Skip to main content

Part of the book series: Computational Biology ((COBO,volume 23))

  • 1815 Accesses

Abstract

Phylogenetics is the study of evolutionary relationships among organisms. Sequence alignment is commonly performed as the first step of phylogenetics to determine the similarities of DNA and protein sequences. Searching these relationships is needed to analyze diseases, predict the genetic structures of pathogens, and also to classify the organisms. We pursue an evolutionary structure called the phylogenetic tree with leaves representing the living organisms called taxa and the intermediate nodes as the hypothetical ancestors. We start this chapter by stating the terms of phylogenetic terminology. We then describe various methods of constructing phylogenetic trees and propose a simple distributed algorithm to construct such trees. In the maximum parsimony problem, we are given the evolutionary tree and a number of taxa, and our aim is to label nodes of this tree that explains data with minimum number of mutations. We review a number of algorithms for this purpose and introduce a new algorithm for distributed parsimony implementation. After reviewing the probabilistic maximum likelihood method of constructing phylogenetic trees, we provide a brief review of distributed approaches that use maximum likelihood. Phylogenetic networks are more general as they exhibit events such as horizontal gene transfer and recombination which cannot be represented by the evolutionary trees. We discuss these networks briefly to conclude this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Addario-Berry L, Hallett MT, Lagergren J (2003) Towards identifying lateral gene transfer events. In: Proceedings of 8th pacific symposium on biocomputing (PSB03), pp 279–290

    Google Scholar 

  2. Bandelt HJ, Forster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human populations using median networks. Genetics 141:743–753

    Google Scholar 

  3. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48

    Article  Google Scholar 

  4. Bandelt HJ, Macaulay V, Richards M (2000) Median networks: speedy construction and greedy reduction, one simulation, and two case studies from human mtDNA. Mol Phyl Evol 16:8–28

    Article  Google Scholar 

  5. Blouin C, Butt D, Hickey G, Rau-Chaplin A (2005) Fast parallel maximum likelihood-based protein phylogeny. In: Proceedings of 18th international conference on parallel and distributed computing systems, ISCA, pp 281–287

    Google Scholar 

  6. Colijn C, Gardy J (2014) Phylogenetic tree shapes resolve disease transmission patterns. Evol Med Public Health 2014:96–108

    Article  Google Scholar 

  7. DasGupta B, He X, Jiang T, Li M, Tromp J, Zhang L (2000) On computing the nearest neighbor interchange distance. Proceedings of DIMACS workshop on discrete problems with medical applications 55:125–143

    Article  MathSciNet  MATH  Google Scholar 

  8. Doolittle WF (1999) Phylogenetic classification and the Universal Tree. Science 284:2124–2128

    Article  Google Scholar 

  9. Dunn JC (1974) Well separated clusters and optimal fuzzy partitions. J Cybern 4:95–104

    Article  MathSciNet  MATH  Google Scholar 

  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Google Scholar 

  11. Felsenstein J (1991) PHYLIP: phylogenetic inference package. University of Washington, Seattle

    Google Scholar 

  12. Felsenstein J (2004) Inferring Phylogenies. 2nd edn. Sinauer Associates Inc., Chapter 2

    Google Scholar 

  13. Fitch WM (1971) Toward defining course of evolution: minimum change for a specified tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  14. Gast M, Hauptmann M (2012) Efficient parallel computation of nearest neighbor interchange distances. CoRR abs/1205.3402

    Google Scholar 

  15. Griffiths RC, Marjoram P (1997) An ancestral recombination graph. In: Donnelly P, Tavare S (eds) Progress in population genetics and human evolution, volume 87 of IMA volumes of mathematics and its applications. Springer, Berlin (Germany), pp 257–270

    Chapter  Google Scholar 

  16. http://paup.csit.fsu.edu/

  17. Hallett MT, Lagergren J (2001) Efficient algorithms for lateral gene transfer problems. Proceedings 5th annunal international conference on computational molecular biology (RECOMB01). ACM Press, New York, pp 149–156

    Google Scholar 

  18. Hendy MD, Penny D (1982) Branch and bound algorithms to determine minimal evolutionary trees. Math Biosci 60:133–142

    Article  MathSciNet  MATH  Google Scholar 

  19. Huber KT, Watson EE, Hendy MD (2001) An algorithm for constructing local regions in a phylogenetic network. Mol Phyl Evol 19(1):1–8

    Article  Google Scholar 

  20. Huson DH (1998) SplitsTree: a program for analyzing and visualizing evolutionary data. Bioinformatics 14(1):68–73

    Article  Google Scholar 

  21. Huson DH, Scornavacca C (2011) A survey of combinatorial methods for phylogenetic networks. Genome Biol Evol 3:23–35

    Article  Google Scholar 

  22. Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic networks. Cambridge University Press

    Google Scholar 

  23. Jin G, Nakhleh L, Snir S, Tuller T (2007) Inferring phylogenetic networks by the maximum parsimony criterion: a case study. Mol Biol Evol 24(1):324–337

    Article  Google Scholar 

  24. Keane TM, Naughton TJ, Travers SA, McInerney JO, McCormack GP (2005) DPRml: distributed phylogeny reconstruction by maximum likelihood. Bioinformatics 21(7):969–974

    Article  Google Scholar 

  25. Keane TM, Naughton TJ, McInerney JO (2007) MultiPhyl: a high-throughput phylogenomics webserver using distributed computting. Nucleic Acids Res 35(2):3337

    Google Scholar 

  26. Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis, ver. 1.01. The Pennsylvania State University, University Park, PA

    Google Scholar 

  27. Lemey P, Salemi M, Vandamme A-M (eds) (2009) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing, 2nd edn. Cambridge University Press. ISBN-10: 0521730716. ISBN-13: 978-0521730716

    Google Scholar 

  28. Linder CR, Moret BME, Nakhleh L, Warnow T (2004) Network (Reticulate) Evolution: biology, models, and algorithms. School of Biological Sciences. In, The ninth pacific symposium on biocomputing

    Google Scholar 

  29. Nakhleh L (2010) Evolutionary phylogenetic networks: models and issues. In: Heath L, Ramakrishnan, N (eds) The problem solving handbook for computational biology and bioinformatics. Springer, pp 125–158

    Google Scholar 

  30. Nasibov EN, Ulutagay G (2008) FN-DBSCAN: a novel density-based clustering method with fuzzy neighborhood relations. In: Proceedings of 8th international conference application of fuzzy systems and soft computing (ICAFS-2008), pp 101–110

    Google Scholar 

  31. Robinson DF (1971) Comparison of labeled trees with valency three. J Comb Theory Ser B 11(2):105–119

    Article  MathSciNet  Google Scholar 

  32. Ropelewski AJ, Nicholas HB, Mendez RR (2010) MPI-PHYLIP: parallelizing computationally intensive phylogenetic analysis routines for the analysis of large protein families. PLoS ONE 5(11):e13999. doi:10.1371/journal.pone.0013999

    Article  Google Scholar 

  33. Ruzgar R, Erciyes K (2012) Clustering based distributed phylogenetic tree construction. Expert Syst Appl 39(1):89–98

    Article  Google Scholar 

  34. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol BioI Evol 4(4):406–425

    Google Scholar 

  35. Sankoff D (1975) Minimal mutation trees of sequences. SIAM J Appl Math 28:35–42

    Article  MathSciNet  MATH  Google Scholar 

  36. Stamatakis A (2004) Distributed and parallel algorithms and systems for inference of huge phylogenetic trees based on the maximum likelihood method. Ph.D. thesis, Technische Universitat, Munchen, Germany

    Google Scholar 

  37. Schmidt HA, Strimmer K, Vingron M, Haeseler A (2002) Tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18(3):502–504

    Article  Google Scholar 

  38. Studier J, Keppler K (1988) A note on the neighbor-joining algorithm of Saitou and Nei. Mol BioI Evol 5(6):729–731

    Google Scholar 

  39. Sung W-K (2009) Algorithms in bioinformatics: a practical introduction. CRC Press (Taylor and Francis Group), Chap 8

    Google Scholar 

  40. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  Google Scholar 

  41. Zhou BB, Till M, Zomaya A (2004) Parallel implementation of maximum likelihood methods for phylogenetic analysis. In: Proceedings of 18th international symposium parallel and distributed processing (IPDPS 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Erciyes .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Erciyes, K. (2015). Phylogenetics. In: Distributed and Sequential Algorithms for Bioinformatics. Computational Biology, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-24966-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24966-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24964-3

  • Online ISBN: 978-3-319-24966-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics