014) Insect emergence in relation to floods in wet meadows and swamps in the River Dalälven floodplain. Bull Entomol Res 104:453–461

    Article  Google Scholar 

  • Poff NL, Allan JD et al (1997) The natural flow regime. BioScience 47:769–784

    Article  Google Scholar 

  • Reese EG, Batzer DP (2007) Do invertebrate communities in floodplains change predictably along a river’s length? Freshw Biol 52:226–239

    Article  CAS  Google Scholar 

  • Richoux P (1994) Theoretical habitat templets, species traits, and species richness: aquatic Coleoptera in the Upper Rhône River and its floodplain. Freshw Biol 31:377–395

    Article  Google Scholar 

  • Riggins JJ, Davis CA, Hoback WW (2009) Biodiversity of belowground invertebrates as an indicator of wet meadow restoration success (Platte River, Nebraska). Restor Ecol 17:495–505

    Article  Google Scholar 

  • Roach KA, Thorp JH, Delong MD (2009) Influence of lateral gradients of hydrologic connectivity on trophic positions of fishes in the Upper Mississippi River. Freshw Biol 54:607–620

    Article  Google Scholar 

  • Sabater S, Feio M et al (2009) The Iberian rivers. In: Tockner K, Uehlinger U, Robinson CT (eds) Rivers of Europe. Academic, London, pp 113–150

    Chapter  Google Scholar 

  • Sabater S, Muñoz I et al (2011) Aquatic and riparian biodiversity in the Ebro watershed: prospects and threats. In: Barceló D, Petrovic M (eds) The Ebro River Basin. Springer, Berlin Heidelberg, pp 121–138

    Google Scholar 

  • Sheldon F, Walker KF (1998) Spatial distribution of littoral invertebrates in the lower Murray-Darling River system, Australia. Mar Freshw Res 49:171–182

    Article  Google Scholar 

  • Sheldon F, Boulton AJ, Puckridge JT (2002) Conservation value of variable connectivity: aquatic invertebrate assemblages of channel and floodplain habitats of a central Australian arid-zone river, Cooper Creek. Biol Conserv 103:13–31

    Article  Google Scholar 

  • Sidle JG, Miller ED, Currier PJ (1989) Changing habitats in the Platte River valley of Nebraska USA. Prairie Naturalist 21:91–104

    Google Scholar 

  • Skinner R, Sheldon F, Walker KF (2001) Animal propagules in dry wetland sediments as indicators of ecological health: effects of salinity. Regul Riv Res Manage 17:191–197

    Article  Google Scholar 

  • Smock LA (1994) Movements of invertebrates between stream channels and forested floodplains. J North Am Benthol Soc 13:524–531

    Article  Google Scholar 

  • Smock LA, Gladden JE et al (1992) Lotic macroinvertebrate production in three dimensions: channel surface, hyporheic, and floodplain environments. Ecology 73:876–886

    Article  Google Scholar 

  • Söderström O, Nillson AN (1987) Do nymphs of Parameletus chelifer and P. minor (Ephemeroptera) reduce mortality from predation by occupying temporary habitats? Oecologia 74:39–46

    Article  Google Scholar 

  • Starr SM, Benstead JP, Sponseller RA (2014) Spatial and temporal organization of macroinvertebrate assemblages in a lowland floodplain ecosystem. Landscape Ecol 29:1017–1031

    Article  Google Scholar 

  • Steward AL, Marshall JC et al (2011) Terrestrial invertebrates of dry river beds are not simply subsets of riparian assemblages. Aquat Sci 73:551–566

    Article  Google Scholar 

  • Steward AL, von Schiller D et al (2012) When the river runs dry: human and ecological values of dry rivers. Frontiers Ecol Environ 10:202–209

    Article  Google Scholar 

  • Tachet H, Usseglio-Polatera P, Roux C (1994) Theoretical habitat templets, species traits, and species richness: Trichoptera in the Upper Rhône River and its floodplain. Freshw Biol 31:397–415

    Article  Google Scholar 

  • Taylor AN, Batzer DP (2010) Spatial and temporal variation in invertebrate consumer diets in forested and herbaceous wetlands. Hydrobiologia 651:145–159

    Article  CAS  Google Scholar 

  • Tockner K, Malard F, Ward JV (2000) An extension of the flood pulse concept. Hydrol Process 14:2861–2883

    Article  Google Scholar 

  • Tockner K, Uehlinger U, Robinson CT (2009) Rivers of Europe. Academic, New York

    Google Scholar 

  • Townsend CR, Doledec S, Scarsbrook MR (1997) Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshw Biol 37:367–387

    Article  Google Scholar 

  • Tronstad LM, Tronstad BP, Benke AC (2005a) Invertebrate seedbanks: rehydration of soils from an unregulated river floodplain of the south-eastern U.S. Freshw Biol 50:646–655

    Article  Google Scholar 

  • Tronstad LM, Tronstad BP, Benke AC (2005b) Invertebrate responses to decreasing water levels in a subtropical river floodplain wetland. Wetlands 25:583–593

    Article  Google Scholar 

  • Tronstad LM, Tronstad BP, Benke AC (2007) Aerial colonization and growth: rapid invertebrate responses to temporary aquatic habitat in a river floodplain. J North Am Benthol Soc 26:460–471

    Article  Google Scholar 

  • Tronstad LM, Tronstad BP, Benke AC (2010) Growth rates of chironomids collected from an ephemeral floodplain wetland. Wetlands 30:827–831

    Article  Google Scholar 

  • US Fish and Wildlife Service (1997) Biological opinion on the Federal Energy Regulatory Commission’s preferred alternative for the Kingsley dam project and North Platte/Keystone dam project. US Fish and Wildlife Service, Grand Island, NE

    Google Scholar 

  • Usseglio-Polatera P, Tachet H (1994) Theoretical habitat templets, species traits, and species richness: Plecoptera and Ephemeroptera in the Upper Rhône River and its floodplain. Freshw Biol 31:357–375

    Article  Google Scholar 

  • Vivian LA, Cavallaro M et al (2013) Current known range of the Platte River caddisfly, Ironoquia plattensis, and genetic variability among populations from three Nebraska rivers. J Insect Conserv 17:885–895

    Article  Google Scholar 

  • Walker KF (2006) Serial weirs, cumulative effects: the Lower River Murray, Australia. In: Kingsford RT (ed) Ecology of desert rivers. Academic, New York, pp 248–279

    Google Scholar 

  • Ward JV (1989) The 4-dimensional nature of lotic ecosystems. J North Am Benthol Soc 8:2–8

    Article  Google Scholar 

  • Ward JV, Tockner K et al (1999a) A reference river system for the Alps: the ‘Fiume Tagliamento’. Reg River Res Manage 15:63–75

    Article  Google Scholar 

  • Ward JV, Tockner K, Sciemer F (1999b) Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regul Riv Res Manage 15:125–139

    Article  Google Scholar 

  • Ward JV, Tockner K, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshw Biol 47:517–539

    Article  Google Scholar 

  • Watkins SC, Quinn GP, Gawne B (2010) Changes in organic-matter dynamics and physicochemistry, associated with riparian vegetation loss and river regulation in floodplain wetlands of the Murray River, Australia. Mar Freshw Res 61:1207–1217

    Article  CAS  Google Scholar 

  • Whiles MR, Goldowitz BS (2001) Hydrologic influences on insect emergence production from central Platte River wetlands. Ecol Appl 11:1829–1842

    Article  Google Scholar 

  • Whiles MR, Goldowitz BS (2005) Macroinvertebrate communities in Central Platte River wetlands: patterns across a hydrologic gradient. Wetlands 25:462–472

    Article  Google Scholar 

  • Whiles MR, Goldowitz BS, Charlton RE (1999) Life history and production of a semi-terrestrial limnephilid caddisfly in an intermittent Platte River wetland. J North Am Benthol Soc 18:533–544

    Article  Google Scholar 

  • Wissinger SA (1999) Ecology of wetland invertebrates: synthesis and applications for conservation and management. In: Batzer DP, Rader RD, Wissinger SA (eds) Invertebrates in freshwater wetlands of North America: ecology and management. Wiley, New York, pp 1043–1086

    Google Scholar 

  • Yan W, Howles SR, Marsden Z (2005) Chowilla floodplain numerical groundwater model. South Australian Department of Water, Land and Biodiversity Conservation, Adelaide Rep 2004/65. https://www.waterconnect.sa.gov.au/Content/Publications/DEWNR/dwlbc_2004_65_screen.pdf. Accessed Aug 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darold Batzer .

Editor information

Editors and Affiliations

Appendix

Appendix

Invertebrate taxa collected from selected temperate-zone floodplains from Europe, the USA, and Australia. (Some taxa not recorded from a site may simply reflect that the organism was not effectively collected by the sampling program employed; other taxa may be absent for biogeographic reasons).

 

Southwestern Europe

Southeastern USA

Southeastern USA

US Central Prairie

Eastern Australia

Southeastern Australia

Ebro Rivera

Oconee Riverb

Altamaha Riverc

Platte Riverd

Murrumbidgee Rivere

Murray Riverf

NEMATODA

 

X

X

X

 

X

PORIFERA

  

X

  

X

CNIDARIA

   

X

X

X

TURBELLARIA

   

X

X

X

NEMERTEA

    

X

X

ROTIFERA

X

  

X

 

X

MOLLUSCA

     

Gastropoda

      

Ancylidae

X

    

X

Hydrobiidae

     

X

Lymnaeidae

X

  

X

X

X

Neritidae

X

     

Physidae

X

  

X

X

 

Planorbidae

 

X

X

X

X

X

Bivalvia

      

Corbiculidae

X

X

   

X

Sphaeriidae

 

X

X

X

  

Unionidae

X

     

ANNELIDA

 

    

Oligochaeta

      

Lumbriculidae

   

X

 

X

Naididae

X

   

X

 

Tubificidae

X

X

X

 

X

X

Hirudinea

      

Erpobdellidae

X

  

X

  

Glossiphoniidae

X

  

X

X

X

CRUSTACEA

      

Branchiopoda

      

Bosminidae

X

     

Chirocephalidae

  

X

   

Chydoridae

X

  

X

  

Cyclestheridae

     

X

Cyzicidae

    

X

 

Daphniidae

X

X

X

X

  

Lynceidae

 

  

X

 

Notostraca

    

X

X

Thamnocephalidae

     

X

Branchiura

      

Arguliidae

X

 

X

   

Copepoda

      

Calanoida

X

X

X

  

X

Cyclopoida

X

X

X

  

X

Harpacticoida

 

X

   

X

Ostracoda

X

X

X

 

X

X

Amphipoda

      

Ceinidae

     

X

Crangonyctidae

 

X

X

X

  

Dogielinotidae

 

X

X

X

  

Gammaridae

X

 

X

   

Isopoda

      

Asellidae

X

X

X

   

Corallanidae

     

X

Janiridae

 

   

X

Decapoda

      

Atyidae

X

   

X

X

Cambaridae

X

X

X

   

Palaemonidae

  

X

 

X

X

Parastacidae

    

X

X

ARACHNIDA

      

Araneae

 

X

X

  

X

Hydrachnidia

   

X

X

X

Oribatida

 

X

X

 

X

X

Pseudoscorpionida

  

X

   

MYRIAPODA

 

    

Chilopoda

 

X

X

   

Diplopoda

  

X

   

INSECTA

      

Collembola

X

X

X

  

X

Ephemeroptera

      

Baetidae

X

  

X

X

X

Caenidae

X

X

  

X

X

Ephemerellidae

 

X

    

Ephemeridae

X

X

    

Heptageniidae

X

     

Leptophlebidae

X

X

  

X

 

Metretopodidae

 

X

    

Polymitarcyidae

X

     

Siphlonuridae

 

X

    

Odonata

      

Aeshnidae

 

X

X

 

X

X

Coenagrionidae

X

X

X

X

X

X

Corduliidae

X

  

X

X

Gomphidae

X

X

  

X

X

Isostictidae

    

X

 

Lestidae

   

X

X

X

Libellulidae

X

  

X

X

 

Plecoptera

      

Gripopterygidae

     

X

Nemouridae

 

X

    

Hemiptera

      

Belostomatidae

   

X

X

X

Corixidae

X

X

X

X

X

X

Gerridae

X

X

X

 

X

 

Hebridae

    

X

 

Hydrometridae

    

X

 

Mesoveliidae

X

   

X

X

Naucoridae

 

  

X

X

Nepidae

    

X

 

Notonectidae

X

X

X

X

X

X

Ochteridae

    

X

 

Pleidae

    

X

 

Saldidae

    

X

 

Veliidae

X

   

X

X

Neuroptera

      

Corydalidae

 

X

    

Sialidae

 

X

    

Coleoptera

      

Cantharidae

 

X

X

   

Chrysomelidae

   

X

  

Curculionidae

 

X

X

  

X

Dytiscidae

X

X

X

X

X

X

Elateridae

 

X

X

   

Elmidae

X

X

  

X

X

Gyrinidae

X

X

X

 

X

X

Haliplidae

 

X

  

X

 

Heteroceridae

    

X

 

Hydraenidae

    

X

 

Hydrophilidae/Helophoridae

X

 

X

 

X

X

Hygrobiidae

    

X

 

Lampyridae

 

X

    

Noteridae

X

     

Phengodidae

  

X

   

Ptilodactylidae

 

X

X

   

Scarabaeidae

  

X

   

Scirtidae

 

   

X

Staphylinidae

 

X

X

   

Trichoptera

      

Ecnomidae

X

   

X

X

Glossosomatidae

X

     

Hydropyschidae

 

X

    

Hydroptilidae

X

   

X

X

Lepidostomatidae

X

     

Leptoceridae

   

X

X

X

Limnephilidae

 

X

 

X

  

Psychomyiidae

X

     

Lepidoptera

      

Pyralidae/Crambidae

 

X

X

   

Diptera

      

Bibionidae

 

X

X

   

Cecidiomyiidae

 

X

X

   

Ceratopogonidae

X

X

X

X

X

X

Chaoboridae

 

X

X

   

Chironomidae

      

(Chironominae)

X

X

X

X

X

X

(Tanypodinae)

X

X

X

X

X

X

(Orthocladiinae)

X

X

X

X

X

X

Culicidae

X

X

X

X

X

X

Dolichopodidae

 

X

X

  

X

Empididae

 

X

X

  

X

Ephydridae

X

X

X

X

 

X

Muscidae

   

X

 

X

Psychodidae

 

X

X

  

X

Sciaridae

 

X

X

X

  

Sciomyzidae

   

X

  

Simuliidae

X

  

X

 

Stratiomyidae

 

X

 

X

X

 

Syrphidae

 

X

    

Tabanidae

 

X

X

X

  

Tipulidae/Limoniidae

X

X

X

X

 

X

  1. a 
  2. Gallardo (unpublished)
  3. b Reese and Batzer (2007)
  4. c Reese and Batzer (2007), Bright et al. (2010)
  5. d Whiles (unpublished)
  6. e Chessman and Hardwick (2014)
  7. f Boulton and Lloyd (1991, 1992), Goonan et al. (1992), Sheldon and Walker (1998)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Batzer, D., Gallardo, B., Boulton, A., Whiles, M. (2016). Invertebrates of Temperate-Zone River Floodplains. In: Batzer, D., Boix, D. (eds) Invertebrates in Freshwater Wetlands. Springer, Cham. https://doi.org/10.1007/978-3-319-24978-0_13

Download citation

Publish with us

Policies and ethics