Advertisement

Carbon Acquisition by Microalgae

  • John Beardall
  • John A. Raven
Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 6)

Abstract

Autotrophic assimilation of inorganic C in cyanobacteria and eukaryotic microalgae involves the use of CO2 by ribulose bisphosphate carboxylase-oxygenase (Rubisco) and the Photosynthetic Carbon Reduction Cycle. The kinetic characteristics of the Form IB and Form ID Rubiscos of a few eukaryotic microalgae allow photosynthesis using diffusive entry of CO2 to Rubisco from present-day CO2 levels in air, with concomitant Rubisco oxygenase activity and phosphoglycolate metabolism by (typically) the Photorespiratory Carbon Oxidation Cycle (PCOC). All cyanobacteria and dinoflagellates, and most other eukaryotic microalgae, have CO2 concentrating mechanisms (CCMs). These are generally biophysical CCMs involving active transport across (a) membrane(s) of one or more of HCO3, CO2 and H+. There is very limited evidence for a biochemical CCM based on (possibly) C3–C4 intermediate-like photosynthetic C metabolism. CCM expression and operation interact with the supply of light and other resources needed for growth. CCMs (with residual Rubisco oxygenase and PCOC activity) have a significant energy cost, as does the alternative of diffusive CO2 entry and consequent Rubisco oxygenase and PCOC activity. Some cyanobacteria and eukaryotic microalgae can take up dissolved organic matter (osmochemoorganotrophy or combined with photosynthesis in osmomixotrophy) or, for some eukaryotic microalgae, phagochemoorganotrophy or, combined with photosynthesis, in phagomixotrophy. Regardless of whether the organic carbon needed for growth is obtained by photolithotrophy or (mixo)chemoorganotrophy, anaplerotic inorganic C assimilation is needed to supply C skeletons for synthesis of a range of cell components; this (as ‘dark fixation’) is the only inorganic C assimilation occurring in the dark.

Keywords

Active transport Anaplerotic metabolism C3–C4 metabolism CO2 CO2 concentrating mechanisms Chemoorganotrophy H+ HCO3 Osmomixotrophy Phagomixotrophy Photorespiratory carbon oxidation cycle Photosynthetic carbon reduction cycle Ribulose bisphosphate carboxylase-oxygenase 

Notes

Acknowledgements

The University of Dundee is a registered Scottish charity, No. SC015096. John Beardall’s work on inorganic carbon acquisition has been supported by the Australian Research Council.

References

  1. Amoroso G, Sültemeyer DF, Thyssen C, Fock HP (1998) Uptake of HCO3 and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiol 116:193–201CrossRefPubMedCentralGoogle Scholar
  2. Apt KE, Allnutt FCT, Kyle DJ, Lippmeier JC (2011) Trophic conversion of obligate phototrophic algae through metabolic engineering. USA Patent US7939710Google Scholar
  3. Bach LT, Mackinder LCM, Schulz KG, Wheeler G, Schroeder DC, Brownlee C, Riebesell U (2013) Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytol 199:121–134CrossRefPubMedGoogle Scholar
  4. Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and co-evolution of Rubisco, plastids, pyrenoids and chloroplast-based CO2-concentrating mechanisms in the algae. Can J Bot 76:1052–1071Google Scholar
  5. Beardall J, Raven JA (2013a) Limits to phototrophic growth in dense culture: CO2 supply and light. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 91–97CrossRefGoogle Scholar
  6. Beardall J, Raven JA (2013b) Calcification and ocean acidification: new insights from the coccolithophore Emiliania huxleyi. New Phytol 199:1–3CrossRefPubMedGoogle Scholar
  7. Beardall J, Mukerji D, Glover HE, Morris I (1976) The path of carbon in photosynthesis by marine phytoplankton. J Phycol 12:409–417Google Scholar
  8. Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, Falkowski PG, Field CB, Frouin R, Esaias WE, Kolber DD, Pollack NH (2001) Biospheric primary production during an ENSO transition. Science 291:2594–2597CrossRefPubMedGoogle Scholar
  9. Blanc G et al (2012) The genome of the polar eukaryotic alga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39. doi: 10.1186/gb-2012-13-5-v39 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blank C, Sanchez-Baracaldo P (2010) Morphological and ecological innovations in cyanobacteria – a key to understanding the rise in atmospheric oxygen. Geobiology 8:1–23CrossRefPubMedGoogle Scholar
  11. Boller AJ, Thomas PJ, Cavanaugh CM, Scott KM (2011) Low stable isotope fractionation by coccolithophore RubisCO. Geochim Cosmochim Acta 75:7200–7207CrossRefGoogle Scholar
  12. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681Google Scholar
  13. Clement R, Dimnet L, Maberly SC, Gontero B (2015) The nature of the CO2-concentrating mechanisms in a marine diatom, Thalassiosira pseudonana. New Phytol. doi: 10.1111/nph.13728
  14. Droop MR (1974) Heterotrophy of carbon. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 530–559Google Scholar
  15. Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, 512 ppGoogle Scholar
  16. Flynn KJ, Blackford JC, Baird ME, Raven JA, Clark DR, Beardall J, Brownlee C, Fabian H, Wheeler GL (2012) Changes in pH at the exterior surface of plankton with ocean acidification. Nat Clim Chang 2:510–513CrossRefGoogle Scholar
  17. Flynn KJ, Stoecker DK, Mitra A, Raven JA, Glibert PM, Hansen PJ, Granéli E, Burkholder JM (2013) A case of mistaken identification: the importance of mixotrophs and the clarification of plankton functional-classification. J Plankton Res 35:3–11CrossRefGoogle Scholar
  18. Granum E, Myklestad SM (1999) Effects of NH4 + assimilation on dark carbon fixation and β-1,3-glucan metabolism in the marine diatom Skeletonema costatum (Bacillariophyceae). J Phycol 35:1191–1199CrossRefGoogle Scholar
  19. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annu Rev Plant Biol 56:99–131CrossRefPubMedGoogle Scholar
  20. Haimovich-Dayan M, Garfinkel N, Ewe D, Marcus Y, Gruber A, Wagner H, Kroth PG, Kaplan A (2013) The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. New Phytol 197:177–185CrossRefPubMedGoogle Scholar
  21. Hanson TE, Tabita FR (2001) A ribulose 1,5- bisphosphate carboxylase/oxygenase (RubisCO)–like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci U S A 98:4397–4402CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hopkinson BM, Dupont CL, Allen AE, Morel FMM (2011) Efficiency of the CO2-concentrating mechanism of diatoms. Proc Natl Acad Sci U S A 108:3830–3837CrossRefPubMedPubMedCentralGoogle Scholar
  23. Johnston AM, Raven JA, Beardall J, Leegood RC (2001) C4 photosynthesis in a marine diatom. Nature 412:40–41CrossRefPubMedGoogle Scholar
  24. Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T et al (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3(1):e1426. doi: 10.1371/journal.pone.0001426 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Leggat W, Badger MR, Yellowlees DC (1999) Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121:1247–1255CrossRefPubMedPubMedCentralGoogle Scholar
  26. Losh JL, Young JN, Morel FMM (2013) Rubisco is a small fraction of total protein in marine phytoplankton. New Phytol 198:52–58CrossRefPubMedGoogle Scholar
  27. Maberly SC, Ball LA, Raven JA, Sültemeyer D (2009) Inorganic carbon acquisition by chrysophytes. J Phycol 45:1052–1061CrossRefGoogle Scholar
  28. Maberly SC, Courcelle C, Groben R, Gontero B (2010) Phylogenetically-based variation in the regulation of the Calvin cycle enzymes, phosphoribulokinase and glyceraldehyde-3-phosphate dehydrogenase, in algae. J Exp Bot 61:735–745CrossRefPubMedGoogle Scholar
  29. Martin W, Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32:1–18CrossRefPubMedGoogle Scholar
  30. Maruyama S, Kim C (2013) A modern descendant of early green algal phagotrophs. Curr Biol 23:1081–1084CrossRefPubMedGoogle Scholar
  31. Mitra A, Flynn KJ, Nurkholder JM, Berge T, Calbet A, Raven JA, Granéli E, Glibert PM, Hansen PJ, Stoecker FK, Thingstad F, Tillman U, Väge S, Wilken S, Zoukov MV (2014) The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11:995–1005CrossRefGoogle Scholar
  32. Morel FMM, Cox EH, Kraepiel AML, Lane TW, Milligan AJ, Schaperdoth I, Reinfelder JR, Tortell PD (2002) Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii. Funct Plant Biol 29:301–308CrossRefGoogle Scholar
  33. Morris I, Beardall J, Mukerji D (1978) The mechanisms of carbon fixation in phytoplankton. Mitt Internat Verein Limnol 21:174–183Google Scholar
  34. Munoz J, Merrett MJ (1989) Inorganic carbon transport in some marine eukaryotic microalgae. Planta 178:450–455CrossRefPubMedGoogle Scholar
  35. Omata T, Price GD, Badger MR, Okamura M, Gohta S, Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc Natl Acad Sci U S A 96:13571–13576CrossRefPubMedPubMedCentralGoogle Scholar
  36. Palmqvist K (2000) Carbon economy in lichens. New Phytol 148:11–36CrossRefGoogle Scholar
  37. Price GD, Maeda S, Omata T, Badger M (2002) Modes of active inorganic carbon uptake in the cyanobacterium Synechococcus sp. PCC7942. Funct Plant Biol 29:131–149CrossRefGoogle Scholar
  38. Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci U S A 101:18228–18233CrossRefPubMedPubMedCentralGoogle Scholar
  39. Price GD, Badger MR, Woodger FJ, Long BJ (2008) Advances in understanding the cyanobacterial CO2- concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461CrossRefPubMedGoogle Scholar
  40. Raven JA (1974) Carbon dioxide fixation. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 433–455Google Scholar
  41. Raven JA (1976a) Transport in algal cells. In: Lüttge U, Pitman MG (eds) Transport in cells and tissues, vol New series, Encyclopedia of plant physiology. Springer, Berlin, pp 129–188Google Scholar
  42. Raven JA (1976b) Division of labour between chloroplasts and cytoplasm. In: Barber J (ed) The intact chloroplast. Elsevier, Amsterdam, pp 403–443Google Scholar
  43. Raven JA (1976c) The quantitative role of ‘dark’ respiratory processes in heterotrophic and photolithotrophic plant growth. Ann Bot 40:587–602Google Scholar
  44. Raven JA (2009) Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquat Microb Ecol 56:177–192CrossRefGoogle Scholar
  45. Raven JA (2013a) Half a century of pursuing the pervasive proton. Prog Bot 74:3–34CrossRefGoogle Scholar
  46. Raven JA (2013b) Rubisco: still the most abundant protein in the world? New Phytol 198:1–3CrossRefPubMedGoogle Scholar
  47. Raven JA (2013c) Cells in cells: symbiosis and continuing phagotrophy. Curr Biol 23:R531Google Scholar
  48. Raven JA (2013d) RNA function and phosphorus use in photosynthetic organisms. Front Plant Sci 4:1–13, Article 536CrossRefGoogle Scholar
  49. Raven JA, Beardall J (2003) CO2 acquisition mechanisms in algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Larkum AWD, Raven JA, Douglas S (eds) Photosynthesis in the algae. Kluwer, Dordrecht, pp 225–244CrossRefGoogle Scholar
  50. Raven JA, Beardall J (2014) CO2 concentrating mechanisms and environmental change. Aquat Bot 118:24–37CrossRefGoogle Scholar
  51. Raven JA, Beardall J (2015) The ins and outs of CO2. J Exp Bot. doi: 10.1093/jxb/erv451
  52. Raven JA, Beardall J (2016) Dark respiration and organic carbon loss. In: Borowitzka MA, Beardall J, Raven J, Beardall J (eds) The physiology of microalgae. Springer, Dordrecht, pp 129–140CrossRefGoogle Scholar
  53. Raven JA, Crawfurd K (2012) Environmental controls on coccolithophore calcification. Mar Ecol Prog Ser 370:137–166CrossRefGoogle Scholar
  54. Raven JA, Farquhar GD (1990) The influence of N metabolism and organic acid synthesis on the natural abundance of C isotopes in plants. New Phytol 116:505–529CrossRefGoogle Scholar
  55. Raven JA, Kübler J, Beardall J (2000) Put out the light, and then put out the light. J Mar Biol Assoc UK 80:1–25CrossRefGoogle Scholar
  56. Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans R Soc Lond B 363:2641–2650CrossRefGoogle Scholar
  57. Raven JA, Beardall J, Flynn KJ, Maberly SC (2009) Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J Exp Bot 60:3975–3987CrossRefPubMedGoogle Scholar
  58. Raven JA, Beardall J, Giordano M, Maberly SC (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res 109:281–296CrossRefPubMedGoogle Scholar
  59. Raven JA, Hurd CJ (2012) Ecophysiology of photosynthesis in macroalgae. Photosynth Res 113:105–125CrossRefPubMedGoogle Scholar
  60. Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon concentrating mechanisms and carbon oxidation cycles. Phil Trans R Soc B 367:493–507CrossRefPubMedPubMedCentralGoogle Scholar
  61. Raven JA, Beardall J, Larkum AWD, Sanchez-Baracaldo P (2013) Interactions of photosynthesis with genome size and function. Phil Trans R Soc Lond B 368:20120264CrossRefGoogle Scholar
  62. Raven JA, Beardall J, Giordano M (2014) Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth Res 121:111–124CrossRefPubMedGoogle Scholar
  63. Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Ann Rev Mar Sci 3:291–315CrossRefPubMedGoogle Scholar
  64. Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999CrossRefPubMedGoogle Scholar
  65. Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of C4 photosynthesis in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacteria which lacks thylakoids. Arch Microbiol 100:419–436CrossRefGoogle Scholar
  67. Robbens S, Petersen J, Brinkmann H, Rouzé P, Van de Peer Y (2007) Unique regulation of the Calvin cycle in the ultra-small green alga Ostreococcus. J Mol Evol 64:601–604CrossRefPubMedGoogle Scholar
  68. Roberts K, Granum E, Leegood R, Raven J (2007a) Carbon acquisition by diatoms. Photosynth Res 93:79–88CrossRefPubMedGoogle Scholar
  69. Roberts K, Granum E, Leegood RC, Raven JA (2007b) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol 145:230–235CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rost B, Kranz SA, Richter K-U, Tortell PD (2007) Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton. Limnol Oceanogr Methods 5:328–337CrossRefGoogle Scholar
  71. Rotatore C, Colman B (1990) Uptake of inorganic carbon by isolated chloroplasts of the unicellular green alga Chlorella ellipsoidea. Plant Physiol 93:1597–1600CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rotatore C, Colman B (1991) The localization of active carbon transport at the plasma membrane in Chlorella ellipsoidea. Can J Bot 69:1025–1031CrossRefGoogle Scholar
  73. Schmidt S, Raven JA, Paungfoo-Lonhienne C (2013) The mixotrophic nature of photosynthetic plants. Funct Plant Biol 40:425–438CrossRefGoogle Scholar
  74. Scott KM, Henn-Sax M, Longa D, Cavanaugh CM (2007) Kinetic isotope effect and biochemical characteristics of form IA Rubisco from the marine cyanobacterium Prochlorococcus marinus MIT 9313. Limnol Oceanogr 53:2199–2204CrossRefGoogle Scholar
  75. Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J Biol Chem 277:18658–18664CrossRefPubMedGoogle Scholar
  76. Shiraiwa Y, Danbara A, Yoke K (2004) Characterization of highly oxygen-sensitive photosynthesis in coccolithophorids. Jpn J Phycol 52(Suppl):87–94Google Scholar
  77. Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366CrossRefPubMedGoogle Scholar
  78. Spalding MH, Van K, Wang Y, Nakamura Y (2002) Acclimation of Chlamydomonas to changing carbon availability. Funct Plant Biol 29:221–230CrossRefGoogle Scholar
  79. Stojkovic S, Beardall J, Matear R (2013) CO2 concentrating mechanisms in three southern hemisphere strains of Emiliania huxleyi. J Phycol 49:670–679CrossRefGoogle Scholar
  80. Studer RA, Christin P-A, Williams MA, Orengo CA (2014) Stability-activity trade-offs constrain the adaptive evolution of RubisCO. Proc Natl Acad Sci U S A 111:2222–2228CrossRefGoogle Scholar
  81. Sültemeyer D (1998) Carbonic anhydrase in eukaryotic algae: characterization, regulation and possible functions during photosynthesis. Can J Bot 76:962–972Google Scholar
  82. Sültemeyer DF, Fock HP, Canvin DT (1991) Active uptake of inorganic carbon by Chlamydomonas reinhardtii: evidence for simultaneous transport of HCO3 and CO2 and characterization of active transport. Can J Bot 69:995–1002CrossRefGoogle Scholar
  83. Tcherkez GG, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases are nearly perfectly optimised. Proc Natl Acad Sci U S A 103:7246–7251CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tsuji Y, Suzuki I, Shiraiwa Y (2009) Photosynthetic carbon assimilation in the coccolithophorid Emiliania huxleyi (Haptophyta): evidence for the predominant operation of the C3 cycle and the contribution of β-carboxylases of the active anaplerotic reaction. Plant Cell Physiol 50:318–329CrossRefPubMedGoogle Scholar
  85. Tsuji Y, Suzuki I, Shiraiwa Y (2012) Enzymological evidence for the function of a plastid-located pyruvate carboxylase in the haptophyte alga Emiliania huxleyi: a novel pathway for the production of C4 compounds. Plant Cell Physiol 53:1043–1052CrossRefPubMedGoogle Scholar
  86. Tyrrell T (2013) On Gaia. Princeton University Press, PrincetonCrossRefGoogle Scholar
  87. van Hunnik E, Amoroso G, Sültemeyer D (2002) Uptake of CO2 and bicarbonate by intact cells and chloroplasts of Tetraedon minimum and Chlamydomonas noctigama. Planta 215:763–769CrossRefPubMedGoogle Scholar
  88. Whitney SM, Andrews TJ (1998) The CO2/O2 specificity of single-subunit ribulose-bisphosphate carboxylase from the dinoflagellate, Amphidinium carterae. Aust J Plant Physiol 25:131–138CrossRefGoogle Scholar
  89. Whitney S, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer Nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155:27–35CrossRefPubMedPubMedCentralGoogle Scholar
  90. Young EB, Beardall J, Giordano M (2001) Investigation of inorganic carbon acquisition by Dunaliella tertiolecta (Chlorophyta) using inhibitors of putative HCO3 utilization pathways. Eur J Phycol 36:81–88Google Scholar
  91. Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334:1151–1153CrossRefGoogle Scholar
  92. Zhang C-C, Jeanjean R, Joliot F (1998) Obligate autotrophy in cyanobacteria: more than a lack of sugar transporters. FEMS Lett 161:285–298CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Biological SciencesMonash UniversityClaytonAustralia
  2. 2.Division of Plant BiologyUniversity of Dundee at the James Hutton InstituteInvergowrieUK
  3. 3.Plant Functional Biology and Climate Change ClusterUniversity of Technology SydneyUltimoAustralia

Personalised recommendations