Combined Nitrogen

Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 6)

Abstract

Algae can use a wide range of combined N sources. All of them can use NH4+, and probably also use urea and one of more amino acids; most of them can also use NO2 and NO3, and some can use betaines and/or purines. Transport of combined N into cells very often uses H+ or Na+ symport. Two cations transported per anionic N species, and one cation transported per neutral N species, enables the electrical potential difference across the membrane generated by active cation efflux to be used to increase the accumulation ratio inside:outside of the combined N species. Cationic N forms, e.g. NH4+, sometimes occur at very low concentrations in the natural environment, and cation symport can increase the steady-state NH4+ concentration. The transporters have been to some extent characterised at the molecular level, especially for the plasmalemma. Assimilation of inorganic N species into organic N within the cell use well-established pathways, i.e. NO3 reductase, NO2 reductase, and glutamine synthetase – glutamine-oxoglutarate aminotransferase enzymes. N assimilation, and especially the initial step (NO3 reductase), are under more direct redox control in microalgae than in vascular plants. Combined N species which as NO and NO3 are involved in signalling within the cell, but extent to which they modulate metabolism in response to internal and external cues needs clarification. It is important to bear in mind that the conclusions drawn here generally come from work on relatively few microalgal species, and generalisations should be viewed with caution.

Keywords

Amino acids Ammonium Betaines Combined nitrogen Organic nitrogen Nitrate Nitric oxide Nitrite Proton symport Purines Signalling Sodium symport Urea 

Notes

Acknowledgements

The University of Dundee is a registered Scottish charity, No SC 015096. MG’s research on N and S was funded by the Italian Ministry for Agriculture (MIPAF, Bioforme project), by the Italian Ministry of Foreign Affairs (MAE, Joint Italian-Israel Cooperation Program) and by the Assemble program of the European Union. Discussions with Mitchell Andrews, Hans Lambers and Bill Plaxton have been very helpful.

References

  1. Agostoni M, Erdner DL (2011) Analysis of ammonium transporter and urease gene expression in Aureoumbra lagunensis. Harmful Algae 10:549–556CrossRefGoogle Scholar
  2. Allen S, Smith JAC (1986) Ammonium nutrition in Ricinus communis: its effect on plant growth of the chemical composition in the whole plant, xylem and phloem saps. J Exp Bot 37:1599–1610CrossRefGoogle Scholar
  3. Allen AE, Dupont CL, Oborník M, Horák A, Numes-Nesi A, McCraw JP, Zheng H, Johnson DS, Hu H, Fernie AR, Bowler C (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473:203–207PubMedCrossRefGoogle Scholar
  4. Andrews M, Raven JA, Lea PJ (2013) Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann Appl Biol 163:174–199CrossRefGoogle Scholar
  5. Bekheet IA, Syrett PJ (1977) Urea-degrading enzymes in algae. Br Phycol J 12:137–143CrossRefGoogle Scholar
  6. Bender JS, Parker MS, Armbrust EV (2012) Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over diel cycle in the diatom Thalassiosira pseudonana. Protist 163:232–251PubMedCrossRefGoogle Scholar
  7. Berges J (1997) Algal nitrate reductase. Eur J Phycol 32:3–8CrossRefGoogle Scholar
  8. Bhargava S, Kachouli RK, Maithill R, Kaithwas V (2011) Evidence for a sodium-dependent proline and glycine-betaine uptake in the cyanobacterium Nostoc muscorum. Microbiology 4:461–465CrossRefGoogle Scholar
  9. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681Google Scholar
  10. Bouguyon E, Gojon A, Nacry P (2012) Nitrate sensing and signaling in plants. Semin Cell Dev Biol 23:648–654PubMedCrossRefGoogle Scholar
  11. Bowler C, Vardi A, Allen AE (2010) Oceanographic and biogeochemical insights from diatom genomes. Ann Rev Mar Sci 2:333–365PubMedCrossRefGoogle Scholar
  12. Boyd CM, Gradmann D (1999) Electrophysiology of the marine diatom Coscinodiscus wailesii. III. Uptake of nitrate and ammonium. J Exp Bot 50:461–467Google Scholar
  13. Bragg JG, Quigg A, Raven JA, Wagner A (2012) Protein elemental sparing and codon usage bias are correlated among bacteria. Mol Ecol 21:2480–2487PubMedCrossRefGoogle Scholar
  14. Britto DT, Kronzucker HK (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534PubMedCrossRefGoogle Scholar
  15. Camargo A, Llamas A, Schnell RA, Higuera JJ, González-Ballester D, Lefebvre PA, Fernandez E, Galvan A (2007) Nitrate signalling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 19:3491–3503PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chow F, Cabral de Oliveira M (2008) Rapid and slow modulation of nitrate reductase activity in the red macroalga Gracilaria chilensis (Graciliariales, Rhodophyta): influence of different nitrogen sources. J Appl Phycol 20:775–782CrossRefGoogle Scholar
  17. Chow F, de Oliveira MC, Pedersén M (2004) In vitro assay and light regulation of nitrate reductase in red alga Gracilaria chilensis. J Plant Physiol 161:769–776PubMedCrossRefGoogle Scholar
  18. Colman B, Norman EG (1997) Serine synthesis in cyanobacteria by a non-photorespiratory pathway. Physiol Plant 100:133–136CrossRefGoogle Scholar
  19. Coskum D, Britto DT, Mingyuan L, Becker A, Kronzucker HJ (2013) Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4 + toxicity in plant roots. Plant Physiol 163:1859–1867CrossRefGoogle Scholar
  20. Coyne KJ (2010) Nitrate reductase (NR1) sequence and expression in the harmful alga Heterosigma akashiwo (Raphidophyceae). J Phycol 46:135–142CrossRefGoogle Scholar
  21. Dagestad D, Lien T, Knutseb G (1981) Degradation and compartmentalization of urea in Chlamydomonas reinhardtii. Arch Microbiol 129:261–264CrossRefGoogle Scholar
  22. de Montaigu A, Sanz Luque E, Macias MI, Galvan A, Fernandez E (2011) Transcriptional regulation of CDP1 and CYG56 is required for proper NH4 + sensing in Chlamydomonas. J Exp Bot 62:1425–1437PubMedCrossRefGoogle Scholar
  23. Derelle E, Ferraz C, Rombautz S et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103:11647–11652PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dyhrman ST, Anderson BM (2003) Urease activity in cultures and field populations of the toxic dinoflagellates. Limnol Oceanogr 48:647–655CrossRefGoogle Scholar
  25. Eisenhut M, Ruth W, Hamovich M, Bause H, Kaplan A, Hagemann RH (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiotically to plants. Proc Natl Acad Sci U S A 105:17119–17204CrossRefGoogle Scholar
  26. Elser JJ, Hassett RP (1994) A stoichiometric analysis of the zooplankton-phytoplankton interaction in marine and freshwater ecosystems. Nature 370:211–213CrossRefGoogle Scholar
  27. Elser JJ, Bracken MES, Cleland EE, Harpole WS, Hillebrand H, Ngai JT, Seablom WE, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142PubMedCrossRefGoogle Scholar
  28. Ermilova EV, Nikitin MM, Lapina TV, Zautskaya ZM (2004) Chemotactic behaviour of Chlamydomonas reinhardtii is altered during gametogenesis. Curr Microbiol 46:261–264CrossRefGoogle Scholar
  29. Falcão VR, Oliveira MC, Colepicolo P (2010) Molecular characterization of nitrate reductase gene and its expression in the marine red alga Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol 22:613–622CrossRefGoogle Scholar
  30. Falkowski PG (1997) Evolution of the nitrogen cycle and its influence of the biological sequestration of CO2 in the ocean. Nature 387:272–275CrossRefGoogle Scholar
  31. Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  32. Fan C, Glibert PM, Alexander J, Lomas MW (2003) Characterisation of urease activity in the three marine phytoplankton species, Aureococcus anophagefferens, Prorocentrum minimum and Thalassiosira weissflogii. Mar Biol 142:949–958Google Scholar
  33. Fernandez E, Llamas A, Galvàn A (2009) Nitrogen assimilation and its regulation. In: Stern DB, Harris EH (eds) The Chlamydomonas source book, vol 2, 2nd edn. Elsevier, Amsterdam, pp 69–113CrossRefGoogle Scholar
  34. Flynn KJ, Blackford JC, Baird ME, Raven JA, Clark DR, Beardall J, Brownlee C, Fabian H, Wheeler GL (2012) Changes in pH at the exterior surface of plankton with ocean acidification. Nat Clim Chang 2:510–513CrossRefGoogle Scholar
  35. Flynn KJ, Stoecker DK, Mitra A, Raven JA, Glibert PM, Hansen PJ, Granéli E, Burkholder JM (2013) Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res 35:5–11CrossRefGoogle Scholar
  36. Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:649–655Google Scholar
  37. Foresi N, Correa-Aragunde N, Parisi G, Calo G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fröhlich A, Durner J (2011) The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci 181:401–404PubMedCrossRefGoogle Scholar
  39. Galván A, Quesada A, Fernández E (1996) Nitrate and nitrite are transported by different specific transport systems and by a bispecific transporter in Chlamydomonas reinhardtii. J Biol Chem 271:2088–2092PubMedCrossRefGoogle Scholar
  40. Giordano M (2013) Homeostasis: an underestimated focal point of ecology and evolution. Plant Sci 211:92–101PubMedCrossRefGoogle Scholar
  41. Giordano M, Prioretti L (2016) Sulphur and algae: metabolism, ecology and evolution. In: Borowitzka MA, Beardall J, Raven JA (eds) Microalgal physiology. Springer, Dordrecht, pp 185–209Google Scholar
  42. Giordano M, Raven JA (2014) Nitrogen and sulfur assimilation in plants and algae. Aquat Bot 116:45–61CrossRefGoogle Scholar
  43. Giordano M, Chen YN, Koblizek M, Falkowski PG (2005) Regulation of nitrate reductase in Chlamydomonas reinhardtii by the redox state of the plastoquinone pool. Eur J Phycol 40:345–352CrossRefGoogle Scholar
  44. Hellebust JA (1978) Uptake of organic substrates by Cyclotella cryptica (Baccilariophyceae): effects of ions, ionophores and metabolic inhibitors. J Phycol 14:79–83CrossRefGoogle Scholar
  45. Hildebrand M (2005) Cloning and functional characterization of ammonium transporters from the marine diatom Cylindrotheca fusiformis (Bacillariophyceae). J Phycol 41:105–113CrossRefGoogle Scholar
  46. Ho T-Y, Quigg A, Finkel ZC, Milligan AJ, Wyman K, Falkowski PG, Morel FMM (2003) The elemental composition of some marine phytoplankton. J Phycol 39:1145–1159CrossRefGoogle Scholar
  47. Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G (2012) The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol 158:299–312PubMedPubMedCentralCrossRefGoogle Scholar
  48. Huang NC, Liu KH, Lo HJ, Tsay YF (1999) Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11:1381–1392PubMedPubMedCentralCrossRefGoogle Scholar
  49. Huppe HC, Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol 45:577–607CrossRefGoogle Scholar
  50. Imamura S, Kanesaki Y, Ohnuma M, Inouye T, Sekine Y, Fujiwara T, Kuroiwa T, Tanaka K (2009) R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Natl Acad Sci U S A 106:12548–12553PubMedPubMedCentralCrossRefGoogle Scholar
  51. Imamura S, Terashita M, Ohnuma M, Maruyama S, Minoda A, Weber APM, Inouye T, Sekine Y, Fujita Y, Omata T, Tanaka K (2010) Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. Plant Cell Physiol 51:707–717PubMedCrossRefGoogle Scholar
  52. Keller MD, Kiene RP, Matrai PA, Bellows WK (1999) Production of glycine betaine and dimethylsulfoniopropionate. II. N-limited chemostats. Mar Biol 125:249–257CrossRefGoogle Scholar
  53. Kirk DL, Kirk MM (1978) Carrier-mediated uptake of arginine and urea by Chlamydomonas reinhardtii. Plant Physiol 61:556–560PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kobayashi M, Rodriguez R, Lam C, Omata T (1997) Involvement of the C-terminal domain of an ATP-binding subunit in the regulation of the ABC-type nitrate/nitrite transporter of the cyanobacterium Synechococcus sp. Strain PCC 7942. J Biol Chem 272:27197–27201PubMedCrossRefGoogle Scholar
  55. Kronzucker HJ, Britto DT, Davenport RJ, Tester M (2001) Ammonium toxicity and the real cost of transport. Trends Plant Sci 6:336–337CrossRefGoogle Scholar
  56. Krouk G, Mirowski P, LeCun Y, Shasha DE, Coruzzi GM (2010a) Predictive network modeling of the high resolution dynamic plant transcriptome in response to nitrate. Genome Biol 11:R123PubMedPubMedCentralCrossRefGoogle Scholar
  57. Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010b) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273PubMedCrossRefGoogle Scholar
  58. Kustka A, Sañudo-Wilhelmy S, Carpenter EJ, Capone DG, Raven JA (2003) A revised estimate of the iron use for nitrogen fixation with special reference to the cyanobacterium Trichodesmium spp. (Cyanophyta). J Phycol 39:12–25CrossRefGoogle Scholar
  59. Lara C, Rodríguez R, Guerro MG (1993) Sodium-dependent nitrate transport and energetics of cyanobacteria. J Phycol 29:339–395CrossRefGoogle Scholar
  60. Leftley JW, Syrett PJ (1973) Urease and ATP: urea amidolyase in unicellular algae. J Gen Microbiol 77:109–115CrossRefGoogle Scholar
  61. Lopez-Lazano A, Diez J, El Alaoui S, Moreno-Vivian C, Garcia-Fernandez JM (2002) Nitrate is reduced by heterotrophic bacteria but not transferred to Prochlorococcus in on-axenic cultures. FEMS Microbiol Ecol 41:151–160CrossRefGoogle Scholar
  62. Ludewig U, Neuhäuser BB, Dynowski M (2007) Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Lett 581:2301–2308PubMedCrossRefGoogle Scholar
  63. Maberly SC, King L, Dent MM, Jones RL, Gibson CE (2002) Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshw Biol 47:2136–2152CrossRefGoogle Scholar
  64. Mariscal V, Moulin P, Orsel M, Miller AJ, Fernandez E, Galvan A (2006) Differential regulation of Chlamydomonas Nar1 gene family by carbon and nitrogen. Protist 157:421–433PubMedCrossRefGoogle Scholar
  65. Martiny AC, Kathuria S, Berube PM (2009) Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc Natl Acad Sci U S A 106:10787–10792PubMedPubMedCentralCrossRefGoogle Scholar
  66. McDonald SM, Plant JN, Warden AZ (2010) The mixed lineage nature of nitrogen transport and assimilation in marine eukaryotic phytoplankton: a case study of Micromonas. Mol Biol Evol 27:2268–2283PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mitra A, Flynn KJ, Burkholder JM, Berge T, Calbet A, Raven JA, Granéli E, Glibert PM, Hansen PJ, Stoecker FK, Thingstad F, Tillman U, Väge S, Wilken S, Zubkov MV (2014) The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11:995–1005CrossRefGoogle Scholar
  68. Moore DJ, Reed RH, Stewart WDP (1987) A glycine-betaine transport system in Aphanothece halophytica. Arch Microbiol 197:399–405CrossRefGoogle Scholar
  69. Moore LR, Post AF, Rocap G, Chisholm SW (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47:989–996CrossRefGoogle Scholar
  70. Mullholland MR, Glibert PM, Berg GH, van Heukelem L, Pantaga S, Lee C (1998) Extracellular amino acid oxidation by microphytoplankton: a cross-ecosystem comparison. Aquat Microb Ecol 15:141–152CrossRefGoogle Scholar
  71. Muñoz-Blanco J, Moyano E, Cardenas J (1990) Extracellular deamination of amino acids by Chlamydomonas reinhardtii cells. Planta 182:194–198PubMedCrossRefGoogle Scholar
  72. Nakayama N, Akashi T, Hase T (2000) Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin. J Inorg Biochem 82:27–32PubMedCrossRefGoogle Scholar
  73. Näsholm T, Kiellan K, Hanetag U (2009) Uptake of organic nitrogen in plants. New Phytol 182:31–48PubMedCrossRefGoogle Scholar
  74. Navarro MT, Guerra E, Fernandez E, Galvan A (2000) Nitrite reductase mutants as an approach to understanding nitrate assimilation in Chlamydomonas reinhardtii. Plant Physiol 122:283–290PubMedPubMedCentralCrossRefGoogle Scholar
  75. Needoba JA, Harrison PJ (2004) Influence of low light and a light-dark cycle on NO3 uptake, intracellular NO3 , and nitrogen isotope fractionation by marine phytoplankton. J Phycol 40:505–516CrossRefGoogle Scholar
  76. Neilsen AH, Lewin RA (1974) The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13:227–264CrossRefGoogle Scholar
  77. Ortiz-Ramirez C, Mora SI, Trejo J, Pantoja O (2011) PvAMT1;1, a highly selective ammonium transporter that functions as a H+/NH4 + symporter. J Biol Chem 33:31113–31122CrossRefGoogle Scholar
  78. Palenick B, Morel FMM (1990a) Amino acid utilization by marine phytoplankton: a novel mechanism. Limnol Oceanogr 35:260–269CrossRefGoogle Scholar
  79. Palenick B, Morel FMM (1990b) Comparison of cell-surface L-amino acid oxidases from several marine phytoplankton. Mar Ecol Prog Ser 58:195–201CrossRefGoogle Scholar
  80. Qafaiti M, Stephens GC (1989) Sodium-dependent amino acid transport in the chlorophyte Platymonas subcordiformis. Mar Biol 101:437–441CrossRefGoogle Scholar
  81. Quesada A, Gomez-Garcia I, Fernandez E (2000) Involvement of chloroplast and mitochondria redox valves in nitrate assimilation. Trends Plant Sci 5:463–464PubMedCrossRefGoogle Scholar
  82. Quigg A, Finke ZV, Irwin AJ, Rosenthal Y, Ho T-Y, Reinfelder JR, Schofield O, Morel FMM, Falkowski PG (2003) The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425:291–294PubMedCrossRefGoogle Scholar
  83. Quigg A, Irwin AJ, Finkel ZV (2011) Evolutionary inheritance of elemental stoichiometry in phytoplankton. Proc R Soc Lond B 278:526–534CrossRefGoogle Scholar
  84. Rai AN, Bergman B, Rasmussen U (eds) (2003) Cyanobacteria in symbiosis. Springer, DordrechtGoogle Scholar
  85. Raven JA (1976) The quantitative role of ‘dark’ respiratory processes in heterotrophic and photolithotrophic plant growth. Ann Bot 40:487–602Google Scholar
  86. Raven JA (1980) Nutrient transport in microalgae. Adv Microb Physiol 21:47–226PubMedCrossRefGoogle Scholar
  87. Raven JA (1984) Energetics and transport in aquatic plants. AR Liss, New YorkGoogle Scholar
  88. Raven JA (1985) Regulation of pH and generation of osmolarity in vascular land plants: costs and benefits in relation to efficiency of use of water, energy and nitrogen. New Phytol 101:25–77CrossRefGoogle Scholar
  89. Raven JA (1986) Biochemical disposal of excess H+ in plants? New Phytol 104:175–206CrossRefGoogle Scholar
  90. Raven JA (1987) The role of vacuoles. New Phytol 106:357–422CrossRefGoogle Scholar
  91. Raven JA (1988) The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol 109:12–25Google Scholar
  92. Raven JA (1997) The vacuole: a cost-benefit analysis. Adv Bot Res 25:59–86CrossRefGoogle Scholar
  93. Raven JA (2012) Protein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixation. Plant Sci 188–189:25–35PubMedCrossRefGoogle Scholar
  94. Raven JA (2013a) The evolution of autotrophy in relation to phosphorus requirement. J Exp Bot 64:4023–4046PubMedCrossRefGoogle Scholar
  95. Raven JA (2013b) Half a century of pursuing the pervasive proton. Prog Bot 74:3–34CrossRefGoogle Scholar
  96. Raven JA (2013c) RNA function and phosphorus use in photosynthetic organism. Front Plant Sci 4:536PubMedPubMedCentralCrossRefGoogle Scholar
  97. Raven JA (2015) Phosphorus-nitrogen interactions. In: Plaxton WC, Lambers H (eds) Phosphorus metabolism in plants in the post-genomic era: from gene to ecosystem. Wiley-Blackwell, Oxford, pp 187–241Google Scholar
  98. Raven JA, Doblin MA (2014) Active water transport in unicellular algae. J Exp Bot 65:6279–6292PubMedCrossRefGoogle Scholar
  99. Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76:415–431CrossRefGoogle Scholar
  100. Raven JA, Wollenweber B, Handley LL (1992) A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytol 121:20–32Google Scholar
  101. Raven JA, Giordano M, Beardall J (2008) Insights into the evolution of CCMs from comparisons with other resource acquisition and assimilation processes. Physiol Plant 133:4–14PubMedCrossRefGoogle Scholar
  102. Raven JA, Beardall J, Giordano M (2014) Energy costs of carbon dioxide concentrating mechanisms. Photosynth Res 121:111–124PubMedCrossRefGoogle Scholar
  103. Rees TAV, Cresswell RC, Syrett RJ (1980) Sodium dependent uptake of nitrate and urea by a marine diatom. Biochim Biophys Acta 596:141–144PubMedCrossRefGoogle Scholar
  104. Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds on plants. FEBS Lett 581:2281–2289PubMedCrossRefGoogle Scholar
  105. Rexach J, Montero B, Fernandez E, Galvan A (1999) Differential regulation of the high affinity nitrate transport systems III and IV in Chlamydomonas reinhardtii. J Biol Chem 274:27801–27806PubMedCrossRefGoogle Scholar
  106. Ricketts TR (1990) Uptake rate of various nitrogen sources by nitrate grown Tetraselmis (Platymonas) striata. Br Phycol J 25:257–261CrossRefGoogle Scholar
  107. Ruan Z (2013) Energy partitioning between the CO2 concentrating mechanism and N assimilation in the cyanobacterium Synechococcus UTEX 2380: repercussion on cell composition and stoichiometry. PhD thesis, Università Politecnica delle Marche, 183 pp (in English)Google Scholar
  108. Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43:290–297PubMedCrossRefGoogle Scholar
  109. Sanz-Luque E, Ocana-Calahorro F, Llama A, Galvan A, Fernandez E (2013) Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii. J Exp Bot 64:3373–3383PubMedCrossRefGoogle Scholar
  110. Schmidt S, Raven JA, Paungfoo-Lonhienne C (2013) The mixotrophic nature of photosynthetic plants. Funct Plant Biol 40:425–438CrossRefGoogle Scholar
  111. Schnell R, Sandalova T, Hemman U, Lindqvist Y, Schneider G (2005) Siroheme and [Fe4S4]-dependent NirA from Mycobacterium tuberculosis is a sulfite reductase with a covalent Cys-Tyr bond in the active state. J Biol Chem 280:27319–27328PubMedCrossRefGoogle Scholar
  112. Shah H, Syrett RJ (1982) Uptake of guanine by the diatom Phaeodactylum tricornutum. J Phycol 18:579–587CrossRefGoogle Scholar
  113. Sherameti I, Sopory SK, Trebicka A, Pfannschmidt T, Oelmüller R (2002) Photosynthetic electron transport determines nitrate reductase gene expression and activity in higher plants. J Biol Chem 277:46594–46600PubMedCrossRefGoogle Scholar
  114. Sohm JA, Webb EA, Capone DG (2011) Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9:499–508PubMedCrossRefGoogle Scholar
  115. Solomon CM, Collier JL, Berg GM, Glibert PM (2010) Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review. Aquat Microb Ecol 59:67–88CrossRefGoogle Scholar
  116. Soupene E, King N, Field E, Liu P, Niyogi KK, Huang CH, Kustu S (2002) Rhesus expression in a green alga is regulated by CO2. Proc Natl Acad Sci U S A 99:7769–7773PubMedPubMedCentralCrossRefGoogle Scholar
  117. Soupene E, Inweed W, Kustu S (2004) Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proc Natl Acad Sci U S A 101:7787–7792PubMedPubMedCentralCrossRefGoogle Scholar
  118. Stewart JJ, Coyne KJ (2011) Analysis of raphidophyte assimilatory nitrate reductase reveals unique domain architecture incorporating a 2/2 hemoglobin. Plant Mol Biol 77:5565–5575CrossRefGoogle Scholar
  119. Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186PubMedCrossRefGoogle Scholar
  120. Thompson PA, Levasseur ME, Harrison PJ (1989) Light-limited growth on ammonium vs. nitrate: what is the advantage for growth of marine phytoplankton? Limnol Oceanogr 34:1014–1024CrossRefGoogle Scholar
  121. Tischner R, Planchet E, Kaiser WM (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular alga Chlorella sorokiniana. FEBS Lett 576:151–155PubMedCrossRefGoogle Scholar
  122. Tsay YF, Chiu CC, Tsai CN, Ho CH, Hsu PL (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300PubMedCrossRefGoogle Scholar
  123. Usher KM, Bergman B, Raven JA (2007) Exploring cyanobacterial mutualisms. Ann Rev Ecol Evol Syst 38:255–273CrossRefGoogle Scholar
  124. Vallon O, Bulté L, Kuras R, Olive L, Wollman F-A (1993) Extensive accumulation of extracellular L-amino oxidase during gametogenesis of Chlamydomonas reinhardtii. FEBS J 215:351–360CrossRefGoogle Scholar
  125. Voss M, Bange MW, Dippner JW, Middelburg JJ, Montoya JP, Ward B (2013) The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance to climate change. Philos Trans R Soc Lond B 368:20130121CrossRefGoogle Scholar
  126. Walker NA, Smith FA, Beilby MJ (1979) Amine transport at the plasmalemma of charophyte cells. II. Ratio of matter to charge transported and permeability of the free base. J Membr Biol 49:283–296CrossRefGoogle Scholar
  127. Walker NA, Reid RJ, Smith FA (1993) The uptake and metabolism of urea by Chara australis. IV. Symport with sodium – a slip model for the high and low affinity systems. J Membr Biol 136:263–271PubMedCrossRefGoogle Scholar
  128. Werner AK, Medina-Escobar N, Zulawski M, Sparkes IA, Cao FQ, Witte C-P (2013) The ureide-degrading reactions of purine ring catabolism employ three amidohydrolases and one aminohydrolase in Arabidopsis, soybean, and rice. Plant Physiol 163:672–681PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wheeler PA (1980) Use of methylammonium as an ammonium analogue in nitrogen transport and assimilation studies with Cyclotella cryptica (Bacillariophyceae). J Phycol 16:328–334CrossRefGoogle Scholar
  130. Williams SK, Hodson RC (1977) Transport of urea at low concentrations in Chlamydomonas reinhardtii. J Bacteriol 130:266–273PubMedPubMedCentralGoogle Scholar
  131. Witte C-P (2011) Urea metabolism in plants. Plant Sci 180:431–438PubMedCrossRefGoogle Scholar
  132. Wright SA, Syrett SA (1983) The uptake of methylamine and dimethylamine by the diatom, Phaeodactylum tricornutum. New Phytol 95:198–202Google Scholar
  133. Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173PubMedCrossRefGoogle Scholar
  134. Zhou JJ, Theodoulou FL, Muldin I, Ingemarsson B, Mille AJ (1998) Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem 273:12017–12023PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of Plant BiologyUniversity of Dundee at the James Hutton InstituteInvergowrieUK
  2. 2.Plant Functional Biology and Climate Change ClusterUniversity of Technology SydneyUltimoAustralia
  3. 3.Laboratorio di Fisiologia delle Alghe e delle Piante, Dipartimento di Scienze della Vita e dell’AmbienteUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations