Photosynthesis and Light Harvesting in Algae

Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 6)

Abstract

The eukaryotic algae display a spectacular diversity of light harvesting pigments and photosynthetic mechanisms. By contrast the Cyanobacteria on one side and the land plants on the other are uniformly dull. The Cyanobacteria make up for this relative uniformity in just one way: they have a much greater range of chlorophyll pigments, and in the case of chlorophyll d, this pigment does nearly all the heavy lifting in photosynthesis. The plastids of eukaryotic algae arose by endosymbiosis from Cyanobacteria, but during this phase of evolution, which lasted perhaps 1.5 billion years, many new structures and pigments evolved, giving the basis for the overall diversity. Three types of primary plastids occur today, the chloroplasts (Chlorophyta), the rhodoplasts (Rhodophyta) and the glaucoplasts (Glaucophyta), each with characteristic pigments and photosynthetic mechanisms. These primary lines became secondarily endosymbiotic, giving rise to secondary plastids and several evolutionary lines of eukaryotic algae. Here mention should be made of lines with chlorophyll c such as diatoms, with fucoxanthin as a main pigment, dinoflagellates with peridinin and other major members of the oceanic phytoplankton with a range of carotenoid pigments. And moving further down the evolutionary road one comes to the apicomplexans, which have lost their photosynthetic capacity but which retain an apicoplast and are important pathogens, such as the malaria organism. In all these photosynthetic, eukaryotic algae there has also been a development of mechanisms to cope with variable light, generally known as non-photochemical quenching, which is developed to a much greater extent compared to Cyanobacteria.

Keywords

Apicoplast Carotenoid Chlorophyll Cyanobacteria Light harvesting Non-photochemical quenching Photoprotection Photosytems photosynthesis Primary plastid Secondary plastid Spillover Xanthophyll cycle 

Notes

Acknowledgements

This article is dedicated to my wife, Hilary, who died during its preparation. I also wish to thank my many colleagues for their support and stimulating discussions over many past years. In particular, I wish to acknowledge the generous support given by Prof P J Ralph and the University of Technology Sydney.

References

  1. Allen JF (1992) Protein phoshorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335PubMedCrossRefGoogle Scholar
  2. Allen JF, Bennett J, Steinbeck KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291:482–492CrossRefGoogle Scholar
  3. Allorent G, Tokutsu R, Roach T, Peers G, Cardol P, Girard-Bascou J, Seigneurin-Berny D, Petroutsos D, Kuntz M, Breyton C, Franck F, Wollman FA, Niyogi KK, Krieger-Liszkay A, Minagawa J, Finazzi G (2013) A dual strategy to cope with high light in Chlamydomonas reinhardtii. Plant Cell 25:545–557PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arsalane W, Rousseau B, Duval JC (1994) Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom – competition between photoprotection and photoinhibition. Photochem Photobiol 60:237–243CrossRefGoogle Scholar
  5. Ball SG, Subtil A, Bhattacharya D, Moustafa A, Weber APM, Gehre L, Colleoni C, Arias MC, Cenci U, Dauvillée D (2013) Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis? Plant Cell 25:7–21PubMedPubMedCentralCrossRefGoogle Scholar
  6. Belgio E, Duffy CDP, Ruban AV (2013) Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. Phys Chem Chem Phys 15:12253–12261PubMedCrossRefGoogle Scholar
  7. Berner T (1993) Ultrastructure of microalgae. CRC Press, Boca RatonGoogle Scholar
  8. Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber APM, Cecilia Arias M, Henrissat B, Coutinho PM, Krishnan A, Zäuner S, Morath S, Hilliou F, Egizi A, Perrineau M-M, Yoon HS (2013) Genome of the red alga Porphyridium purpureum. Nature Commun 4:1941. doi:10.1038/ncomms2931Google Scholar
  9. Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–5295PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blankenship RE (2014) Molecular mechanisms of photosynthesis, 2nd edn. Wiley, New YorkGoogle Scholar
  11. Bonaventura CJ, Myers J (1989) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 301:227–248Google Scholar
  12. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681Google Scholar
  13. Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW, Cummings DG (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105CrossRefGoogle Scholar
  14. Bruce D, Biggins J, Steiner T, Thewalt M (1986) Exctation energy tansfer in cryptophytes. Fluorescence excitation spectra and picosecond time-resolved emeission spectra of intact alga at 77K. Photochem Photobiol 44:519–525CrossRefGoogle Scholar
  15. Büchel C, Wilhelm C (1990) Wavelength independent state transitions and light regulated chlororespiration as mechanisms to control the energy status in the chloroplast of Pleurochloris meiringensis. Plant Physiol Biochem 28:307–314Google Scholar
  16. Bulté L, Gans P, Rebéille F, Wollman F-A (1990) ATP control of state transitions in vivo in Chlamydomonas reinhardtii. Biochim Biophys Acta 1020:72–80CrossRefGoogle Scholar
  17. Butler W (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378CrossRefGoogle Scholar
  18. Caron L, Remy R, Berkaloff C (1988) Polypeptide composition of light-harvesting complexes from some brown-algae and diatoms. FEBS Lett 229:11–15CrossRefGoogle Scholar
  19. Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–19.PubMedCrossRefGoogle Scholar
  20. Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nature Chem Biol 10:492–501CrossRefGoogle Scholar
  21. Czaja AD, Johnson CM, Beard BL, Roden EE, Li W, Moorbath S (2013) Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet Sci Lett 363:192–203CrossRefGoogle Scholar
  22. Delosme R, Olive J, Wollman FA (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta Bioenergy 1273:150–158CrossRefGoogle Scholar
  23. Delphin E, Duval JC, Kirilovsky D (1995) Comparison of state 1-state 2 transitions in the green alga Chlamydomonas reinhardtii and in the red alga Rhodella violacea. Effect of kinase and phosphatase inhibitors. Biochim Biophys Acta Bioenergy 1232:91–95CrossRefGoogle Scholar
  24. Delphin E, Duval L, Etienne A, Kiirilovsky D (1996) State transitions or ΔpH-dependent quenching of photosystem II fluorescence in red algae. Biochemistry 35:9435–9443PubMedCrossRefGoogle Scholar
  25. Demmig-Adams B, Adams WW III (1993) The xanthophyll cycle. In: Young A, Britton G (eds) Carotenoids in photosynthesis. Chapman & Hall, London, pp 206–251Google Scholar
  26. Depege N, Bellafiore S, Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575PubMedCrossRefGoogle Scholar
  27. DePriest MS, Bhattacharya D, Lopez-Bautista JM (2013) The plastid genome of the red macroalga Grateloupia taiwanensis (Halymeniaceae). PLoS One 8(7):e68246PubMedPubMedCentralCrossRefGoogle Scholar
  28. Doege M, Ohmann E, Tschiersch H (2000) Chlorophyll fluorescence quenching in the alga Euglena gracilis. Photosynth Res 63:159–170PubMedCrossRefGoogle Scholar
  29. Dorrell RG, Howe CJ (2012) What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci 125:1865–1875PubMedCrossRefGoogle Scholar
  30. Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244PubMedCrossRefGoogle Scholar
  31. Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng L-T, Wu X, Reith M, Cavalier-Smith T, Maier U-G (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096PubMedCrossRefGoogle Scholar
  32. Drop B, Webber-Birungi M, Yadav SKN, Filipowicz-Szymanska A, Fusetti F, Boekema EJ, Croce R (2014a) Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. Biochim Biophys Acta Bioenergy 1837:63–72CrossRefGoogle Scholar
  33. Drop B, Yadav KNS, Boekema EJ, Croce R (2014b) Consequences of state transitions on the structural and functional organization of Photosystem I in the green alga Chlamydomonas reinhardtii. Plant J 78:181–191PubMedCrossRefGoogle Scholar
  34. Engelken J, Brinkmann H, Adamska I (2010) Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evolutionary Biology 10:233. doi:  10.1186/1471-2148-10-233 PubMedPubMedCentralGoogle Scholar
  35. Escoubas JM, Lomas M, Laroche J, Falkowski PG (1996) Light intensity regulation of CAB gene transcription is signaled by redox state of plastoquinone pool. Proc Natl Acad Sci U S A 92:10237–10241CrossRefGoogle Scholar
  36. Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  37. Fehling J, Stoeker D, Baldauf S (2007) Photosynthesis and the eukaryote tree of life. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier, Amsterdam, pp 75–107CrossRefGoogle Scholar
  38. Fork DC, Satoh K (1986) The control of state transitions of the distribution of excitation energy in photosysnthesis. Annu Rev Plant Physiol 37:335–361CrossRefGoogle Scholar
  39. Fork DC, Herbert SK, Malkin S (1991) Light energy distribution in the brown alga Macrocystis pyrifera (giant kelp). Plant Physiol 95:731–739PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fosberg J, Allen JF (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326CrossRefGoogle Scholar
  41. Gan F, Zhang SY, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317PubMedCrossRefGoogle Scholar
  42. Gibbs PB, Biggins J (1991) In vivo and in vitro protein phosphorylation studies in Ochromonas danica, an alga with chlorophyll a/c/fucoxanthin binding protein. Plant Physiol 97:388–395PubMedPubMedCentralCrossRefGoogle Scholar
  43. Glazer AN, Wedemeyer GJ (1995) Cryptomonad biliproteins – an evolutionary perspective. Photosynth Res 46:93–105PubMedCrossRefGoogle Scholar
  44. Goss R, Bohme KC (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin – consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta 205:613–621CrossRefGoogle Scholar
  45. Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106:103–122PubMedCrossRefGoogle Scholar
  46. Green BR (2011) After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynth Res 107:103–115PubMedCrossRefGoogle Scholar
  47. Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714PubMedCrossRefGoogle Scholar
  48. Gundermann K, Büchel C (2014) Structure and functional heterogeneity of fucoxanthin-chlorophyll proteins in diatoms. In: Hohmann-Marriott MF (ed) The structural basis of biological energy generation. Springer, Dordrecht, pp 21–37CrossRefGoogle Scholar
  49. Gundermann K, Schmidt M, Weisheit W, Mittag M, Buchel C (2013) Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta Bioenergy 1827:303–310CrossRefGoogle Scholar
  50. Gwizdala M, Wilson A, Omairi-Nasser A, Kirilovsky D (2013) Characterization of the Synechocystis PCC 6803 fluorescence recovery protein involved in photoprotection. Biochim Biophys Acta Bioenergy 1827:348–354CrossRefGoogle Scholar
  51. Haldrup A, Jensen PE, Lunde C, Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6:301–305PubMedCrossRefGoogle Scholar
  52. Hill R, Larkum AWD, Prasil O, Kramer DM, Szabo M, Kumar V, Ralph PJ (2012) Light-induced dissociation of antenna complexes in the symbionts of scleractinian corals correlates with sensitivity to coral bleaching. Coral Reefs 31:963–975CrossRefGoogle Scholar
  53. Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272:1788–1791PubMedCrossRefGoogle Scholar
  54. Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684PubMedCrossRefGoogle Scholar
  55. Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD (2008) The origin of plastids. Philos Trans R Soc Lond B 363:2675–2685CrossRefGoogle Scholar
  56. Hsu SH, Paoletti C, Torres M, Ritchie RJ, Larkum AWD, Grillet C (2012) Light transmission of the marine diatom Coscinodiscus wailesii. In: Lakhtakia A, Martin RJ, Palma J (eds) Bioinspiration, biomimetics, and bioreplication, Proc. of SPIE, Vol 8339, 83390F. SPIE, Bellingham. doi:  10.1117/12.915044
  57. Ihnken S, Kromkamp JC, Beardall J, Silsbe GM (2014) State-transitions facilitate robust quantum yields and cause an over-estimation of electron transport in Dunaliella tertiolecta cells held at the CO2 compensation point and re-supplied with DIC. Photosynth Res 119:257–272PubMedCrossRefGoogle Scholar
  58. Jeffrey SW (1989) Chlorophyl c pigments and their distribution in chromophytic algae. In: Green JC, Leadbetter BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Clarendon Press, Oxford, pp 13–36Google Scholar
  59. Josue JS, Frank HA (2002) Direct determination of the S-1 excited-state energies of xanthophylls by low-temperature fluorescence spectroscopy. J Phys Chem A 106:4815–4824CrossRefGoogle Scholar
  60. Kanazawa A, Blanchard GJ, Szabo M, Ralph PJ, Kramer DM (2014) The site of regulation of light capture in symbiodinium: does the peridinin-chlorophyll alpha-protein detach to regulate light capture? Biochim Biophys Acta Bioenergy 1837:1227–1234CrossRefGoogle Scholar
  61. Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607PubMedCrossRefGoogle Scholar
  62. Kirilovsky D, Kerfeld CA (2012) The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim Biophys Acta Bioenergy 1817:158–166CrossRefGoogle Scholar
  63. Kowalczyk N, Rappaport F, Boyen C, Wollman FA, Collen J, Joliot P (2013) Photosynthesis in Chondrus crispus: the contribution of energy spill-over in the regulation of excitonic flux. Biochim Biophys Acta Bioenergy 1827:834–842CrossRefGoogle Scholar
  64. Larkum AWD (2003) Light-harvesting systems in algae. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer, Dordrecht, pp 277–304CrossRefGoogle Scholar
  65. Larkum AWD (2006) The evolution of chlorophylls and photosynthesis. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls. Springer, Berlin, pp 261–282CrossRefGoogle Scholar
  66. Larkum AWD (2008) Evolution of the reaction centers and photosystems. In: Renger G (ed) Primary processes of photosynthesis: principles and apparatus. Part 2. Royal Society of Chemistry Publishing, Cambridge, pp 489–521Google Scholar
  67. Larkum AWD, Barrett J (1983) Light harvesting processes in algae. Adv Bot Res 10:1–219CrossRefGoogle Scholar
  68. Larkum AWD, Howe CJ (1997) Molecular aspects of light harvesting processes in algae. Adv Bot Res 27:257–330CrossRefGoogle Scholar
  69. Larkum AWD, Vesk M (2003) Algal plastids: their fine structure and properties. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis of algae. Kluwer Publishing, Dordrecht, pp 11–28CrossRefGoogle Scholar
  70. Larkum AWD, Lockhart PJ, Howe CJ (2007) The origin of plastids: a shopping bag model. Photosynth Res 91:272Google Scholar
  71. Lepetit B, Sturm S, Rogato A, Gruber A, Sachse M, Falciatore A, Kroth PG, Lavaud J (2013) High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Plant Physiol 161:853–865PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ley AC, Butler WL (1980) Energy distribution in the photchemical apparatus of Porphyridium cruentum in State1 and State 2. Biochim Biophys Acta Bioenergy 592:349–363CrossRefGoogle Scholar
  73. Li XP, Muller-Moule P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci U S A 99:15222–15227PubMedPubMedCentralCrossRefGoogle Scholar
  74. Li B, Lopes JS, Foster PG, Embley TM, Cox CJ (2014) Compositional biases among synonymous substitutions cause conflict between gene and protein trees for plastid origins. Mol Biol Evol 31:1697–1709PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lichtle C, Arsalane W, Duval JC, Passaquet C (1995) Characterization of the light-harvesting complex of Giraudyopsis stellifer (Chrysophyceaeae) and effects of light stress. J Phycol 31:380–387CrossRefGoogle Scholar
  76. Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci U S A 96:8784–8789PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lucker B, Kramer DM (2013) Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability. Photosynth Res 117:449–459PubMedCrossRefGoogle Scholar
  78. Lunde C, Jensen PE, Haldrup A, Knoezel J, Scheller HV (2000) The PS I-H subunit of Photosystem I is essential for state transitions in plant photosynthesis. Nature 408:613–615PubMedCrossRefGoogle Scholar
  79. Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657PubMedCrossRefGoogle Scholar
  80. Miloslavina Y, Grouneva I, Lambrev PH, Lepetit B, Goss R et al (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochim Biophys Acta Bioenergy 1787:1189–1197CrossRefGoogle Scholar
  81. Minagawa J (2013) Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation of photosynthesis. Front Plant Sci 4:513. doi: 10.3389/fpls.2013.00513 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402CrossRefGoogle Scholar
  83. Mohanty N, Gilmore AM, Yamamoto HY (1995) Mechanism of non-photochemical chlorophyll fluorescence quenching. 2. Resolution of rapidly reversible absorbance changes at 530 nm and fluorescence quenching by the effects of antimycin, dibucaine and cation exchanger A23187. Aust J Plant Physiol 22:239–247CrossRefGoogle Scholar
  84. Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103:13126–13131PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mullineau CW, Sarcina M (2002) Probing the dynamic of photosynthetic mebranes with fluorescence recovery after photobleaching. Trends Plant Sci 7:27–42Google Scholar
  86. Murata N (1969) Control of excitation transfer in photosynthesis. I. Light-induced changes of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 189:171–181PubMedCrossRefGoogle Scholar
  87. Murata N (1970) Control of excitation transfer in photosynthesis. IV. Kinetics of chlorophyll a fluorescence in Porphyra yezoensis. Biochim Biophys Acta 205:379–389PubMedCrossRefGoogle Scholar
  88. Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16:307–314PubMedCrossRefGoogle Scholar
  89. Nowack ECM, Grossman AR (2012) Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci U S A 109:5340–5345PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K (2009) Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 53:872–880PubMedCrossRefGoogle Scholar
  91. Price DC, Chan CX, Yoon HS, Yang EC, Qiu H et al (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847PubMedCrossRefGoogle Scholar
  92. Pursiheimo S, Rintamaki E, Baena-Gonzalez E, Aro EM (1998) Thylakoid protein phosphorylation in evolutionally divergent species with oxygenic photosynthesis. FEBS Lett 423:178–182PubMedCrossRefGoogle Scholar
  93. Quigg A, Kotabová E, Jarešová J, Kaňa R, Setlík J, Sedivá B, Komárek O, Prášil O (2012) Photosynthesis in Chromera velia represents a simple system with high efficiency. PLoS One 7(10):e47036. doi: 10.1371/journal.pone.0047036 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Raven JA (2011) The cost of photoinhibition. Physiol Plant 142:87–104PubMedCrossRefGoogle Scholar
  95. Reynolds JM, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci U S A 105:13674–71368PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rochaix JD (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309PubMedCrossRefGoogle Scholar
  97. Ruban A (2013) The photosynthetic membrane: molecular mechanisms and biophysics of light harvesting. Wiley, Chichester, 267 ppGoogle Scholar
  98. Sarcina M, Tobin MJ, Mullineaux CW (2001) Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942 – effects of phycobilisome size, temperature, and membrane lipid composition. J Biol Chem 276:46830–46834PubMedCrossRefGoogle Scholar
  99. Satoh K, Fork DC (1983) State I – State II transitions in the green alga Scenedesmus obliquus. Photochem Photobiol 37:429–434CrossRefGoogle Scholar
  100. Saw JHW, Schatz M, Brown MV, Kunkel DD, Foster JS, Shick H, Christensen S, Hou S, Wan X, Donachie SP (2013) Cultivation and complete genome sequencing of Gloeobacter kilaueensis sp nov., from a lava cave in Kilauea Caldera, Hawai’i. PLoS One 8(10):e76376. doi: 10.1371/journal.pone.0076376 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Scheer H (ed) (1991) Chlorophylls. CRC Press, Boca Raton, 1257 ppGoogle Scholar
  102. Schliep M, Cavigliasso G, Quinnell RG, Stranger R, Larkum AWD (2013) Formyl group modification of chlorophyll a: a major evolutionary mechanism in oxygenic photosynthesis. Plant Cell Environ 36:521–527PubMedCrossRefGoogle Scholar
  103. Schmitt F-J, Renger G, Friedrich T, Kreslavski VD, Zharmukhamedov SK, Los DA, Kuznetsov VV, Allakhverdiev SI (2014) Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim Biophys Acta Bioenergy 1837:835–848CrossRefGoogle Scholar
  104. Schreiber U, Endo T, Mi HL, Asada K (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse method – particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 5:873–882Google Scholar
  105. Schulte T, Sharples FP, Hiller RG, Hofmann E (2009) X-ray structure of the high-salt form of the peridinin-chlorophyll a-protein from the dinoflagellate Amphidinium carterae: modulation of the spectral properties of pigments by the protein environment. Biochemistry 48:4466–4475PubMedCrossRefGoogle Scholar
  106. Sedoud A, Lopez-Igual R, Rehman AU, Wilson A, Perreau F, Boulay C, Vass I, Krieger-Liszkay A, Kirilovsky D (2014) The cyanobacterial photoactive orange carotenoid protein is an excellent singlet oxygen quencher. Plant Cell 26:1781–1791PubMedPubMedCentralCrossRefGoogle Scholar
  107. Slavov C, Reus M, Holzwarth AR (2013) Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. J Phys Chem B 117:11326–11336PubMedCrossRefGoogle Scholar
  108. Song P-S, Koka P, Prezelin BB, Haxo FT (1976) Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates. Biochemistry 15:4422–4427PubMedCrossRefGoogle Scholar
  109. Stransky H, Hager A (1970) Das Carotenoidmuster und die Verbreitung des lichtinduzerten Xanthophyll-Cyclus in verschiedenen Algenklassen. IV. Chemosystematische Betrachtung. Arch Mikrobiol 73:315–323PubMedCrossRefGoogle Scholar
  110. Sturm S, Engelken J, Gruber A, Vugrinec S, Kroth PG, Adamska I, Lavaud J (2013) A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. BMC Evol Biol 13:159PubMedPubMedCentralCrossRefGoogle Scholar
  111. Szabo M, Parker K, Guruprasad S, Kuzhiumparambil U, Lilley RM, Tamburic B, Schliep M, Larkum AWD, Schreiber U, Raven JA, Ralph PJ (2014) Photosynthetic acclimation of Nannochloropsis oculata investigated by multi-wavelength chlorophyll fluorescence analysis. Bioresour Technol 167:521–529PubMedCrossRefGoogle Scholar
  112. Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nature Commun 4:1954. doi: 10.1038/ncomms2954 Google Scholar
  113. Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118PubMedPubMedCentralCrossRefGoogle Scholar
  114. ten Lohuis MR, Miller DJ (1998) Light-regulated transcription of genes encoding peridinin chlorophyll a proteins and the major intrinsic light-harvesting complex proteins in the dinoflagellate Amphidinium carterae Hulbert (Dinophyceae) – changes in cytosine methylaion accompany photadaptation. Plant Physiol 117:189–196PubMedPubMedCentralCrossRefGoogle Scholar
  115. Tikkanen M, Suorsa M, Gollan PJ, Aro EM (2012) Post-genomic insight into thylakoid membrane lateral heterogeneity and redox balance. FEBS Lett 586:2911–2916PubMedCrossRefGoogle Scholar
  116. Toole CM, Allnutt FCT (2003) Red, cryptomonad and glaucocystophyte phycolbiliproteins. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 305–334CrossRefGoogle Scholar
  117. Torres M, Ritchie RJ, Lilley RM, Grillet C, Larkum AWD (2013) Measurement of photosynthesis and photosynthetic efficiency in two diatoms. N Z J Bot 52:6–27CrossRefGoogle Scholar
  118. Unlu C, Drop B, Croce R, van Amerongen H (2014) State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci U S A 111:3460–3465PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wagner H, Jakob T, Wilhelm C (2006) Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol 169:95–108PubMedCrossRefGoogle Scholar
  120. Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G, Sharples F, Hiller RG, Curmi PMG (1999) Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63-Å resolution. Proc Natl Acad Sci U S A 96:8901–8906PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. Embo J 20:3623–3630PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51:639–648CrossRefGoogle Scholar
  123. Zhang Y, Chen M, Church B, Lau KW, Larkum AWD, Jermiin LS (2010) The molecular structure of the IsiA–Photosystem I supercomplex, modelled from high-resolution, crystal structures of Photosystem I and the CP43 protein. Biochim Biophys Acta Bioenergy 1797:457–465CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Plant Functional Biology and Climate Change Cluster (C3)University of Technology SydneySydneyAustralia

Personalised recommendations