Skip to main content

Graph-Based Deformable 3D Object Matching

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9358))

Abstract

We present a method for efficient detection of deformed 3D objects in 3D point clouds that can handle large amounts of clutter, noise, and occlusion. The method generalizes well to different object classes and does not require an explicit deformation model. Instead, deformations are learned based on a few registered deformed object instances. The approach builds upon graph matching to find correspondences between scene and model points. The robustness is increased through a parametrization where each graph vertex represents a full rigid transformation. We speed up the matching through greedy multi-step graph pruning and a constant-time feature matching. Quantitative and qualitative experiments demonstrate that our method is robust, efficient, able to detect rigid and non-rigid objects and exceeds state of the art.

This is a preview of subscription content, log in via an institution.

References

  1. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: ICRA (2009)

    Google Scholar 

  2. Wahl, E., Hillenbrand, G., Hirzinger, G.: Surflet-pair-relation histograms: a statistical 3d-shape representation for rapid classification. In: 3DIM (2003)

    Google Scholar 

  3. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3D object recognition. In: CVPR (2010)

    Google Scholar 

  4. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: ICCV (2005)

    Google Scholar 

  5. Myronenko, A., Song, X.: Point set registration: coherent point drift. PAMI 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  6. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. CVIU 89(2), 114–141 (2003)

    Google Scholar 

  7. Anguelov, D., Srinivasan, P., Pang, H.C., Koller, D., Thrun, S., Davis, J.: The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. NIPS. 17, 33–40 (2004)

    Google Scholar 

  8. Ruiz-Correa, S., Shapiro, L.G., Meila, M.: A new paradigm for recognizing 3-d object shapes from range data. In: ICCV, pp. 1126–1133. Citeseer (2003)

    Google Scholar 

  9. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18(03), 265–298 (2004)

    Google Scholar 

  10. Duchenne, O., Bach, F., Kweon, I.S., Ponce, J.: A tensor-based algorithm for high-order graph matching. PAMI 33(12), 2383–2395 (2011)

    Article  Google Scholar 

  11. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: CVPR (2005)

    Google Scholar 

  12. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: CVPR (2008)

    Google Scholar 

  13. Chertok, M., Keller, Y.: Efficient high order matching. PAMI 32(12), 2205–2215 (2010)

    Article  Google Scholar 

  14. Leordeanu, M., Zanfir, A., Sminchisescu, C.: Semi-supervised learning and optimization for hypergraph matching. In: ICCV, pp. 2274–2281. IEEE (2011)

    Google Scholar 

  15. Lee, J., Cho, M., Lee, K.M.: Hyper-graph matching via reweighted random walks. In: CVPR, pp. 1633–1640. IEEE (2011)

    Google Scholar 

  16. Passalis, G., Kakadiaris, I.A., Theoharis, T.: Intraclass retrieval of nonrigid 3D objects: application to face recognition. PAMI 29(2), 218–229 (2007)

    Article  Google Scholar 

  17. Mahmoudi, M., Sapiro, G.: Three-dimensional point cloud recognition via distributions of geometric distances. Graph. Models 71(1), 22–31 (2009)

    Article  Google Scholar 

  18. Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., Lepetit, V.: Gradient response maps for real-time detection of textureless objects. PAMI 34(5), 876–888 (2012)

    Article  Google Scholar 

  19. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proceedings 21st Annual Conference on Computer Graphics and Interactive Techniques, p. 318. ACM (1994)

    Google Scholar 

  20. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: ACM Siggraph Computer Graphics, vol. 20, pp. 151–160. ACM (1986)

    Google Scholar 

  21. Mian, A.S., Bennamoun, M., Owens, R.A.: Automatic correspondence for 3D modeling: an extensive review. Int. J. Shape Model. 11(2), 253 (2005)

    Article  Google Scholar 

  22. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. PAMI 21(5), 433–449 (1999)

    Article  Google Scholar 

  23. Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. PAMI 28(10), 1584–1601 (2006)

    Article  Google Scholar 

  24. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vision 89(2–3), 348–361 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram Drost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Drost, B., Ilic, S. (2015). Graph-Based Deformable 3D Object Matching. In: Gall, J., Gehler, P., Leibe, B. (eds) Pattern Recognition. DAGM 2015. Lecture Notes in Computer Science(), vol 9358. Springer, Cham. https://doi.org/10.1007/978-3-319-24947-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24947-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24946-9

  • Online ISBN: 978-3-319-24947-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics