Binarization Driven Blind Deconvolution for Document Image Restoration

  • Thomas Köhler
  • Andreas Maier
  • Vincent Christlein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9358)


Blind deconvolution is a common method for restoration of blurred text images, while binarization is employed to analyze and interpret the text semantics. In literature, these tasks are typically treated independently. This paper introduces a novel binarization driven blind deconvolution approach to couple both tasks in a common framework. The proposed method is derived as an energy minimization problem regularized by a novel consistency term to exploit text binarization as a prior for blind deconvolution. The binarization to establish our consistency term is inferred by spatially regularized soft clustering based on a set of discriminative features. Our algorithm is formulated by the alternating direction method of multipliers and iteratively refines blind deconvolution and binarization. In our experimental evaluation, we show that our joint framework is superior to treating binarization and deconvolution as independent subproblems. We also demonstrate the application of our method for the restoration and binarization of historic document images, where it improves the visual recognition of handwritten text.


  1. 1.
    Bradley, D., Roth, G.: Adaptive thresholding using the integral image. J. Graph. GPU Game Tools 12(2), 13–21 (2007)CrossRefGoogle Scholar
  2. 2.
    Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998)CrossRefGoogle Scholar
  3. 3.
    Chen, X., He, X., Yang, J., Wu, Q.: An effective document image deblurring algorithm. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 369–376. IEEE, June 2011Google Scholar
  4. 4.
    Cho, H., Wang, J., Lee, S.: Text image deblurring using text-specific properties. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 524–537. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Cho, S., Wang, J., Lee, S.: Handling outliers in non-blind image deconvolution. In: IEEE International Conference on Computer Vision (ICCV), pp. 495–502 (2011)Google Scholar
  6. 6.
    Christlein, V., Bernecker, D., Hönig, F., Angelopoulou, E.: Writer identification and verification using GMM supervectors. In: IEEE Winter Conference on Applications of Computer Vision, pp. 998–1005 (2014)Google Scholar
  7. 7.
    Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke width transform. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2963–2970. IEEE, June 2010Google Scholar
  8. 8.
    Espana-Boquera, S., Castro-Bleda, M., Gorbe-Moya, J., Zamora-Martinez, F.: Improving offline handwritten text recognition with hybrid HMM/ANN models. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 767–779 (2011)CrossRefGoogle Scholar
  9. 9.
    Garz, A., Diem, M., Sablatnig, R.: Detecting text areas and decorative elements in ancient manuscripts. In: 2010 International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 176–181, November 2010Google Scholar
  10. 10.
    Ghesu, F.C., Köhler, T., Haase, S., Hornegger, J.: Guided image super-resolution: a new technique for photogeometric super-resolution in hybrid 3-D range imaging. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 227–238. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)CrossRefGoogle Scholar
  13. 13.
    Köhler, T., Jordan, J., Maier, A., Hornegger, J.: A unified bayesian approach to multi-frame super-resolution and single-image upsampling in multi-sensor imaging. In: Xie, X., Jones, M.W., Tam, G.K.L. (eds.) Proceedings of the British Machine Vision Conference (BMVC), pp. 143.1–143.12. BMVA Press (2015)Google Scholar
  14. 14.
    Kotera, J., Šroubek, F., Milanfar, P.: Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 59–66. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.: Understanding and evaluating blind deconvolution algorithms. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1964–1971. IEEE, June 2009Google Scholar
  16. 16.
    Li, T.H., Lii, K.S.: A joint estimation approach for two-tone image deblurring by blind deconvolution. IEEE Trans. Image Process. 11(8), 847–858 (2002)CrossRefGoogle Scholar
  17. 17.
    Oliveira, J.P., Bioucas-Dias, J.M., Figueiredo, M.A.: Adaptive total variation image deblurring: a majorization-minimization approach. Signal Process. 89(9), 1683–1693 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pan, J., Hu, Z., Su, Z., Yang, M.H.: Deblurring text images via L0-regularized intensity and gradient prior. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2901–2908, June 2014Google Scholar
  20. 20.
    Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recognit. 33(2), 225–236 (2000)CrossRefGoogle Scholar
  21. 21.
    Su, B., Lu, S., Tan, C.L.: Binarization of historical document images using the local maximum and minimum. In: 9th IAPR International Workshop on Document Analysis Systems, Boston, MA, pp. 159–165, June 2010Google Scholar
  22. 22.
    Yang, Y., Huang, S.: Image segmentation by fuzzy C-means clustering algorithm with a novel penalty term. Comput. Inf. 26(1), 17–31 (2012)zbMATHGoogle Scholar
  23. 23.
    Zhang, J.: An alternating minimization algorithm for binary image restoration. IEEE Trans. Image Process. 21(2), 883–888 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Thomas Köhler
    • 1
    • 2
  • Andreas Maier
    • 1
    • 2
  • Vincent Christlein
    • 1
  1. 1.Pattern Recognition LabFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)ErlangenGermany

Personalised recommendations