Systematics, Taxonomy and Species Names: Do They Matter?

  • Michael A. Borowitzka
Part of the Developments in Applied Phycology book series (DAPH, volume 6)


The species name is a shorthand identifier for a taxonomic entity and provides an important information retrieval tool, even more so in this age of electronic on-line searching and large-scale databases. However, the species name also has limitations. Firstly, the species must have been correctly identified and the correct name applied. Secondly, because of new insights and data on species, there may be a reappraisal of the species and its relationship to other taxa leading to possible changes in the name. One needs to be aware of these changes if one wishes to retrieve all the information available on the organism. For microalgae provision of the species name (binomial) alone in a publication is not sufficient. For effective and accurate data retrieval and communication the strain designator (strain number) is also extremely important. Two strains may initially have been identified as the same species, but later studies may show them to belong to different species or, even if they are the same species, to show some genetic and important phenotypic differences in physiology, some of which may have arisen in culture over time. For a number of algae species the name and its phylogenetic placement have undergone changes over the years. In this book considerable effort has gone into ensuring, as far as possible, that the currently accepted names for algae species are used and, in order to assist in reconciling species names and to find the taxonomic affiliation of species this chapter lists all the species names used in the book and also provides information on the name changes of the major species.


Taxonomy Systematics Phylogeny Nomenclature Synonyms Molecular systematics 


  1. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Frederiq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad DA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451CrossRefPubMedGoogle Scholar
  2. Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, le Gall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–514CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alonso DL, Grima EM, Perez JAS, Sanchez JLG, Camacho FG (1992) Isolation of clones of Isochrysis galbana rich in eicosapentaenoic acid. Aquaculture 102:363–371CrossRefGoogle Scholar
  4. Anagnostidis K (2001) Nomenclatural changes in cyanoprokaryotic order Oscillatoriales. Preslia (Prague) 73:359–375Google Scholar
  5. Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Archiv Hydrobiol Suppl 80:327–472Google Scholar
  6. Andersen RA, Kim JI, Tittley I, Yoon HS (2014) A re-investigation of Chrysotila (Prymnesiophyceae) using material collected from the type locality. Phycologia 53:463–473CrossRefGoogle Scholar
  7. Balzano S, Sarno D, Kooistra WHCF (2011) Effects of salinity on the growth rate and morphology of ten Skeletonema strains. J Plankton Res 33:937–945CrossRefGoogle Scholar
  8. Bashan Y, Lopez BR, Huss VAR, Amavizca E, de-Bashan LE (2015) Chlorella sorokiniana (formerly C. vulgaris) UTEX 2714, a non-thermotolerant microalga useful for biotechnological applications and as a reference strain. J Appl Phycol. doi: 10.1007/s10811-015-0571-z Google Scholar
  9. Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J Phycol 18:529–537CrossRefGoogle Scholar
  10. Bendif EM, Probert I, Schroeder DC, Vargas C (2013) On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J Appl Phycol 25:1763–1776CrossRefGoogle Scholar
  11. Bergholtz T, Daugbjerg N, Moestrup Ø, Fernández-Tejedor M (2006) On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov. (Dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition. J Phycol 42:170–193CrossRefGoogle Scholar
  12. Bidarttondo MI, Bruns TD, Blackwell M, Edwards I, Taylor AFS, Horton T, Zhang N et al (2008) Preserving accuracy in GenBank. Science 309:1616CrossRefGoogle Scholar
  13. Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan D, Gurnon J, Ladunga I, Lindquist E, Lucas S, Pangilinan J, Proschold T, Salamov A, Schmutz J, Weeks D, Yamada T, Lomsadze A, Borodovsky M, Claverie J-M, Grigoriev I, Van Etten J (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bock C, Pröschold T, Krienitz L (2011) Updating the genus Dictyosphaerium and description of Mucidosphaerium gen. nov. (Trebouxiophyceae) based on morphological and molecular data. J Phycol 47:638–652CrossRefGoogle Scholar
  15. Bold HC, Wynne MJ (1978) Introduction to the algae. Structure and reproduction. Prentice-Hall, Englewood CliffsGoogle Scholar
  16. Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  17. Borowitzka MA, Siva CJ (2007) The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J Appl Phycol 19:567–590CrossRefGoogle Scholar
  18. Champenois J, Marfaing H, Pierre R (2015) Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe. J Appl Phycol 27:1845–1851CrossRefGoogle Scholar
  19. Cho Y, Hiramatsu K, Ogawa M, Omura T, Ishimaru T, Oshima Y (2008) Non-toxic and toxic subclones obtained from a toxic clonal culture of Alexandrium tamarense (Dinophyceae): toxicity and molecular biological feature. Harmful Algae 7:740–751CrossRefGoogle Scholar
  20. Corda AJC (1839) Observations sur les Euastrées et les Cosmariées. Almanach de Carlsbad 9:213–244, pls I–IVGoogle Scholar
  21. Costas E, Nieto B, Lopez-Rodas V, Salgado C, Toro M (1998) Adaptation to competition by new mutations in clones of Alexandrium minutum. Evolution 52:6190613CrossRefGoogle Scholar
  22. Deason TR, Silva PC, Watanabe S, Floyd GL (1991) Taxonomic status of the species of the green algal genus Neochloris. Plant Syst Evol 177:213–219CrossRefGoogle Scholar
  23. Dodge JD (1975) The Prorocentrales (Dinophyceae). II. Revision of the taxonomy within the genus Prorocentrum. Bot J Linn Soc 71:103–125CrossRefGoogle Scholar
  24. Edvardsen B, Eikrem W, Shalchian-Tabrizi K, Riisberg I, Johnsen G, Naustvoll L, Throndsen J (2007) Verrucophora farcimen gen. et sp. nov. (Dictyochophyceae, Heterokontophyta) – a bloom-forming ichtyotoxic flagellate from the Skagerrak, Norway. J Phycol 43:1054–19541070CrossRefGoogle Scholar
  25. Edvardsen B, Eikrem W, Throndsen J, Sáez AG, Probert I, Medlin LK (2011) Ribosomal DNA phylogenies and a morphological revision provide the basis for a revised taxonomy of the Prymnesiales (Haptophyta). Eur J Phycol 46:202–228CrossRefGoogle Scholar
  26. Edvarsen B, Eikrem W, Green JC, Andersen RA, Moon-Van der Staay SY, Medlin LK (2000) Phylogenetic reconstructions of the Haptophyta inferred from 18s ribosomal DNA sequences and available morphological data. Phycologia 39:19–35CrossRefGoogle Scholar
  27. Entwhistle TJ, Huisman JM (1998) Algal systematics in Australia. Aust Syst Bot 11:203–214CrossRefGoogle Scholar
  28. Ettl H, Gärtner G (1995) Syllabus der Boden-, Luft- und Flechtenalgen. Gustav Fischer, StuttgartGoogle Scholar
  29. Fucíková C, Lewis LE (2012) Intersection of Chlorella, Muriella and Bracteacoccus: resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta). Fottea 12:83–93CrossRefGoogle Scholar
  30. Garcia-Pichel F, Nübel U, Muyzer G (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol 169:469–482CrossRefPubMedGoogle Scholar
  31. Gellenbeck K (2012) Utilization of algal materials for nutraceutical and cosmeceutical applications—what do manufacturers need to know? J Appl Phycol 24:309–313CrossRefGoogle Scholar
  32. Giner J-L, Zhao H, Tomas C (2008) Sterols and fatty acids of three harmful algae previously assigned as Chattonella. Phytochemistry 69:2167–2171CrossRefPubMedGoogle Scholar
  33. Green JC (1976) Notes on the flagellar apparatus and taxonomy of Pavlova mesolychnon Van der Veer, and on the status of Pavlova Butcher and related genera within the Haptophyceae. J Mar Biol Assoc U K 56:595–602CrossRefGoogle Scholar
  34. Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063CrossRefGoogle Scholar
  35. Guiry MD, Guiry GM (2015) AlgaeBase. World-wide electronic publication. National University of Ireland. Accessed 1 Feb 2015
  36. Happey-Wood CM, Hughes DI (1980) Morphological and physiological variations in clones of Asterionella formosa Hassall. New Phytol 86:441–453CrossRefGoogle Scholar
  37. Harris EH (1989) The Chlamydomonas sourcebook. Academic, San DiegoGoogle Scholar
  38. Hegewald E (1977) Scenedesmus communis Hegewald, a new species and its relation to Scenedesmus quadricauda (Turp.). Bréb Algol Stud/Arch Hydrobiol Suppl 19:142–155Google Scholar
  39. Hegewald E (2000a) New combinations in the genus Desmodesmus (Chlorophyceae, Scenedesmaceae). Algol Stud/Arch Hydrobiol Suppl 131:1–18Google Scholar
  40. Hegewald E (2000b) New combinations in the genus Desmodesmus (Chlorophyceae, Scenedesmaceae). Algol Stud/Arch Hydrobiol Suppl 96:1–18Google Scholar
  41. Hegewald E, Hanagata N (2000) Phylogenetic studies on Scenedesmaceae (Chlorophyta). Algol Stud/Arch Hydrobiol Suppl 100:29–49Google Scholar
  42. Hibberd DJ (1981) Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc 82:93–119CrossRefGoogle Scholar
  43. Hill DRA, Wetherbee R (1989) A reappraisal of the genus Rhodomonas (Cryptophyceae). Phycologia 28:143–158CrossRefGoogle Scholar
  44. Jahn R, Kusber W-H (2005) Reinstatement of the genus Ceratoneis Ehrenberg and lectotypification of its type specimen: C. closterium Ehrenberg. Diatom Res 20:295–304CrossRefGoogle Scholar
  45. Kang S, Mansfield MA, Park B, Geiser DM, Ivors KL, Coffey MD, Grünwald NJ, Martin FN, Lévesque CA, Blair JE (2010) The promise and pitfalls of sequence-based identification of plant-pathogenic fungi and oomycetes. Phytopathology 100:732–737CrossRefPubMedGoogle Scholar
  46. Karsten U, Friedl T, Schumann R, Hoyer K, Lembke S (2005) Mycosporine-like amino acids and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J Phycol 41:557–566CrossRefGoogle Scholar
  47. Komárek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes 4 – Nostocales. Algol Stud 56:247–345Google Scholar
  48. Komárek J, Anagnostidis K (2005) Süsswasserflora von Mitteleuropa. Cyanoprokaryota: 2. Teil/2nd Part: Oscillatoriales, vol 19. Elsevier Spektrum, MünchenGoogle Scholar
  49. Komárek J, Kopeky J, Cepák V (1999) Generic characters of the simplest cyanoprokaryotes Cyanobium, Cyanobacterium and Synechococcus. Cryptog Algol 20:209–222CrossRefGoogle Scholar
  50. Kooistra WHCF, Sarno D, Balzano S, Gu H, Andersen RA, Zingone A (2008) Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist 159:177–193CrossRefPubMedGoogle Scholar
  51. Krammer K (1997) Die cymbelloiden Diatomeen. Eine Monographie der weltweit bekannten Taxa. Teil 1. Allgemeines und Encyonema Part. Bibl Diatomol 36:1–382Google Scholar
  52. Krienitz L, Hegewald EH, Hepperle V, Huss T, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43:529–542CrossRefGoogle Scholar
  53. Kubo T, Abe J, Saito T, Matsuda Y (2002) Genealogical relationships among laboratory strains of Chlamydomonas reinhardtii inferred from matrix metalloprotease genes. Curr Genet 41:115–122CrossRefPubMedGoogle Scholar
  54. Liang Y, Mai K, Sun S (2005) Differences in growth, total lipid content and fatty acid composition among 60 clones of Cylindrotheca fusiformis. J Appl Phycol 17:61–65CrossRefGoogle Scholar
  55. Lin YH, Chang FL, Tsao CY, Leu JY (2007) Influence of growth phase and nutrient source on fatty acid composition of Isochrysis galbana CCMP 1324 in a batch photoreactor. Biochem Eng J 37:166–176CrossRefGoogle Scholar
  56. Loret P, Tengs T, Villareal T, Singler H, Richardson B, McGuire P, Morton S, Busman M, Campbell L (2002) No difference found in ribosomal DNA sequences from physiologically diverse clones of Karenia brevis (Dinophyceae) from the Gulf of Mexico. J Plankton Res 24:735CrossRefGoogle Scholar
  57. Marin B, Palm A, Klingberg M, Melkonian M (2003) Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154:99–145CrossRefPubMedGoogle Scholar
  58. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’Homme Van Reine WF, Smith GF, Wiersma JH, Turland NJ (2012) International Code of Nomenclature for algae, fungi and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnum Vegetabile vol 154. Koeltz Scientific Books, KoenigsteinGoogle Scholar
  59. Mikhodyuk OS, Zavarzin GA, Ivanovsky RN (2008) Transport systems for carbonate in the extremely natronophilic cyanobacterium Euhalothece sp. Microbiology 77:412–418CrossRefGoogle Scholar
  60. Noutoshi Y, Ito Y, Kanetani S, Fujie M, Usami S, Yamada T (1998) Molecular anatomy of a small chromosome in the green alga Chlorella vulgaris. Nucleic Acids Res 26:3900–3907CrossRefPubMedPubMedCentralGoogle Scholar
  61. Nozaki H, Katagiri M, Nakagawa M, Aizawa K-I, Watanabe MM (1995) Taxonomic re-examination of the two strains labeled “Chlorella” in the microbial culture collection at the National Institute for Environmental Studies (NIES-Collection). Microb Cult Collect 11:11–18Google Scholar
  62. Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou K, Otillar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, Ren Q, Paulsen I, Delwiche C, Schmutz J, Rokhsar D, Van de Peer Y, Moreau H, Grigoriev IV (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Nat Acad Sci 104:7705–7710CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pernet F, Tremblay R, Demers E, Roussy M (2003) Variations of lipid class and fatty acid composition of Chaetoceros muelleri and Isochrysis sp. grown in a semicontinuous system. Aquaculture 221:393–406CrossRefGoogle Scholar
  64. Peterfi LS (1969) The fine structure of Poterioochromonas malhamensis Pringsheim comb. nov. with special reference to the lorica. Nova Hedwig 17:93–103Google Scholar
  65. Pröschold T, Marin B, Schlösser UW, Melkonian M (2001) Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152:265–300CrossRefPubMedGoogle Scholar
  66. Pröschold T, Harris EH, Coleman AW (2005) Portrait of a species: Chlamydomonas reinhardtii. Genetics 170:1601–1610CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rad-Menéndez C, Stanley M, Green DH, Cox EJ, Day JG (2015) Exploring cryptic diversity in publicly available strains of the model diatom Thalassiosira pseudonana (Bacillariophyceae). J Mar Biol Assoc U K. doi: 10.1017/S0025315415000120:1-10 Google Scholar
  68. Rocarati A, Meluzzi A, Acciarri S, Tallarico N, Melotti P (2004) Fatty acid composition of different microalgae strains (Nannochloropsis sp., Nannochloropsis oculata (Droop) Hibberd, Nannochloris atomus Butcher and Isochrysis sp.) according to the culture phase and the carbon dioxide concentration. J World Aquac Soc 35:401–411CrossRefGoogle Scholar
  69. Sarno D, Kooistra HCF, Medlin LK, Percopo I, Zingone A (2005) Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy of S. costatum-like species with the description of four new species. J Phycol 41:151–176CrossRefGoogle Scholar
  70. Sayegh FAQ, Montagnes DJS (2011) Temperature shifts induce intraspecific variation in microalgal production and biochemical composition. Bioresour Technol 102:3007–3013CrossRefPubMedGoogle Scholar
  71. Scott JL, Broadwater ST, Saunders BD, Thomas JP, Gabrielson PW (1992) Ultrastructure of vegetative organization and cell division in the unicellular red alga Dixoniella grisea gen. nov. (Rhodophyta) and a consideration of the genus Rhodella. J Phycol 28:649–660CrossRefGoogle Scholar
  72. Siegesmund MA, Johansen JR, Karsten U, Friedl T (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585CrossRefGoogle Scholar
  73. Stachura-Suphoples K, Williams DM (2009) Description of Conticribra tricircularis, a new genus and species of Thalassiosirales, with a discussion on its relationship to other continuous cribra species of Thalassiosira Cleve (Bacillariophyta) and its freshwater origin. Eur J Phycol 44:477–486CrossRefGoogle Scholar
  74. Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MDJ, Hwang MS, Choi H-G, Miyata M, Kikuchi N, Oliveira MC, Farr T, Neefus C, Mols-Mortensen A, Milstein D, Müller KM (2011) A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J Phycol 47:1131–1151CrossRefGoogle Scholar
  75. Terry KL, Hirata J, Laws EA (1983) Light-limited growth of two strains of the marine diatom Phaeodactylum tricornutum Bohlin: chemical composition, carbon partitioning and the diel periodicity of physiological processes. J Exp Mar Biol Ecol 68:209–227CrossRefGoogle Scholar
  76. Thomas CR, Ono C, Yoshimatsu S, Goebel J (2004) Chattonella verruculosa and related species from Japan, Europe (North Sea) and U.S. coastal waters. In: Steidinger KA, Landsberg JH, Thomas CR, Vargo GA (eds) Harmful algae 2002. Florida Fish and Wildlife, Intergovernmental Oceanographic Commission of UNESCO, St Petersburg, pp 245–427Google Scholar
  77. Timmermans KR, van der Wagt B, Veldhuis MJW, Maatman A, de Baar HJW (2005) Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. J Sea Res 53:109–120CrossRefGoogle Scholar
  78. Valdecasas AG, Peláez ML, Wheeler QD (2014) What’s in a (biological) name? The wrath of Lord Rutherford. Cladistics 30:215–223CrossRefGoogle Scholar
  79. Van den Wyngaert S, Möst M, Freimann R, Ibelings BW, Spaak P (2015) Hidden diversity in the freshwater planktonic diatom Asterionella formosa. Mol Ecol 24:2955–2972CrossRefPubMedGoogle Scholar
  80. Velikova V, Larsen J (1999) The Prorocentrum cordatum/Prorocentrum minimum taxonomic problem. Grana 38:108–112CrossRefGoogle Scholar
  81. Vilgalys R (2003) Taxonomic misidentification in public DNA databases. New Phytol 160:4–5CrossRefGoogle Scholar
  82. Vonshak A, Chanawongse L, Bunnag B, Tanticharoen M (1996) Light acclimation and photoinhibition in three Spirulina platensis (cyanobacteria) isolates. J Appl Phycol 8:35–40CrossRefGoogle Scholar
  83. Worden AZ, Nolan JK, Palenik B (2004) Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceanogr 49:168–179CrossRefGoogle Scholar
  84. Wikfors GH, Patterson GW (1994) Differences in strains of Isochrysis of importance to marculture. Aquaculture 123:127–135CrossRefGoogle Scholar
  85. Yamamoto Y, Fujimoto Y, Arai R, Fujie M, Usami S, Yamada T (2003) Retrotransposon‐mediated restoration of Chlorella telomeres: accumulation of Zepp retrotransposons at termini of newly formed minichromosomes. Nucleic Acids Res 31:4646–4653CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Algae R&D Centre, School of Veterinary and Life SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations