Beckmann, M.J., McGuire, C.B. Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press (1956)
Google Scholar
Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1969). English translation: Braess, D., Nagurney, A., Wakolbinger, T.: On a paradox of traffic planning. Trans. Sci. 39, 446–450 (2005)
Google Scholar
Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish routing in capacitated networks. Math. Oper. Res. 29, 961–976 (2004)
MathSciNet
CrossRef
MATH
Google Scholar
Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: A geometric approach to the price of anarchy in nonatomic congestion games. Games Econ. Behav. 64, 457–469 (2008)
MathSciNet
CrossRef
MATH
Google Scholar
Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: The price of anarchy of the proportional allocation mechanism revisited. In: Chen, Y., Immorlica, N. (eds.) Web and Internet Economics. Lecture Notes in Computer Science, Vol. 8289, pp. 109–120. Springer (2013)
Google Scholar
Correa, J.R., Stier-Moses, N.E.: Wardrop equilibria. In: Wiley Encyclopedia of Operations Research and Management Science. Wiley (2011)
Google Scholar
Dafermos, S.C.: Traffic equilibrium and variational inequalities. Trans. Sci. 14, 42–54 (1980)
MathSciNet
CrossRef
Google Scholar
Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general network. J. Res. U.S. Nat. Bur. Stand. 73B, 91–118 (1969)
Google Scholar
Florian, M.: Untangling traffic congestion: Application of network equilibrium models in transportation planning. OR/MS Today 26, 52–57 (1999)
Google Scholar
Gardner, M.: Some surprising theorems about rectangles in triangles. Math. Horiz. 5, 18–22 (1997)
Google Scholar
Haurie, A., Marcotte, P.: On the relationship between Nash-Cournot and Wardrop equilibria. Networks 15, 295–308 (1985)
MathSciNet
CrossRef
MATH
Google Scholar
Johari, R., Tsitsiklis, J.N.: Efficiency loss in a network resource allocation game. Math. Oper. Res. 29, 407–435 (2004)
MathSciNet
CrossRef
MATH
Google Scholar
Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, Vol. 1563, pp. 404–413, Springer (1999)
Google Scholar
Lange, L.H.: What is the biggest rectangle you can put inside a given triangle? Coll. Math. J. 24, 237–240 (1993)
CrossRef
Google Scholar
Nash, J.: Equilibrium points in \(n\)-person games. Proc. Natl. Acad. Sci. 36, 48–49 (1950)
MathSciNet
CrossRef
MATH
Google Scholar
Papadimitriou, C.H.: Algorithms, games, and the Internet. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 749–753. ACM Press (2001)
Google Scholar
Pigou, A.C.: The Economics of Welfare. Macmillan (1920)
Google Scholar
Roughgarden, T.: Potential functions and the inefficiency of equilibria. Proc. Intern. Congr. Math. III, 1071–1094 (2006)
Google Scholar
Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49, 236–259 (2002)
MathSciNet
CrossRef
MATH
Google Scholar
Roughgarden, T., Tardos, É.: Introduction to the inefficiency of equilibria. Chapter 17 In: Nisan, N. et al. (eds.) Algorithmic Game Theory. Cambridge University Press (2007)
Google Scholar
Smith, M.J.: The existence, uniqueness and stability of traffic equilibria. Trans. Res. B 13, 295–304 (1979)
MathSciNet
CrossRef
Google Scholar
Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. Part II 1, 325–378 (1952)
Google Scholar