Skip to main content

Looking at Mean-Payoff Through Foggy Windows

  • Conference paper
  • First Online:
  • 896 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9364))

Abstract

Mean-payoff games (MPGs) are infinite duration two-player zero-sum games played on weighted graphs. Under the hypothesis of perfect information, they admit memoryless optimal strategies for both players and can be solved in . MPGs are suitable quantitative models for open reactive systems. However, in this context the assumption of perfect information is not always realistic. For the partial-observation case, the problem that asks if the first player has an observation-based winning strategy that enforces a given threshold on the mean-payoff, is undecidable. In this paper, we study the window mean-payoff objectives introduced recently as an alternative to the classical mean-payoff objectives. We show that, in sharp contrast to the classical mean-payoff objectives, some of the window mean-payoff objectives are decidable in games with partial-observation.

P. Hunter, J.-F. Raskin—Supported by the ERC inVEST (279499) project.

G.A. Pérez—Supported by F.R.S.-FNRS fellowship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The terms belief and knowledge are used to denote a state from any variation of the classic “Reif construction” [19] to turn a game with partial-observation into a game with perfect information. Other names for similar constructions include “knowledge-based subset construction” (see e.g. [10]).

  2. 2.

    We refer the reader who is not familiar with parity automata or games to [22].

References

  1. Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted automata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 482–491. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Berwanger, D., Chatterjee, K., De Wulf, M., Doyen, L., Henzinger, T.A.: Alpaga: a tool for solving parity games with imperfect information. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 58–61. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Björklund, H., Sandberg, S., Vorobyov, S.: Memoryless determinacy of parity and mean payoff games: a simple proof. TCS 310(1), 365–378 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.-F.: Faster algorithms for mean-payoff games. Formal Methods Syst. Des. 38(2), 97–118 (2011)

    Article  MATH  Google Scholar 

  6. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Chatterjee, K., Doyen, L.: The complexity of partial-observation parity games. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games with imperfect information. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 287–302. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Chatterjee, K., Doyen, L., Randour, M., Raskin, J.-F.: Looking at mean-payoff and total-payoff through windows. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 118–132. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Doyen, L., Raskin, J.-F.: Antichains for the automata-based approach to model-checking. Logical Methods Comput. Sci. 5(1), 1–20 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8, 109–113 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract). In: STOCS, pp. 368–377. IEEE (1991)

    Google Scholar 

  15. Gentilini, R.: A note on the approximation of mean-payoff games. Inf. Process. Lett. 114(7), 382–386 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grädel, E.: Positional determinacy of infinite games. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 4–18. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. Logical Methods Comput. Sci. 3(3), 1–21 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Reif, J.H.: The complexity of two-player games of incomplete information. J. Comput. Syst. Sci. 29(2), 274–301 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Safra, S.: On the complexity of \(\omega \)-automata. In: Symposium on Foundations of Computer Science, pp. 319–327. IEEE (1988)

    Google Scholar 

  21. Safra, S.: Exponential determinization for omega-automata with strong-fairness acceptance condition (extended abstract). In: STOC, pp. 275–282 (1992)

    Google Scholar 

  22. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  23. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. TCS 158(1), 343–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo A. Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hunter, P., Pérez, G.A., Raskin, JF. (2015). Looking at Mean-Payoff Through Foggy Windows. In: Finkbeiner, B., Pu, G., Zhang, L. (eds) Automated Technology for Verification and Analysis. ATVA 2015. Lecture Notes in Computer Science(), vol 9364. Springer, Cham. https://doi.org/10.1007/978-3-319-24953-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24953-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24952-0

  • Online ISBN: 978-3-319-24953-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics