Advertisement

Sulphur and Algae: Metabolism, Ecology and Evolution

  • Mario Giordano
  • Laura Prioretti
Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 6)

Abstract

Sulphur is one of the main components of algal cells, with a cell quota typically very similar to that of phosphorus. S is present in numerous pivotal structural and functional compounds such as the amino acids cysteine and methionine, non-protein thiols (glutathione), sulpholipids, vitamins and cofactors, cell wall constituents. Sulphur is also a constituent of dimethylsulphoniopropionate (DMSP), which in some algae can represent a very large portion of cell S and is involved in algal responses to a variety of abiotic and biotic stresses, in addition to being indicted (controversially) of an important role in climate control. Algae acquire S as sulphate (SO42−), the most abundant form of inorganic S in nature. Sulphur is however assimilated in the organic matter as sulphide (S2−). A non-trivial amount of reducing power is thus required for S assimilation. In both algae and plants, S assimilation mostly takes place in the chloroplast. In eukaryotic algae (except dinoflagellates) and oceanic cyanobacteria the first step in sulphate assimilation, catalysed by ATP sulfurylase (ATPS) is subject to redox regulation, whereas in vascular plants APS reductase is the main control point in the pathway. This chapter describes in details the sulphate reduction and sulphation pathways. Attention is also given to the synthesis of glutathione and phytochelatins from cysteine and to the production of DMSP from methionine. The interactions among S assimilation and C, N and P metabolism are also addressed. Current hypotheses on the role of spatial and temporal changes of S availability on algae evolutionary trajectories are discussed.

Keywords

Sulphate DMSP Glutathione S metabolism Redox regulation Cysteine Methionine Sulphation 

References

  1. Ahner BA, Kong S, Morel FMM (1995) Phytochelatin production in marine algae. 1. An interspecies comparison. Limnol Oceanogr 40:649–657CrossRefGoogle Scholar
  2. Ahner BA, Wei LP, Oleson JR, Ogura N (2002) Glutathione and other low molecular weight thiols in marine phytoplankton under metal stress. Mar Ecol Prog Ser 232:93–103CrossRefGoogle Scholar
  3. Akashi T, Matsumura T, Idegucho T, Iwakari K-I, Kawakatsu T, Taniguchi I, Hase T (1999) Comparison of the electrostatic binding sites on the surface of ferredoxin for two ferredoxin-dependent enzymes, ferredoxin-NADP+ reductase and sulfite reductase. J Biol Chem 274:29399–29405PubMedCrossRefGoogle Scholar
  4. Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137–1142PubMedCrossRefGoogle Scholar
  5. Andreae MO, Crutzen PJ (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276:1052–1058CrossRefGoogle Scholar
  6. Aquino RS, Landeira-Fernandez AM, Valente AP, Andrade LR, Mourao PAS (2005) Occurrence of sulfated galactans in marine angiosperms: evolutionary implications. Glycobiology 15:11–20PubMedCrossRefGoogle Scholar
  7. Arad S, Plesser L, Weinstein Y (2013) Sulfotransferase of a red microalga and uses thereof. US Patent US 2013/0180012Google Scholar
  8. Aravind L, Koonin EV (2000) The STAS domain – a link between anion transporters and antisigma-factor antagonists. Curr Biol 10:R53–R55PubMedCrossRefGoogle Scholar
  9. Bates TS, Calhoun JA, Quinn PK (1992) Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the South Pacific Ocean. J Geophys Res-Atmos 97:9859–9865CrossRefGoogle Scholar
  10. Benning C, Garavito RM, Shimojima M (2008) Sufolipid biosynthesis and function in plants. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 185–200CrossRefGoogle Scholar
  11. Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 13:29R–40RPubMedCrossRefGoogle Scholar
  12. Bertrand EM, Moran DM, McIlvin MR, Hoffman JM, Allen AE, Saito MA (2013) Methionine synthase interreplacement in diatom cultures and communities: implications for the persistence of B12 use by eukaryotic phytoplankton. Limnol Oceanogr 58:1431–1450Google Scholar
  13. Bick JA, Setterdahl AT, Knaff DB, Chen YC, Pitcher LH, Zilinskas BA, Leustek T (2001) Regulation of the plant-type 5 ′-adenylyl sulfate reductase by oxidative stress. Biochemistry 40:9040–9048PubMedCrossRefGoogle Scholar
  14. Bilan MI, Vinogradova EV, Shashkov AS, Usov AI (2007) Structure of a highly pyruvylated galactan sulfate from the Pacific green alga Codium yezoense (Bryopsidales, Chlorophyta). Carbohydr Res 342:586–596PubMedCrossRefGoogle Scholar
  15. Birke H, Mueller SJ, Rother M, Zimmer AD, Hoernstein SNW, Wesenberg D, Wirtz M, Krauss G-J, Reski R, Hell R (2012) The relevance of compartmentation for cysteine synthesis in phototrophic organisms. Protoplasma 249:147–155CrossRefGoogle Scholar
  16. Bochenek M, Etherington GJ, Koprivova A, Mugford ST, Bell TG, Malin G, Kopriva S (2013) Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi. New Phytol 199:650–662PubMedCrossRefGoogle Scholar
  17. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681Google Scholar
  18. Bradley ME, Rest JS, Li W-H, Schwartz NB (2009) Sulfate activation enzymes: phylogeny and association with pyrophosphatase. J Mol Evol 68:1–13PubMedCrossRefGoogle Scholar
  19. Bromke MA, Hoefgen R, Hesse H (2013) Phylogenetic aspects of the sulfate assimilation genes from Thalassiosira pseudonana. Amino Acids 44:1253–1265PubMedCrossRefGoogle Scholar
  20. Brunold C, Schiff JA (1976) Studies of sulfate utilization of algae: 15. Enzymes of assimilatory sulfate reduction in Euglena and their cellular localization. Plant Physiol 57:430–436PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bürstenbinder K, Sauter M (2012) Early events in the ethylene biosynthetic pathway – regulation of the pools of methionine and S-adenosylmethionine. In: McManus MT (ed) Annual plant reviews, vol 44, The plant hormone ethylene. Wiley-Blackwell, Oxford, pp 19–52Google Scholar
  22. Cammack R, Rao KK, Bargeron CP, Hutson KG, Andrew PW, Rogers LJ (1977) Midpoint redox potentials of plant and algal ferredoxins. Biochem J 168:205–209PubMedPubMedCentralCrossRefGoogle Scholar
  23. Campo VL, Kawano DF, Da Silva DB Jr, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis – a review. Carbohydr Polym 77:167–180CrossRefGoogle Scholar
  24. Canfield DE (2004) The evolution of the Earth surface sulfur reservoir. Am J Sci 304:839–861CrossRefGoogle Scholar
  25. Caruana AMN, Malin G (2014) The variability in DMSP content and DMSP lyase activity in marine dinoflagellates. Prog Oceanogr 120:410–424CrossRefGoogle Scholar
  26. Caruana AMN, Steinke M, Turner SM, Malin G (2012) Concentrations of dimethylsulphoniopropionate and activities of dimethylsulphide-producing enzymes in batch cultures of nine dinoflagellate species. Biogeochemistry 110:87–107CrossRefGoogle Scholar
  27. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326:655–661CrossRefGoogle Scholar
  28. Collier JL, Herbert SK, Fork DC, Grossman AR (1994) Changes in the cyanobacterial photosynthetic apparatus in response to macronutrient deprivation. Photosynth Res 42:173–183PubMedCrossRefGoogle Scholar
  29. Couturier J, Jacquot J-P, Rouhier N (2009) Evolution and diversity of glutaredoxins in photosynthetic organisms. Cell Mol Life Sci 66:2539–2557PubMedCrossRefGoogle Scholar
  30. Crane BR, Siegel LM, Getzoff ED (1995) Sulfite reductase structure at 1.6 Å – evolution and catalysis for reduction of inorganic anions. Science 270:59–67PubMedCrossRefGoogle Scholar
  31. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93PubMedCrossRefGoogle Scholar
  32. Curson ARJ, Todd JD, Sullivan MJ, Johnston AWB (2011) Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat Rev Microbiol 9:849–859PubMedCrossRefGoogle Scholar
  33. Davidian J-C, Kopriva S (2010) Regulation of sulfate uptake and assimilation – the same or not the same? Mol Plant 3:314–325PubMedCrossRefGoogle Scholar
  34. Davies JP, Yildiz F, Grossman AR (1994) Mutants of Chlamydomonas with aberrant responses to sulfur deprivation. Plant Cell 6:53–63PubMedPubMedCentralCrossRefGoogle Scholar
  35. Davies JP, Yildiz FH, Grossman A (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15:2150–2159PubMedPubMedCentralGoogle Scholar
  36. de Hostos EL, Schilling J, Grossman AR (1989) Structure and expression of the gene encoding the periplasmic arylsulfatase of Chlamydomonas reinhardtii. Mol Gen Genet 218:229–239PubMedCrossRefGoogle Scholar
  37. Ding Y, Liu Y, Jian J-C, Wu Z-H, Miao J-L (2012) Molecular cloning and expression analysis of glutathione reductase gene in Chlamydomonas sp. ICE-L from Antarctica. Mar Genomics 5:59–64PubMedCrossRefGoogle Scholar
  38. Dittami SM, Gravot A, Goulitquer S, Rousvoal S, Peters AF, Bouchereau A, Boyen C, Tonon T (2012) Towards deciphering dynamic changes and evolutionary mechanisms involved in the adaptation to low salinities in Ectocarpus (brown algae). Plant J 71:366–377PubMedGoogle Scholar
  39. Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol)lyase in higher plants – Structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255:235–245PubMedCrossRefGoogle Scholar
  40. Dupont CL, Goepfert TJ, Lo P, Wei L, Ahner BA (2004) Diurnal cycling of glutathione in marine phytoplankton: field and culture studies. Limnol Oceanogr 49:991–996CrossRefGoogle Scholar
  41. Falkowksi PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, Princeton, 512 ppGoogle Scholar
  42. Farias EHC, Pomin VH, Valente AP, Nader HB, Rocha HAO, Mourao PAS (2008) A preponderantly 4-sulfated, 3-linked galactan from the green alga Codium isthmocladum. Glycobiology 18:250–259PubMedCrossRefGoogle Scholar
  43. Farley JR, Cryns DF, Yang YH, Segel IH (1976) Adenosine triphosphate sulfurylase from Penicillium chrysogenum - steady state kinetics of the forward and reverse reactions. J Biol Chem 251:4389–4397PubMedGoogle Scholar
  44. Fernandez E, Llamas A, Galvàn A (2009) Nitrogen assimilation and its regulation. In: Stern DB, Harris EH (eds) The Chlamydomonas source book, vol 2, 2nd edn. Elsevier, Amsterdam, pp 69–113CrossRefGoogle Scholar
  45. Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, Karl DM, Li WKW, Lomas MW, Veneziano D, Vera CS, Vrugt JA, Martiny AC (2013) Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci U S A 110:9824–9829PubMedPubMedCentralCrossRefGoogle Scholar
  46. Foyer CH, Theodoulou FL, Delrot S (2001) The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci 6:486–492PubMedCrossRefGoogle Scholar
  47. Francois JA, Kumaran S, Jez JM (2006) Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex. Plant Cell 18:3647–3655PubMedPubMedCentralCrossRefGoogle Scholar
  48. Franklin DJ, Steinke M, Young J, Probert I, Malin G (2010) Dimethylsulphoniopropionate (DMSP), DMSP-lyase activity (DLA) and dimethylsulphide (DMS) in 10 species of coccolithophore. Mar Ecol Prog Ser 410:13–23CrossRefGoogle Scholar
  49. Freidig AP, Verhaar HJM, Hermens JLM (1999) Comparing the potency of chemicals with multiple modes of action in aquatic toxicology: acute toxicity due to narcosis versus reactive toxicity of acrylic compounds. Environ Sci Technol 33:3038–3043CrossRefGoogle Scholar
  50. Gage DA, Rhodes D, Nolte KD, Hicks WA, Leustek T, Cooper AJL, Hanson AD (1997) A new route for synthesis of dimethylsulphoniopropionate in marine algae. Nature 387:891–894PubMedCrossRefGoogle Scholar
  51. Gill BC, Lyons TW, Saltzman MR (2007) Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeogr Palaeoclimatol Palaeoecol 256:156–173CrossRefGoogle Scholar
  52. Gill BC, Lyons TW, Young SA, Kump LR, Knoll AH, Saltzman MR (2011) Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature 469:80–83PubMedCrossRefGoogle Scholar
  53. Giordano M (2013) Homeostasis: an underestimated focal point of ecology and evolution. Plant Sci 211:92–101PubMedCrossRefGoogle Scholar
  54. Giordano M, Raven JA (2014) Nitrogen and sulphur assimilation in plants and algae. Aquat Bot 118:45–61CrossRefGoogle Scholar
  55. Giordano M, Pezzoni V, Hell R (2000) Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiol 124:857–864PubMedPubMedCentralCrossRefGoogle Scholar
  56. Giordano M, Norici A, Hell R (2005) Sulfur and phytoplankton: acquisition, metabolism and impact on the environment. New Phytol 166:371–382PubMedCrossRefGoogle Scholar
  57. Giordano M, Norici A, Ratti S (2008) Role of sulfur for algae: acquisition, metabolism, ecology and evolution. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 397–415CrossRefGoogle Scholar
  58. Gisselmann G, Klausmeier P, Schwenn JD (1993) The ferredoxin:sulfite reductase gene from Synechococcus PCC7942. Biochim Biophys Acta 1144:102–106PubMedCrossRefGoogle Scholar
  59. Gonzalez-Ballester D, Grossman AR (2009) Sulfur: from acquisition to assimilation. In: Stern D (ed) The Chlamydomonas sourcebook: organellar and metabolic processes. Academic, NY, pp 159–188CrossRefGoogle Scholar
  60. Gonzalez-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22:2058–2084PubMedPubMedCentralCrossRefGoogle Scholar
  61. Goss R, Wilhelm C (2010) Lipids in algae, lichens and mosses. In: Wada H, Murata N (eds) Lipids in photosynthesis. Springer, Dordrecht, pp 117–137Google Scholar
  62. Gupton-Campolongo T, Damasceno LM, Hay AG, Ahner BA (2013) Characterization of a high affinity phytochelatin synthase from the Cd-utilizing marine diatom Thalassiosira pseudonana. J Phycol 49:32–40CrossRefPubMedGoogle Scholar
  63. Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean Ocean. Science 298:2372–2374PubMedCrossRefGoogle Scholar
  64. Hagelueken G, Adams TM, Wiehlmann L, Widow L, Kolmar H, Tummler B, Heinz DW, Schubert WD (2006) The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases. Proc Natl Acad Sci U S A 103:7631–7636PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hanson AD, Rivoal J, Paquet L, Gage DA (1994) Biosynthesis of 3-dimethylsulfoniopropionate in Wollastonia biflora (L.) DC. Evidence that S-methylmethionine is an intermediate. Plant Physiol 105:103–110PubMedPubMedCentralCrossRefGoogle Scholar
  66. Harlow LD, Koutoulis A, Hallegraeff GM (2007) S-adenosylmethionine synthetase genes from eleven marine dinoflagellates. Phycologia 46:46–53CrossRefGoogle Scholar
  67. Hartmann T, Hönicke P, Wirtz M, Hell R, Rennenberg H, Kopriva S (2004) Regulation of sulphate assimilation by glutathione in poplars (Populus tremula x P. alba) of wild type and overexpressing gamma-glutamylcysteine synthetase in the cytosol. J Exp Bot 55:837–845PubMedCrossRefGoogle Scholar
  68. Hattori A, Uesugi H (1968) Purification and properties of nitrite reductase from the blue-green alga Anabaena cylindrica. Plant Cell Physiol 9:689–699Google Scholar
  69. Hell R, Bergmann L (1990) γ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180:603–612PubMedCrossRefGoogle Scholar
  70. Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG (2011) Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol 28:2921–2933PubMedCrossRefGoogle Scholar
  71. Hernández-Sebastià C, Varin L, Marsolais F (2008) Sulfotransferases from plants, algae and phototrophic bacteria. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 111–130CrossRefGoogle Scholar
  72. Hesse H, Hoefgen R (2008) Metabolism of methionine in plants and phototrophic bacteria. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 93–110CrossRefGoogle Scholar
  73. Hirasawa M, Nakayama M, Hase T, Knaff DB (2004) Oxidation-reduction properties of maize ferredoxin:sulfite oxidoreductase. Biochim Biophys Acta Bioenerg 1608:140–148CrossRefGoogle Scholar
  74. Ho C-H, Ikawa T, Nisizawa K (1976) Purification and properties of a nitrite reductase from Porphyra yezoensis Ueda. Plant Cell Physiol 17:417–430Google Scholar
  75. Ho TY, Quigg A, Finkel ZV, Milligan AJ, Wyman K, Falkowski PG, Morel FMM (2003) The elemental composition of some marine phytoplankton. J Phycol 39:1145–1159CrossRefGoogle Scholar
  76. Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46:431–451CrossRefGoogle Scholar
  77. Horita J, Zimmermann H, Holland HD (2002) Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim Cosmochim Acta 66:3733–3756CrossRefGoogle Scholar
  78. Huang B, Vetting MW, Roderick SL (2005) The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase. J Bacteriol 187:3201–3205PubMedPubMedCentralCrossRefGoogle Scholar
  79. Husband JD, Kiene RP, Sherman TD (2012) Oxidation of dimethylsulfoniopropionate (DMSP) in response to oxidative stress in Spartina alterniflora and protection of a non-DMSP producing grass by exogenous DMSP plus acrylate. Environ Exp Bot 79:44–48CrossRefGoogle Scholar
  80. Imamura S, Terashita M, Ohnuma M, Maruyama S, Minoda A, Weber APM, Inouye T, Sekine Y, Fujita Y, Omata T, Tanaka K (2010) Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. Plant Cell Physiol 51:707–717PubMedCrossRefGoogle Scholar
  81. Itoh H, Noda H, Amano H, Zhuaug C, Mizuno T, Ito H (1993) Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res 13:2045–2052PubMedGoogle Scholar
  82. Kah LC, Lyons TW, Frank TD (2004) Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–838PubMedCrossRefGoogle Scholar
  83. Kahnert A, Kertesz MA (2000) Characterization of a sulfur-regulated oxygenative alkylsulfatase from Pseudomonas putida S-313. J Biol Chem 275:31661–31667PubMedCrossRefGoogle Scholar
  84. Karsten U, Kueck K, Vogt C, Kirst G (1996) Dimethylsulfoniopropionate production in phototrophic organisms and its physiological function as a cryoprotectant. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and environmental chemistry of DMSP and related sulfonium compounds. Springer, NY, pp 143–153CrossRefGoogle Scholar
  85. Keller MD, Kiene RP, Matrai PA, Bellows WK (1999a) Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. I. Batch cultures. Mar Biol 135:237–248CrossRefGoogle Scholar
  86. Keller MD, Kiene RP, Matrai PA, Bellows WK (1999b) Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. II. N-limited chemostat cultures. Mar Biol 135:249–257CrossRefGoogle Scholar
  87. Kertesz MA (2000) Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 24:135–175PubMedGoogle Scholar
  88. Klein M, Papenbrock J (2004) The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. J Exp Bot 55:1809–1820PubMedCrossRefGoogle Scholar
  89. Klonus D, Höfgen R, Willmitzer L, Riesmeier JW (1994) Isolation and characterization of two cDNA clones encoding ATP-sulfurylases from potato by complementation of a yeast mutant. Pant J 6:105–112Google Scholar
  90. Koch F, Sanudo-Wilhelmy SA, Fisher NS, Gobler CJ (2013) Effect of vitamins B-1 and B-12 on bloom dynamics of the harmful brown tide alga, Aureococcus anophagefferens (Pelagophyceae). Limnol Oceanogr 58:1761–1774CrossRefGoogle Scholar
  91. Kopriva S, Buchert T, Fritz G, Suter M, Weber M, Benda R, Schaller J, Feller U, Schurmann P, Schunemann V, Trautwein AX, Kroneck PMH, Brunold C (2001) Plant adenosine 5 ′-phosphosulfate reductase is a novel iron-sulfur protein. J Biol Chem 276:42881–42886PubMedCrossRefGoogle Scholar
  92. Kopriva S, Buchert T, Fritz G, Suter M, Benda RD, Schunemann V, Koprivova A, Schurmann P, Trautwein AX, Kroneck PMH, Brunold C (2002) The presence of an iron-sulfur cluster in adenosine 5 ′-phosphosulfate reductase separates organisms utilizing adenosine 5 ′-phosphosulfate and phosphoadenosine 5 ′-phosphosulfate for sulfate assimilation. J Biol Chem 277:21786–21791PubMedCrossRefGoogle Scholar
  93. Kopriva S, Patron NJ, Keeling P, Leustek T (2008) Phylogenetic analysis of sulfate assimilation and cysteine biosynthesis in phototrophic organisms. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 31–58CrossRefGoogle Scholar
  94. Kopriva S, Mugford SG, Matthewman C, Koprivova A (2009) Plant sulfate assimilation genes: redundancy versus specialization. Plant Cell Rep 28:1769–1780PubMedCrossRefGoogle Scholar
  95. Kopriva S, Mugford SG, Baraniecka P, Lee BR, Matthewman CA, Koprivova A (2012) Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis. Front Plant Sci 3:163–163PubMedPubMedCentralCrossRefGoogle Scholar
  96. Krueger RJ, Siegel LM (1982) Evidence for siroheme-Fe4S4 interaction in spinach ferredoxin-sulfite reductase. Biochemistry 21:2905–2909PubMedCrossRefGoogle Scholar
  97. Lalor DJ, Schnyder T, Saridakis V, Pilloff DE, Dong A, Tang H, Leyh TS, Pai EF (2003) Structural and functional analysis of a truncated form of Saccharomyces cerevisiae ATP sulfurylase: C-terminal domain essential for oligomer formation but not for activity. Protein Eng 16:1071–1079PubMedCrossRefGoogle Scholar
  98. Laudenbach DE, Grossman AR (1991) Characterization and mutagenesis of sulfur-regulated genes in a cyanobacterium – evidence for function in sulfate transport. J Bacteriol 173:2739–2750PubMedPubMedCentralGoogle Scholar
  99. Le Faucheur S, Schildknecht F, Behra R, Sigg L (2006) Thiols in Scenedesmus vacuolatus upon exposure to metals and metalloids. Aquat Toxicol 80:355–361PubMedCrossRefGoogle Scholar
  100. Leipe DD, Koonin EV, Aravind L (2003) Evolution and classification of P-loop kinases and related proteins. J Mol Biol 333:781–815PubMedCrossRefGoogle Scholar
  101. Leisinger U, Rufenacht K, Zehnder AJB, Eggen RIL (1999) Structure of a glutathione peroxidase homologous gene involved in the oxidative stress response in Chlamydomonas reinhardtii. Plant Sci 149:139–149CrossRefGoogle Scholar
  102. Lepetit B, Goss R, Jakob T, Wilhelm C (2012) Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth Res 111:245–257PubMedCrossRefGoogle Scholar
  103. Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120:637–643PubMedPubMedCentralCrossRefGoogle Scholar
  104. Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol 51:141–165CrossRefGoogle Scholar
  105. Leyh TS (1993) The physical biochemistry and molecular genetics of sulfate activation. Crit Rev Biochem Mol 28:515–542CrossRefGoogle Scholar
  106. Lillig CH, Schiffmann S, Berndt C, Berken A, Tischka R, Schwenn JD (2001) Molecular and catalytic properties of Arabidopsis thaliana adenylyl sulfate (APS)-kinase. Arch Biochem Biophys 392:303–310PubMedCrossRefGoogle Scholar
  107. Lindberg P, Melis A (2008) The chloroplast sulfate transport system in the green alga Chlamydomonas reinhardtii. Planta 228:951–961PubMedCrossRefGoogle Scholar
  108. Liu CX, Suo Y, Leyh TS (1994) The energetic linkage of GTP hydrolysis and the synthesis of activated sulfate. Biochemistry 33:7309–7314PubMedCrossRefGoogle Scholar
  109. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2007) Lipids in photosystem II: interactions with protein and cofactors. Biochim Biophys Acta Bioenerg 1767:509–519CrossRefGoogle Scholar
  110. Lu N, Ding Y, Zang X-N, Zhang X-C, Chen H, Mu X-S (2013) Molecular cloning and expression analysis of glutathione peroxidase and glutathione reductase from Gracilaria lemaneiformis under heat stress. J Appl Phycol 25:1925–1931CrossRefGoogle Scholar
  111. Luo G, Kump LR, Wang Y, Tong J, Arthur MA, Yang H, Huang J, Yin H, Xie S (2010) Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction. Earth Planet Sci Lett 300:101–111CrossRefGoogle Scholar
  112. Lunn JE, Droux M, Martin J, Roland Douce R (1990) Localization of ATP sulfurylase and O-acetylserine(thiol)lyase in spinach leaves. Plant Physiol 94:1345–1352PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lyons DA, Scheibling RE, van Alstyne KL (2010) Spatial and temporal variation in DMSP content in the invasive seaweed Codium fragile ssp. fragile: effects of temperature, light and grazing. Mar Ecol Prog Ser 417:51–61CrossRefGoogle Scholar
  114. MacRae IJ, Segel IH (1999) Adenosine 5 ′-phosphosulfate (APS) kinase: diagnosing the mechanism of substrate inhibition. Arch Biochem Biophys 361:277–282PubMedCrossRefGoogle Scholar
  115. MacRae IJ, Segel IH, Fisher AJ (2001) Crystal structure of ATP sulfurylase from Penicillium chrysogenum: insights into the allosteric regulation of sulfate assimilation. Biochemistry 40:6795–6804PubMedCrossRefGoogle Scholar
  116. Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193CrossRefGoogle Scholar
  117. Maneeruttanarungroj C, Lindblad P, Incharoensakdi A (2012) Sulfate permease (SulP) and hydrogenase (HydA) in the green alga Tetraspora sp. CU2551: dependence of gene expression on sulfur status in the medium. Int J Hydrogen Energ 37:15105–15116CrossRefGoogle Scholar
  118. Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) ATP-dependent glutathione S-conjugate export pump in the vacuolar membrane of plants. Nature 364:247–249CrossRefGoogle Scholar
  119. Matsuda Y, Colman B (1995) Characterization of sulfate transport in the green alga Chlorella ellipsoidea. Plant Cell Physiol 36:1291–1296Google Scholar
  120. Melis A, Chen HC (2005) Chloroplast sulfate transport in green algae – genes, proteins and effects. Photosynth Res 86:299–307PubMedCrossRefGoogle Scholar
  121. Meyer Y, Belin C, Delorme-Hinoux V, Reichheld J-P, Riondet C (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 17:1124–1160PubMedCrossRefGoogle Scholar
  122. Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in eukaryotes. New Phytol 188:82–97PubMedCrossRefGoogle Scholar
  123. Mohapatra BR, Rellinger AN, Kieber DJ, Kiene RP (2014) Kinetics of DMSP lyases in whole cell extracts of four Phaeocystis species: response to temperature and DMSP analogs. J Sea Res 86:110–115CrossRefGoogle Scholar
  124. Mueller JW, Shafqat N (2013) Adenosine-5-phosphosulfate – a multifaceted modulator of bifunctional 3-phospho-adenosine-5-phosphosulfate synthases and related enzymes. FEBS J 280:3050–3057PubMedPubMedCentralCrossRefGoogle Scholar
  125. Mugford SG, Lee BR, Koprivova A, Matthewman C, Kopriva S (2011) Control of sulfur partitioning between primary and secondary metabolism. Plant J 65:96–105PubMedCrossRefGoogle Scholar
  126. Murphy MJ, Siegel LM, Tove SR, Kamin H (1974) Siroheme: a new prosthetic group participating in six-electron reduction reactions catalyzed by both sulfite and nitrite reductases. Proc Natl Acad Sci U S A 71:612–616PubMedPubMedCentralCrossRefGoogle Scholar
  127. Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299PubMedCrossRefGoogle Scholar
  128. Nakayama M, Akashi T, Hase T (2000) Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin. J Inorg Biochem 82:27–32PubMedCrossRefGoogle Scholar
  129. Newton RJ, Reeves EP, Kafousia N, Wignall PB, Bottrell SH, Sha J-G (2011) Low marine sulfate concentrations and the isolation of the European epicontinental sea during the Early Jurassic. Geology 39:7–10CrossRefGoogle Scholar
  130. Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650PubMedCrossRefGoogle Scholar
  131. Noctor G, Strohm M, Jouanin L, Kunert KJ, Foyer CH, Rennenberg H (1996) Synthesis of glutathione in leaves of transgenic poplar overexpressing γ-glutamylcysteine synthetase. Plant Physiol 112:1071–1078PubMedPubMedCentralGoogle Scholar
  132. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484PubMedCrossRefGoogle Scholar
  133. Norici A, Hell R, Giordano M (2005) Sulfur and primary production in aquatic environments: an ecological perspective. Photosynth Res 86:409–417PubMedCrossRefGoogle Scholar
  134. Oduro H, Van Alstyne KL, Farquhar J (2012) Sulfur isotope variability of oceanic DMSP generation and its contributions to marine biogenic sulfur emissions. Proc Natl Acad Sci U S A 109:9012–9016PubMedPubMedCentralCrossRefGoogle Scholar
  135. Ohmori K, Hattori A (1970) Induction of nitrate and nitrite reductases in Anabaena cylindrica. Plant Cell Physiol 11:873–878Google Scholar
  136. Orellana MV, Matrai PA, Leck C, Rauschenberg CD, Lee AM, Coz E (2011) Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proc Natl Acad Sci U S A 108:13612–13617PubMedPubMedCentralCrossRefGoogle Scholar
  137. Patron NJ, Durnford DG, Kopriva S (2008) Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol Biol 8:39PubMedPubMedCentralCrossRefGoogle Scholar
  138. Percival E (1979) The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Brit Phycol J 14:103–117CrossRefGoogle Scholar
  139. Petrychenko OY, Peryt TM, Chechel EI (2005) Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites. Chem Geol 219:149–161CrossRefGoogle Scholar
  140. Phartiyal P, Kim W-S, Cahoon RE, Jez JM, Krishnan HB (2008) The role of 5 ′-adenylylsulfate reductase in the sulfur assimilation pathway of soybean – molecular cloning, kinetic characterization, and gene expression. Phytochemistry 69:356–364PubMedCrossRefGoogle Scholar
  141. Pick U, Gounaris K, Weiss M, Barber J (1985) Tightly bound sulfolipids in chloroplast CF0-CF1. Biochim Biophys Acta Bioenerg 808:415–420CrossRefGoogle Scholar
  142. Pick U, Weiss M, Gounaris K, Barber J (1987) The role of different thylakoid glycolipids in the function of reconstituted chloroplast ATP synthase. Biochim Biophys Acta Bioenerg 891:28–39CrossRefGoogle Scholar
  143. Pomin VH (2010) Structural and functional insights into sulfated galactans: a systematic review. Glycoconj J 27:1–12PubMedCrossRefGoogle Scholar
  144. Pomin VH, Mourao PAS (2008) Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology 18:1016–1027PubMedCrossRefGoogle Scholar
  145. Pootakham W, Gonzalez-Ballester D, Grossman AR (2010) Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas. Plant Physiol 153:1653–1668PubMedPubMedCentralCrossRefGoogle Scholar
  146. Preuss ML, Cameron JC, Berg RH, Jez JM (2013) Immunolocalization of glutathione biosynthesis enzymes in Arabidopsis thaliana. Plant Physiol Biochem 75:9–13PubMedCrossRefGoogle Scholar
  147. Prioretti L (2014) Sukfur metabolism in microalgae. PhD thesis, Università Politecnica delle Marche, Ancona, Italy, p 201Google Scholar
  148. Prioretti L, Gontero B, Hell R, Giordano M (2014) Diversity and regulation of ATP sulfurylase in photosynthetic organisms. Front Pant Sci 5:597Google Scholar
  149. Ratti S, Giordano M (2008) Allocation of sulphur to sulphonium compounds in microalgae. In: Khan NA, Singh S, Umar S (eds) Sulphur assimilation and abiotic stress in plants. Springer, Berlin, pp 317–333CrossRefGoogle Scholar
  150. Ratti S, Knoll AH, Giordano M (2011) Did sulfate availability facilitate the evolutionary expansion of chlorophyll a+c phytoplankton in the oceans? Geobiology 9:301–312PubMedCrossRefGoogle Scholar
  151. Ratti S, Knoll AH, Giordano M (2013) Grazers and phytoplankton growth in the oceans: an experimental and evolutionary perspective. Plos One 8(10):e77349Google Scholar
  152. Rauen HM (1964) Biochemisches Taschenbuch. Springer, Berlin, 1084 ppCrossRefGoogle Scholar
  153. Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A 95:7805–7812PubMedPubMedCentralCrossRefGoogle Scholar
  154. Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rebeille F, Douce R (2004) Methionine metabolism in plant, Chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279:22548–22557PubMedCrossRefGoogle Scholar
  155. Ravilious GE, Amelia N, Francois JA, Jez JM (2012) Structural basis and evolution of redox regulation in plant adenosine-5′-phosphosulfate kinase. Proc Natl Acad Sci U S A 109:309–314PubMedPubMedCentralCrossRefGoogle Scholar
  156. Ravilious GE, Herrmann J, Lee SG, Westfall CS, Jez JM (2013) Kinetic mechanism of the dimeric ATP sulfurylase from plants. Biosci Rep 33:585–591CrossRefGoogle Scholar
  157. Ravina CG, Chang CI, Tsakraklides GP, McDermott JP, Vega JM, Leustek T, Gotor C, Davies JP (2002) The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis. Plant Physiol 130:2076–2084PubMedPubMedCentralCrossRefGoogle Scholar
  158. Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. Liverpool University Press, Liverpool, pp 176–192Google Scholar
  159. Rennenberg H (1995) Processes involved in glutathione metabolism. In: Wallsgrove R (ed) Amino acids and their derivatives in higher plants – biosynthesis and metabolism. Cambridge University Press, Cambridge, pp 155–171CrossRefGoogle Scholar
  160. Rennenberg H, Brunold C (1994) Significance of glutathione metabolism in plants under stress. Prog Bot 55:142–156CrossRefGoogle Scholar
  161. Riekhof WR, Ruckle ME, Lydic TA, Sears BB, Benning C (2003) The sulfolipids 2′-O-acyl-sulfoquinovosyldiacylglycerol and sulfoquinovosyldiacylglycerol are absent from a Chlamydomonas reinhardtii mutant deleted in SQD1. Plant Physiol 133:864–874PubMedPubMedCentralCrossRefGoogle Scholar
  162. Rotte C, Leustek T (2000) Differential subcellular localization and expression of ATP sulfurylase and 5′-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol 124:715–724PubMedPubMedCentralCrossRefGoogle Scholar
  163. Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W (2001) Pyruvate: NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol 18:710–720PubMedCrossRefGoogle Scholar
  164. Saitoh T, Ikegami T, Nakayama M, Teshima K, Akutsu H, Hase T (2006) NMR study of the electron transfer complex of plant ferredoxin and sulfite reductase – mapping the interaction sites of ferredoxin. J Biol Chem 281:10482–10488PubMedCrossRefGoogle Scholar
  165. Satishchandran C, Markham GD (1989) Adenosine-5′-phosphosulfate kinase from Escherichia coli K12 – purification, characterization, and identification of a phosphorylated enzyme intermediate. J Biol Chem 264:15012–15021PubMedGoogle Scholar
  166. Sato N, Wada H (2010) Lipid biosynthesis and its regulation in cyanobacteria. In: Wada H, Murata N (eds) Lipids in photosynthesis. Springer, Dordrecht, pp 157–177Google Scholar
  167. Sato N, Hagio M, Wada H, Tsuzuki M (2000) Environmental effects on acidic lipids of thylakoid membranes. brans 28:912–914Google Scholar
  168. Scheidegger C, Behra R, Sigg L (2011) Phytochelatin formation kinetics and toxic effects in the freshwater alga Chlamydomonas reinhardtii upon short- and long-term exposure to lead(II). Aquat Toxicol 101:423–429PubMedCrossRefGoogle Scholar
  169. Schmidt A (1973) Sulfate reduction in a cell-free system of Chlorella. The ferredoxin dependent reduction of a protein-bound intermediate by a thiosulfonate reductase. Arch Mikrobiol 93:29–52PubMedCrossRefGoogle Scholar
  170. Schmidt A (1979) Photosynthetic assimilation of sulphur compounds. In: Gibbs ML, Latzko E (eds) Photosynthesis II. Encyclopedia of plant physiology. Springer, Berlin, pp 481–496Google Scholar
  171. Segel IH (1976) Biochemical calculations: how to solve mathematical problems in general biochemistry. Wiley, New York, 464 ppGoogle Scholar
  172. Seymour JR, Simo R, Ahmed T, Stocker R (2010) Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329:342–345PubMedCrossRefGoogle Scholar
  173. Sharma AK, Rigby AC, Alper SL (2011) STAS domain structure and function. Cell Physiol Biochem 28:407–422PubMedPubMedCentralCrossRefGoogle Scholar
  174. Shaw WH, Anderson JW (1974) The enzymology of adenosine triphosphate sulphurylase from spinach leaf tissue. Biochem J 139:27–35PubMedPubMedCentralCrossRefGoogle Scholar
  175. Sheets E, Rhodes D (1996) Determination of DMSP and other onium compounds in Tetraselmis subcordiformis by plasma desorption mass spectrometry. In: Keller MD, Kiene RP, Kirst GO, Visscher PT (eds) Biological and environmental chemistry of DMSP and related sulfonium compounds. Springer, NY, pp 55–63CrossRefGoogle Scholar
  176. Shen YN, Canfield DE, Knoll AH (2002) Middle proterozoic ocean chemistry: evidence from the McArthur Basin, northern Australia. Am J Sci 302:81–109CrossRefGoogle Scholar
  177. Shibagaki N, Grossman A (2008) The state of sulfur metabolism in algae: from ecology to genomics. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 231–267CrossRefGoogle Scholar
  178. Shimojima M (2011) Biosynthesis and functions of the plant sulfolipid. Prog Lipid Res 50:234–239PubMedCrossRefGoogle Scholar
  179. Singh A, Agrawal M (2007) Acid rain and its ecological consequences. J Environ Biol 29:15–24Google Scholar
  180. Sirko A, Hryniewicz M, Hulanicka D, Bock A (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cys TWAM gene cluster. J Bacteriol 172:3351–3357Google Scholar
  181. Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U S A 92:9373–9377PubMedPubMedCentralCrossRefGoogle Scholar
  182. Soto-Liebe K, Murillo AA, Krock B, Stucken K, Fuentes-Valdés JJ, Trefault N, Cembella A, Vásquez M (2010) Reassessment of the toxin profile of Cylindrospermopsis raciborskii T3 and function of putative sulfotransferases in synthesis of sulfated and sulfonated PSP toxins. Toxicon 56:1350–1361PubMedCrossRefGoogle Scholar
  183. Stefels J, Steinke M, Turner S, Malin G, Belviso S (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83:245–275CrossRefGoogle Scholar
  184. Steinke M, Malin G, Liss PS (2002) Trophic interactions in the sea: an ecological role for climate relevant volatiles? J Phycol 38:630–638CrossRefGoogle Scholar
  185. Stoddard JL, Jeffries DS, Lükewille A, Clair TA, Dillo PJ, Driscoll CT, Forsius M, Johannessen M, Kahl JS, Kellogg JH, Kemp A, Mannio J, Monteith DT, Murdoch PS, Patrick S, Rebsdorf A, Skjelkvåle BL, Stainton MP, Traaen T, van Dam H, Webster KE, Wieting J, Wilander A (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578CrossRefGoogle Scholar
  186. Sugimoto K, Tsuzuki M, Sato N (2010) Regulation of synthesis and degradation of a sulfolipid under sulfur-starved conditions and its physiological significance in Chlamydomonas reinhardtii. New Phytol 185:676–686PubMedCrossRefGoogle Scholar
  187. Summers PS, Nolte KD, Cooper AJL, Borgeas H, Leustek T, Rhodes D, Hanson AD (1998) Identification and stereospecificity of the first three enzymes of 3-dimethylsulfoniopropionate biosynthesis in a chlorophyte alga. Plant Physiol 116:369–378PubMedCentralCrossRefGoogle Scholar
  188. Swamy U, Wang M, Tripathy J, Kim S, Hirasawa M, Knaff D, Allen J (2005) Structure of spinach nitrite reductase: implications for multi-electron reactions by the iron-sulfur:siroheme cofactor. Biochemistry 44:16054–16063PubMedCrossRefGoogle Scholar
  189. Takahashi H (2010) Regulation of sulfate transport and assimilation in plants. Int Rev Cell Mol Biol 281:129–159PubMedCrossRefGoogle Scholar
  190. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184PubMedCrossRefGoogle Scholar
  191. Takahashi H, Buchner P, Yoshimoto N, Hawkesford MJ, Shiu S-H (2012) Evolutionary relationships and functional diversity of plant sulfate transporters. Front Plant Sci 2:119. doi: 10.3389/fpls.2011.00119
  192. Tanabe Y, Ioki M, Watanabe M (2014) The fast-growing strain of hydrocarbon-rich green alga Botryococcus braunii, BOT-22, is a vitamin B12 autotroph. J Appl Phycol 26:9–13CrossRefGoogle Scholar
  193. Tang JX, Siegfried BD, Hoagland KD (1998) Glutathione-S-transferase and in vitro metabolism of atrazine in freshwater algae. Pestic Biochem Phys 59:155–161CrossRefGoogle Scholar
  194. Toda H, Itoh N (2011) Isolation and characterization of a gene encoding a S-adenosyl-L-methionine-dependent halide/thiol methyltransferase (HTMT) from the marine diatom Phaeodactylum tricornutum: biogenic mechanism of CH3I emissions in oceans. Phytochemistry 72:337–343PubMedCrossRefGoogle Scholar
  195. Trossat C, Rathinasabapathi B, Weretilnyk EA, Shen TL, Huang ZH, Gage DA, Hanson AD (1998) Salinity promotes accumulation of 3-dimethylsulfoniopropionate and its precursor S-methylmethionine in chloroplasts. Plant Physiol 116:165–171PubMedPubMedCentralCrossRefGoogle Scholar
  196. Ullrich TC, Blaesse M, Huber R (2001) Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate activation. EMBO J 20:316–329PubMedPubMedCentralCrossRefGoogle Scholar
  197. United Nations Economic Commission for Europe (UNECE) (1994) The 1994 Oslo protocol on further reduction of sulfur emissions. http://www.unece.org/env/lrtap/fsulf_h1.html
  198. Vallon O, Spalding M (2009) Amino acid metabolism. In: Stern D, Harris E (eds) The Chlamydomonas sourcebook. Elsevier, New York, pp 115–158CrossRefGoogle Scholar
  199. Van Alstyne KL, Puglisi MP (2007) DMSP in marine macroalgae and macroinvertebrates: distribution, function, and ecological impacts. Aquat Sci 69:394–402CrossRefGoogle Scholar
  200. Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci U S A 103:8607–8612PubMedPubMedCentralCrossRefGoogle Scholar
  201. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblizek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappe MS, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72PubMedCrossRefGoogle Scholar
  202. Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase – blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275:31451–31459PubMedCrossRefGoogle Scholar
  203. Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krahenbuhl U, den Camp RO, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant J 31:729–740PubMedCrossRefGoogle Scholar
  204. Vieler A, Wilhelm C, Goss R, Sueb R, Schiller J (2007) The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 150:143–155PubMedCrossRefGoogle Scholar
  205. Vitova M, Bisova K, Hlavova M, Zachleder V, Rucki M, Cizkova M (2011) Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat Toxicol 102:87–94PubMedCrossRefGoogle Scholar
  206. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982PubMedPubMedCentralGoogle Scholar
  207. Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M, Saito K (2008) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell 20:2484–2496PubMedPubMedCentralCrossRefGoogle Scholar
  208. Wirtz M, Hell R (2006) Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J Plant Physiol 163:273–286PubMedCrossRefGoogle Scholar
  209. Wirtz M, Birke H, Heeg C, Müller C, Hosp F, Throm C, König S, Feldman-Salit A, Rippe K, Petersen G, Wade RC, Rybin V, Scheffzek K, Hell R (2010) Structure and function of the hetero-oligomeric cysteine synthase complex in plants. J Biol Chem 285:32810–32817PubMedPubMedCentralCrossRefGoogle Scholar
  210. Witvrouw M, DeClercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29:497–511PubMedCrossRefGoogle Scholar
  211. Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139PubMedPubMedCentralCrossRefGoogle Scholar
  212. Yildiz FH, Davies JP, Grossman AR (1994) Characterization of sulfate transport in Chlamydomonas reinhardtii during sulfur-limited and sulfur-sufficient growth. Plant Physiol 104:981–987PubMedPubMedCentralGoogle Scholar
  213. Yonekura-Sakakibara K, Onda Y, Ashikari T, Tanaka Y, Kusumi T, Hase T (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and non photosynthetic organs of maize. Plant Physiol 122:887–894PubMedPubMedCentralCrossRefGoogle Scholar
  214. Zhang ZD, Shrager J, Jain M, Chang CW, Vallon O, Grossman AR (2004) Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell 3:1331–1348PubMedPubMedCentralCrossRefGoogle Scholar
  215. Zhang P, Liu S, Chen K (2013) Characterization and expression analysis of a glutathione reductase gene from Antarctic moss Pohlia nutans. Plant Mol Biol Rep 31:1068–1076CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratorio di Fisiologia delle Alghe e delle Piante, Dipartimento di Scienze della Vita e dell’AmbienteUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations