Advertisement

Algal Physiology and Large-Scale Outdoor Cultures of Microalgae

  • Michael A. BorowitzkaEmail author
Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 6)

Abstract

The reliable and efficient production of microalgae in large-scale commercial culture, whether in open ponds or in closed photobioreactors, requires a good understanding of the physiology of the alga being cultured. Since large-scale cultivation is almost always carried out outdoors, the algae experience an environment which changes during the day, from day-to-day, and also seasonally. Key environmental factors are light and temperature, and efficient use of the available light is critical for obtaining maximum productivity. How algal cell metabolism is regulated under such conditions is important as is the ability of the algae to acclimate to changed environmental conditions. Algal productivity and the formation of desired cell products such as carotenoids (e.g. β-carotene and astaxanthin) or long-chain polyunsaturated fatty acids is further affected by nutrient sources and availability and the nutrient requirements of the algae under intensive large-scale culture need to be understood. The availability of inorganic carbon either as carbon dioxide or bicarbonate is especially important. Understanding of the physiology and biochemistry of the algae also enables manipulation of the culture conditions to optimise the productivity of the desired algal metabolite (product). Understanding diurnal and circadian rhythms may also aid in optimising culture conditions and maximising yields by adjusting the timing of harvesting. Monitoring of large-scale cultures is difficult and also requires a good understanding of the physiology of the algae.

Keywords

Raceway ponds Photobioreactors Strain management Photosynthesis Respiration Productivity Mixotrophy Medium recycling Dunaliella Haematococcus Nannochloropsis 

References

  1. Aach HG (1952) Über Wachstum und Zusammensetzung von Chlorella pyrenoidosa bei unterschiedlichen Lichtstärken und Nitratmengen. Arch Mikrobiol 17:213–246CrossRefGoogle Scholar
  2. Abeliovich A, Dickbuck S (1977) Factors affecting infection of Scenedesmus obliquus by a Chytridium sp. in sewage oxidation ponds. Appl Environ Microbiol 34:32–37Google Scholar
  3. Abeliovich A, Weisman D (1978) Role of heterotrophic nutrition in growth of the alga Scenedesmus obliquus in high rate oxidation ponds. Appl Environ Microbiol 35:32–37PubMedPubMedCentralGoogle Scholar
  4. Abiusi F, Sampietro G, Marturano G, Biondi N, Rodolfi L, D’Ottavio M, Tredici MR (2014) Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M-M33 grown with LEDs of different colors. Biotechnol Bioeng 111:956–964PubMedCrossRefGoogle Scholar
  5. Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353PubMedCrossRefGoogle Scholar
  6. Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–305PubMedCrossRefGoogle Scholar
  7. Akimoto H, Kinumi T, Ohmiya Y (2005) Circadian rhythm of a TCA cycle enzyme is apparently regulated at the translational level in the dinoflagellate Lingulodinium polyedrum. J Biol Rhythms 20:479–489PubMedCrossRefGoogle Scholar
  8. Alcántara C, Muñoz R, Norvill Z, Plouviez M, Guieysse B (2015) Nitrous oxide emissions from high rate algal ponds treating domestic wastewater. Bioresour Technol 177:110–117PubMedCrossRefGoogle Scholar
  9. Andersen RA, Berges JA, Harrisson PJ, Watanabe MM (2005) Recipies for freshwater and seawater media. In: Anderson RA (ed) Algal culturing techniques. Elsevier Academic Press, Amsterdam, pp 429–538Google Scholar
  10. Arad (Malis) S, van Moppers D (2013) Novel sulphated polysaccharides of red microalgae; basics and applications. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley-Blackwell, Chichester, pp 406–416CrossRefGoogle Scholar
  11. Armbrust EV, Berges JA, Bowler C, Green BR et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86PubMedCrossRefGoogle Scholar
  12. Asada K (1994) Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis: from molecular mechanisms to field studies. Bios Scientific Publishers, Oxford, pp 129–142Google Scholar
  13. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639PubMedCrossRefGoogle Scholar
  14. Averill BA (1996) Dissimilatory nitrite and nitric oxide reductases. Chem Rev 96:2951–2964PubMedCrossRefGoogle Scholar
  15. Azov Y, Shelef G, Moraine R, Oron G (1980) Alternative operating strategies for high-rate sewage oxidation ponds. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 523–529Google Scholar
  16. Baba M, Shiraiwa Y (2012) High-CO2 response mechanisms in microalgae. In: Najafpour M (ed) Advances in photosynthesis – fundamental aspects. InTech, Rijeka, pp 299–320Google Scholar
  17. Baba M, Kikuta F, Suzuki I, Watanabe MM, Shiraiwa Y (2012) Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii. Bioresour Technol 109:266–270PubMedCrossRefGoogle Scholar
  18. Badger MR, Collatz GJ (1977) Studies on the kinetic mechanism of ribulose-1,5-bisphosphate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie Inst Yearb 76:355–361Google Scholar
  19. Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1052–1071Google Scholar
  20. Badger MR, Von Cammerer S, Ruuska S, Nakono H (2000) Electron flow to O2 in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and Rubisco oxygenase. Phil Trans R Soc Lond B Biol Sci 335:1433–1446CrossRefGoogle Scholar
  21. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113PubMedCrossRefGoogle Scholar
  22. Bañares-España E, López-Rodas V, Salgado C, Costas E, Flores-Moya A (2006) Inter-strain variability in the photosynthetic use of inorganic carbon, exemplified by the pH compensation point, in the cyanobacterium Microcystis aeruginosa. Aquat Bot 85:159–162CrossRefGoogle Scholar
  23. Banavar JR, Damuth J, Maritan A, Rinaldo A (2002) Supply–demand balance and metabolic scaling. Proc Nat Acad Sci 99:10506–10509PubMedPubMedCentralCrossRefGoogle Scholar
  24. Banse K (1976) Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size – a review. J Phycol 12:135–140Google Scholar
  25. Barclay W, Weaver C, Metz J, Hansen J (2010) Development of docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 75–96CrossRefGoogle Scholar
  26. Beardall J (1991) Effects of photon flux density on the CO2-concentrating mechanism of the cyanobacterium Anabaena variabilis. J Plankton Res 13:S133–S141Google Scholar
  27. Beardall J, Raven JA (2013) Limits to phototrophic growth in dense culture: CO2 supply and light. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 91–97CrossRefGoogle Scholar
  28. Beardall J, Raven JA (2016) Carbon acquisition by microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 89–99Google Scholar
  29. Beardall J, Burger-Wiersma T, Rijkeboer M, Sukenik A, Lemoalle J, Dubinsky Z, Fontvielle D (1994) Studies on enhanced post-illumination respiration in microalgae. J Plankton Res 16:1401–1410CrossRefGoogle Scholar
  30. Beardall J, Young E, Roberts S (2001) Approaches for determining phytoplankton nutrient limitation. Aquat Sci 63:44–69CrossRefGoogle Scholar
  31. Beardall J, Quigg A, Raven JA (2003) Oxygen consumption: photorespiration and chlororespiration. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 157–181CrossRefGoogle Scholar
  32. Beardall J, Allen D, Bragg J, Finkel ZV, Flynn KJ, Quigg A, Rees TAV, Richardson A, Raven JA (2009) Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol 181:295–309PubMedCrossRefGoogle Scholar
  33. Bec B, Collos Y, Vaquer A, Mouillot D, Souchu P (2008) Growth rate peaks at intermediate cell size in marine photosynthetic picoeukaryotes. Limnol Oceanogr 53:863–867CrossRefGoogle Scholar
  34. Behrenfeld MJ, Westberry TK, Boss ES, O’Malley RT et al (2009) Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences 6:779–794CrossRefGoogle Scholar
  35. Beijerinck MW (1890) Kulturversuche mit Zoochloren, Lichenengonidien und anderen niederen Algen. Botanische Zeitschrift 48:725–785Google Scholar
  36. Belay A (1997) Mass culture of Spirulina outdoors – the earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 131–158Google Scholar
  37. Belay A (2008) Spirulina (Arthrospira): production and quality assurance. In: Gershwin ME, Belay A (eds) Spirulina in human nutrition and health. CRC Press, Boca Raton, pp 1–25Google Scholar
  38. Belay A, Fogg GE (1978) Photoinhibition of photosynthesis in Asterionella formosa (Bacillariophyceae). J Phycol 14:341–347CrossRefGoogle Scholar
  39. Belay A, Ota Y, Miyakawa K, Shimamatsu H (1994) Production of high quality Spirulina at Earthrise Farms. In: Phang SM, Lee K, Borowitzka MA, Whitton B (eds) Algal biotechnology in the Asia-Pacific region. University of Malaya, Institute of Advanced Studies, Kuala Lumpur, pp 92–102Google Scholar
  40. Belyanin VN, Trenkenshu RP, Silkin VA (1979) Growth of the alga Platymonas viridis in experiments on optimization of microelement composition of the medium. Biol Morya 4:14–19Google Scholar
  41. Ben-Amotz A (1980) Glycerol production in the alga Dunaliella. In: San Pietro A (ed) Biochemical and photosynthetic aspects of energy production. Academic, New York, pp 191–208Google Scholar
  42. Ben-Amotz A (1995) New mode of Dunaliella biotechnology: two-phase growth for ß-carotene production. J Appl Phycol 7:65–68CrossRefGoogle Scholar
  43. Ben-Amotz A (1999) Production of beta-carotene from Dunaliella. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 196–204Google Scholar
  44. Ben-Amotz A, Avron M (1983) On the factors which determine the massive ß-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72:593–597PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126CrossRefGoogle Scholar
  46. Bender SJ, Parker MS, Armbrust EV (2012) Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over a diel cycle in the marine diatom Thalassiosira pseudonana. Protist 163:232–251PubMedCrossRefGoogle Scholar
  47. Bendif EM, Probert I, Schroeder DC, Vargas C (2013) On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J Appl Phycol 25:1763–1776CrossRefGoogle Scholar
  48. Benemann JR (1989) The future of microalgal biotechnology. In: Cresswell RC, Rees TAV, Shah M (eds) Algal and cyanobacterial biotechnology. Longman Scientific & Technical, Harlow, pp 317–337Google Scholar
  49. Berdalet E, Estrada M (2006) Effects of small-scale turbulence on the physiological functioning of marine microalgae. In: Subba Rao DV (ed) Algal cultures, alalogues of blooms and applications. Science Publishers, Plymouth, pp 459–500Google Scholar
  50. Berges JA, Varela DE, Harrison PJ (2002) Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Mar Ecol Prog Ser 225:139–146CrossRefGoogle Scholar
  51. Bernard O, Rémond B (2012) Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresour Technol 123:520–527PubMedCrossRefGoogle Scholar
  52. Bhatti S, Colman B (2008) Inorganic carbon acquisition in some synurophyte algae. Physiol Plant 133:33–40PubMedCrossRefGoogle Scholar
  53. Bhatti S, Huertas IE, Colman B (2002) Acquisition of inorganic carbon by the marine haptophyte Isochrysis galbana (Prymnesiophyceae). J Phycol 38:914–921CrossRefGoogle Scholar
  54. Blackburn S, Parker N (2005) Microalgal life cycles: encystment and excystment. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 399–417Google Scholar
  55. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner M, Junge W, Kramer DM, Melis A (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809PubMedCrossRefGoogle Scholar
  56. Bolier G, de Koningh MCJ, Schmale JC, Donze M (1992) Differential luxury phosphate response of planktonic algae to phosphorus removal. Hydrobiologia 243/244:113–118CrossRefGoogle Scholar
  57. Bonente G, Formighieri C, Mantelli M, Catalanotti C, Giuliano G, Morosinotto T, Bassi R (2011) Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors. Photosynth Res 108:107–120PubMedCrossRefGoogle Scholar
  58. Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M (2012) Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J Biol Chem 287:5833–5847PubMedPubMedCentralCrossRefGoogle Scholar
  59. Booth WA, Beardall J (1991) Effects of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant alga Dunaliella salina (Chlorophyta). Phycologia 30:220–225CrossRefGoogle Scholar
  60. Borowitzka LJ (1981a) The microflora. Adaptations to life in extremely saline lakes. Hydrobiologia 81:33–46CrossRefGoogle Scholar
  61. Borowitzka LJ (1981b) Solute accumulation and regulation of cell water activity. In: Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic, Sydney, pp 97–130Google Scholar
  62. Borowitzka MA (1988a) Algal growth media and sources of cultures. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 456–465Google Scholar
  63. Borowitzka MA (1988b) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 257–287Google Scholar
  64. Borowitzka MA (1992) Comparing carotenogenesis in Dunaliella and Haematococcus: implications for commercial production strategies. In: Villa TG, Abalde J (eds) Profiles on biotechnology. Universidade de Santiago de Compostela, Santiago de Compostela, pp 301–310Google Scholar
  65. Borowitzka MA (1997) Algae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401CrossRefGoogle Scholar
  66. Borowitzka MA (1998) Limits to growth. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae. Springer-Verlag, Berlin, pp 203–226CrossRefGoogle Scholar
  67. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321CrossRefGoogle Scholar
  68. Borowitzka MA (2013a) Dunaliella: biology, production, and markets. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Wiley-Blackwell, Chichester, pp 359–368Google Scholar
  69. Borowitzka MA (2013b) Energy from microalgae: a short history. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 1–15CrossRefGoogle Scholar
  70. Borowitzka MA (2013c) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  71. Borowitzka MA (2013d) Strain selection. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 77–89CrossRefGoogle Scholar
  72. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681Google Scholar
  73. Borowitzka MA, Borowitzka LJ (1988a) Dunaliella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 27–58Google Scholar
  74. Borowitzka MA, Borowitzka LJ (1988b) Limits to growth and carotenogenesis in laboratory and large-scale outdoor cultures of Dunaliella salina. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, Barking, pp 371–381Google Scholar
  75. Borowitzka LJ, Borowitzka MA (1990) Commercial production of ß-carotene by Dunaliella salina in open ponds. Bull Mar Sci 47:244–252Google Scholar
  76. Borowitzka MA, Moheimani NR (eds) (2013a) Algae for biofuels and energy. Chichester: Springer, Dordrecht, p 288Google Scholar
  77. Borowitzka MA, Moheimani NR (2013b) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Chang 18:13–25CrossRefGoogle Scholar
  78. Borowitzka LJ, Borowitzka MA, Moulton T (1984) The mass culture of Dunaliella: from laboratory to pilot plant. Hydrobiologia 116/117:115–121CrossRefGoogle Scholar
  79. Borowitzka MA, Borowitzka LJ, Kessly D (1990) Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J Appl Phycol 2:111–119CrossRefGoogle Scholar
  80. Borowitzka MA, Huisman JM, Osborn A (1991) Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J Appl Phycol 3:295–304CrossRefGoogle Scholar
  81. Botebol H, Sutak R, Scheiber I, Blaiseau P-L, Bouget F-Y, Camadro J-M, Lesuisse E (2014) Different iron sources to study the physiology and biochemistry of iron metabolism in marine micro-algae. Biometals 27:75–88PubMedPubMedCentralCrossRefGoogle Scholar
  82. Bouget F-Y, Lefranc M, Thommen Q, Pfeuty B, Lozano J-C, Schatt P, Botebol H, Vergé V (2014) Transcriptional versus non-transcriptional clocks: a case study in Ostreococcus. Mar Genomics 14:17–22PubMedCrossRefGoogle Scholar
  83. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117CrossRefGoogle Scholar
  84. Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082Google Scholar
  85. Boussiba S, Vonshak A, Cohen Z, Richmond A (1997) A procedure for large-scale production of astaxanthin from Haematococcus. PCT Patent 9,728,274Google Scholar
  86. Boussiba S, Bing W, Yuan J, Zarka A, Chen F (1999) Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol Lett 21:601–604CrossRefGoogle Scholar
  87. Bowler C, Allen AE, Badger JH, Grimwood J et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedCrossRefGoogle Scholar
  88. Brand LE (1982) Persistent diel rhythms in the chlorophyll fluorescence of marine phytoplankton species. Mar Biol 69:253–262CrossRefGoogle Scholar
  89. Braun R, Farré EM, Schurr U, Matsubara S (2014) Effects of light and circadian clock on growth and chlorophyll accumulation of Nannochloropsis gaditana. J Phycol 50:515–525PubMedCrossRefGoogle Scholar
  90. Brewer PG, Goldman JC (1976) Alkalinity changes generated by phytoplankton growth. Limnol Oceanogr 21:108–117CrossRefGoogle Scholar
  91. Brown AD, Borowitzka LJ (1979) Halotolerance of Dunaliella. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa, vol 1. Academic, New York, pp 139–190Google Scholar
  92. Brown AD, Simpson JR (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol 72:589–591PubMedCrossRefGoogle Scholar
  93. Brown KL, Twing KI, Robertson DL (2009) Unraveling the regulation of nitrogen assimilation in the marine diatom Thalassiosira pseudonana (Bacillariophyceae): diurnal variations in transcript levels for five genes involved in nitrogen assimilation. J Phycol 45:413–426CrossRefGoogle Scholar
  94. Bruce VG (1970) The biological clock of Chlamydomonas reinhardii. J Protozool 17:328–334CrossRefGoogle Scholar
  95. Bruning K (1991a) Effects of phosphorus limitation on the epidemiology of a chytrid phytoplankton parasite. Freshw Biol 25:409–417CrossRefGoogle Scholar
  96. Bruning K (1991b) Effects of temperature and light on the population dynamics of the Asterionella-Rhizophydium association. J Plankton Res 13:707–719CrossRefGoogle Scholar
  97. Bruning K (1991c) Infection of the diatom Asterionella by a Chytrid.1. Effects of light on reproduction and infectivity of the parasite. J Plankton Res 13:103–117CrossRefGoogle Scholar
  98. Bruning K (1991d) Infection of the diatom Asterionella by a chytrid.2. Effects of light on survival and epidemic development of the parasite. J Plankton Res 13:119–129CrossRefGoogle Scholar
  99. Bruyant F, Babin M, Genty B, Prasil O, Behrenfeld MJ, Claustre H, Bricaud A, Garczarek L, Holtzendorff J, Koblizek M, Dousova H, Partensky F (2005) Diel variations in the photosynthetic parameters of Prochlorococcus strain PCC 9511: combined effects of light and cell cycle. Limnol Oceanogr 50:850–863Google Scholar
  100. Brzezinski MA, Olson RJ, Chisholm SW (1990) Silicon availability and cell-cycle progression in marine diatoms. Mar Ecol Prog Ser 67:83–96CrossRefGoogle Scholar
  101. Buchheim MA, Sutherland DM, Buchheim JA, Wolf M (2013) The blood alga: phylogeny of Haematococcus (Chlorophyceae) inferred from ribosomal RNA gene sequence data. Eur J Phycol 48:318–329CrossRefGoogle Scholar
  102. Burkiewicz K, Synak R (1996) Biological activity of the media after algal cultures can result from extracellular carbohydrates. J Plant Physiol 148:662–666CrossRefGoogle Scholar
  103. Burlew JS (1953a) Algae culture from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DCGoogle Scholar
  104. Burlew JS (1953b) Current status of large-scale culture of algae. In: Burlew JS (ed) Algal culture from laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 3–23Google Scholar
  105. Butterwick C, Heaney SI, Talling JF (2005) Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshw Biol 50:291–300CrossRefGoogle Scholar
  106. Byrne TE, Wells MR, Johnson CH (1992) Circadian rhythms of chemotaxis to ammonium and of methylammonium uptake in Chlamydomonas. Plant Physiol 98:879–886PubMedPubMedCentralCrossRefGoogle Scholar
  107. Camacho Rubio F, Acien Fernandez FG, Sanchez Perez JA, Garcia Camacho F, Molina Grima E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86CrossRefGoogle Scholar
  108. Camacho-Rodríguez J, González-Céspedes AM, Cerón-García MC, Fernández-Sevilla JM, Acién-Fernández FG, Molina-Grima E (2014) A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance. Appl Microbiol Biotechnol 98:2429–2440PubMedCrossRefGoogle Scholar
  109. Carney LT, Lane TW (2014) Parasites in algae mass culture. Front Microbiol 5:278PubMedPubMedCentralGoogle Scholar
  110. Cazzaniga S, Dall’Osto L, Szaub J, Scibilia L, Ballottari M, Purton S, Bassi R (2014) Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnol Biofuels 7:1–13CrossRefGoogle Scholar
  111. Cembella AD, Antia NJ, Harrison PJ (1982) The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: Part I. Crit Rev Microbiol 10:317–391CrossRefGoogle Scholar
  112. Cepák V, PŘibyl P, Kohoutková J, Kaštánek P (2014) Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus. J Appl Phycol 26:181–190Google Scholar
  113. Chaumont D, Thepenier C (1995) Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle. J Appl Phycol 7:529–537CrossRefGoogle Scholar
  114. Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516PubMedCrossRefGoogle Scholar
  115. Chen B, Liu H (2010) Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol Oceanogr 55:965–972CrossRefGoogle Scholar
  116. Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzym Microbiol Technol 20:221–224CrossRefGoogle Scholar
  117. Chen T-H, Pen S-Y, Huang T-C (1993) Induction of nitrogen-fixing circadian rhythm Synechococcus RF-1 by light signals. Plant Sci 92:179–182CrossRefGoogle Scholar
  118. Chen M, Quinnell RG, Larkum AWD (2002) Chlorophyll d as the major photopigment in Acaryochloris marina. J Porphyrins Phthalocyanines 06:763–773CrossRefGoogle Scholar
  119. Chen X, Goh QY, Tan W, Hossain I, Chen WN, Lau R (2011) Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresour Technol 102:6005–6012PubMedCrossRefGoogle Scholar
  120. Chen Z, Wang G, Niu J (2012) Variation in Rubisco and other photosynthetic parameters in the life cycle of Haematococcus pluvialis. Chin J Oceanol Limnol 30:136–145CrossRefGoogle Scholar
  121. Cheng-Wu Z, Cohen Z, Khozin-Goldberg I, Richmond A (2002) Characterization of growth and arachidonic acid production of Parietochloris incisa comb. nov (Trebouxiophyceae, Chlorophyta). J Appl Phycol 14:453–460CrossRefGoogle Scholar
  122. Chien L-F, Vonshak A (2011) Enzymatic antioxidant response to low-temperature acclimation in the cyanobacterium Arthrospira platensis. J Appl Phycol 23:887–894CrossRefGoogle Scholar
  123. Chini Zitelli G, Lavista F, Bastianini A, Rodolfi L, Vincencini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312CrossRefGoogle Scholar
  124. Chisholm SW, Brand LE (1981) Persistance of cell division phasing in marine phytoplankton in continuous light after entrainment to light:dark cycles. J Exp Mar Biol Ecol 51:107–118CrossRefGoogle Scholar
  125. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefGoogle Scholar
  126. Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214PubMedCrossRefGoogle Scholar
  127. Cho Y, Hiramatsu K, Ogawa M, Omura T, Ishimaru T, Oshima Y (2008) Non-toxic and toxic subclones obtained from a toxic clonal culture of Alexandrium tamarense (Dinophyceae): toxicity and molecular biological feature. Harmful Algae 7:740–751CrossRefGoogle Scholar
  128. Chow Y, Thung L (2015) Quantifying the competitive advantage of light green algal strains in batch culture. J Appl Phycol. 27:1805–1812CrossRefGoogle Scholar
  129. Chrismadha T, Borowitzka MA (1994) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J Appl Phycol 6:67–74CrossRefGoogle Scholar
  130. Claquin P, Kromkamp JC, Martin-Jezequel V (2004) Relationship between photosynthetic metabolism and cell cycle in a synchronized culture of the marine alga Cylindrotheca fusiformis (Bacillariophyceae). Eur J Phycol 39:33–41CrossRefGoogle Scholar
  131. Coesel S, Mangogna M, Ishikawa T, Heijde M, Rogato A, Finazzi G, Todo T, Bowler C, Falciatore A (2009) Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Rep 10:655–661PubMedPubMedCentralCrossRefGoogle Scholar
  132. Cogne G, Lehmann B, Dussap CG, Gros JB (2003) Uptake of macrominerals and trace elements by the cyanobacterium Spirulina platensis (Arthrospira platensis PCC 8005) under photoautotrophic conditions: culture medium optimization. Biotechnol Bioeng 81:588–593PubMedCrossRefGoogle Scholar
  133. Cohen Z (1990) The production potential of eicosapentaenoic and arachidonic acids by the red alga Porphyridium cruentum. J Am Oil Chem Soc 67:916–920CrossRefGoogle Scholar
  134. Cohen Z, Khozin-Goldberg I (2005) Searching for PUFA-rich microalgae. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Press, Champaign, pp 53–72Google Scholar
  135. Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. J Phycol 24:328–332Google Scholar
  136. Colegrave N, Kaltz O, Bell G (2002) The ecology and genetics of fitness in Chlamydomonas. VIII. The dynamics of adaptation to novel environments after a single episode of sex. Evolution 56:14–21PubMedCrossRefGoogle Scholar
  137. Coleman AW (1975) Long-term maintenance of fertile algal clones: experience with Pandorina (Chlorophyceae). J Phycol 11:282–286Google Scholar
  138. Coleman AW, Pröschold T (2005) Control of sexual reproduction in algae in culture. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 389–397Google Scholar
  139. Collins S, Bell G (2004) Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431:566–569PubMedCrossRefGoogle Scholar
  140. Collins AM, Jones HDT, Han DX, Hu Q, Beechem TE, Timlin JA (2011) Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS ONE 6:e24302PubMedPubMedCentralCrossRefGoogle Scholar
  141. Colman B, Huertas IE, Bhatti S, Dason JS (2002) The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Funct Plant Biol 29:261–270CrossRefGoogle Scholar
  142. Contreras A, García F, Molina E, Merchuk JC (1998) Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng 60:317–325PubMedCrossRefGoogle Scholar
  143. Corellou F, Schwartz C, Motta J-P, Djouani-Tahri EB, Sanchez F, Bouget F-Y (2009) Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus. Plant Cell Online 21:3436–3449CrossRefGoogle Scholar
  144. Cosgrove J, Borowitzka MA (2011) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 1–17Google Scholar
  145. Costas E, Nieto B, Lopez-Rodas V, Salgado C, Toro M (1998) Adaptation to competition by new mutations in clones of Alexandrium minutum. Evolution 52:6190613CrossRefGoogle Scholar
  146. Cózar A, Echevarría F (2005) Size structure of the planktonic community in microcosm with different levels of turbulence. Sci Mar 69:187–197CrossRefGoogle Scholar
  147. Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337CrossRefGoogle Scholar
  148. Craggs RJ, Lundquist TJ, Benemann JR (2013) Wastewater treatment and algal biofuel production. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 153–164CrossRefGoogle Scholar
  149. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93PubMedCrossRefGoogle Scholar
  150. Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryot Cell 5:1175–1183PubMedPubMedCentralCrossRefGoogle Scholar
  151. Cunningham FX, Dennenberg RJ, Mustardy L, Jursinic PA, Gantt E (1989) Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance. Plant Physiol 91:1179–1187PubMedPubMedCentralCrossRefGoogle Scholar
  152. Da Silva TL, Gouveia L, Reis A (2014) Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production. Appl Microbiol Biotechnol 98:1043–1053PubMedCrossRefGoogle Scholar
  153. Darzins A, Pienkos P, Edye L (2010) Current status and potential for algal biofuels production. BioiIndustry Partners and NREL, Bioenergy Task 39 p 131Google Scholar
  154. Das P, Lei W, Aziz SS, Obbard JP (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol 102:3883–3887PubMedCrossRefGoogle Scholar
  155. Day JG, Brand JJ (2005) Cryopresenrvation methods for maintaining microalgal cultures. In: Anderson RA (ed) Algal culturing techniques. Elsevier Academic Press, London, pp 165–187Google Scholar
  156. De Bruin A, Ibelings BW, Rijkeboer M, Brehm M, Van Donk E (2004) Genetic variation in Asterionella formosa (Bacillariophyceae): is it linked to frequent epidemics of host-specific parasitic fungi? J Phycol 40:823–830CrossRefGoogle Scholar
  157. de Mooij T, Janssen M, Cerezo-Chinarro O, Mussgnug J, Kruse O, Ballottari M, Bassi R, Bujaldon S, Wollman F-A, Wijffels R (2014) Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized. J Appl Phycol. 27:1063–1077CrossRefGoogle Scholar
  158. de Morais MG, Costa JAV (2007) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manag 48:2169–2173CrossRefGoogle Scholar
  159. De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A (2009) Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 37:e96–e96PubMedPubMedCentralCrossRefGoogle Scholar
  160. de Winter L, Klok AJ, Cuaresma Franco M, Barbosa MJ, Wijffels RH (2013) The synchronized cell cycle of Neochloris oleoabundans and its influence on biomass composition under constant light conditions. Algal Res 2:313–320CrossRefGoogle Scholar
  161. Degerlund M, Huseby S, Zingone A, Sarno D, Landfald B (2012) Functional diversity in cryptic species of Chaetoceros socialis Lauder (Bacillariophyceae). J Plankton Res 34:416–431CrossRefGoogle Scholar
  162. Del Rio E, Acién FG, García-Malena MC, Rivas J, Molina Grima E, Guerrero MG (2005) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 91:808–815PubMedCrossRefGoogle Scholar
  163. Delavari Amrei H, Nasernejad B, Ranjbar R, Rastegar S (2014) Spectral shifting of UV-A wavelengths to blue light for enhancing growth rate of cyanobacteria. J Appl Phycol 26:1493–1500CrossRefGoogle Scholar
  164. D'Elia CF, Guillard RRL, Nelson DM (1979) Growth and competition of the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. 1. Nutrient effects. Mar Biol 50:305–312CrossRefGoogle Scholar
  165. Demidov E, Iwasaki I, Sato N (2000) Short-term responses of photosynthetic reactions to extremely high-CO2 stress in a high-CO2 tolerant green alga Chlorococcum littorale and an intolerant green alga Stichococcus bacillaris. Russ J Plant Physiol 47:622–631Google Scholar
  166. Derelle E, Ferraz C, Rombauts S, Rouze P et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103:11647–11652PubMedPubMedCentralCrossRefGoogle Scholar
  167. Dhanam DS, Dhandayuthapani K (2013) Optimisation of β-carotene production by marine microalga – Dunaliella salina. Int J Curr Microbiol Appl Sci 2:37–43Google Scholar
  168. Diaz MM, Maberly SC (2009) Carbon-concentrating mechanisms in acidophilic algae. Phycologia 48:77–85CrossRefGoogle Scholar
  169. Dong Q, Zhao X, Xing X, Hu J, Gong J (2007) Concomitant NH4 + secretion during astaxanthin synthesis in Haematococcus pluvialis under high irradiance and nitrogen deficient conditions. Chin J Chem Eng 15:162–166CrossRefGoogle Scholar
  170. Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201CrossRefGoogle Scholar
  171. Doucha J, Lívanský K (1999) Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the same. USA Patent 5,981,271Google Scholar
  172. Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826CrossRefGoogle Scholar
  173. Doucha J, Lívanský K (2014) High density outdoor microalgal culture. In: Balpai R, Prokop A, Zappi M (eds) Algal biorefineries, vol 1, Cultivation of cells and products. Springer, Dordrecht, pp 147–173CrossRefGoogle Scholar
  174. Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36:3925–3940PubMedCrossRefGoogle Scholar
  175. Droop MR (1955) Carotogenesis in Haematococcus pluvialis. Nature 175:42CrossRefGoogle Scholar
  176. Droop MR (1961) Haematococcus pluvialis and its allies. III. Organic nutrition. Rev Algol NS 4:247–259Google Scholar
  177. Droop MR (2007) Vitamins, phytoplankton and bacteria: symbiosis or scavenging? J Plankton Res 29:107–113CrossRefGoogle Scholar
  178. Duan Z, Sun R, Zhu C, Chou I-M (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO4 2-. Mar Chem 98:131–139CrossRefGoogle Scholar
  179. Dubinsky Z, Stambler N (2009) Photoacclimation processes in phytoplankton: mechanisms, consequences, and applications. Aquat Microb Ecol 56:163–176CrossRefGoogle Scholar
  180. Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of 3 microalgae grown in mass culture. J Appl Phycol 5:71–83CrossRefGoogle Scholar
  181. Dupont CL, Barbeau K, Palenik B (2008) Ni uptake and limitation in marine Synechococcus strains. Appl Environ Microbiol 74:23–31PubMedPubMedCentralCrossRefGoogle Scholar
  182. Duxbury Z, Schliep M, Ritchie RJ, Larkum AWD, Chen M (2009) Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. Photosynth Res 101:69–75PubMedCrossRefGoogle Scholar
  183. Dyhrman ST (2016) Nutrients and their acquisition: phosphorus physiology in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 155–183Google Scholar
  184. Eisele R, Ullrich WR (1975) Stiochiometry between photosynthetic nitrate reduction and alkalinisation by Ankistrodesmus braunii in vivo. Planta 123:117–123PubMedCrossRefGoogle Scholar
  185. Elliott AM (1931) Morphology and life history of Haematococcus pluvialis. Arch Protistenk 82:250–272Google Scholar
  186. Esterhuizen-Londt M, Zeelie B (2013) Outdoor large scale microalgae consortium culture for biofuel production in South Africa: overcoming adverse environmental effects on microalgal growth. J Energy Technol Policy 3:39–45Google Scholar
  187. Fabregas J, Dominguez A, Reguireo M, Maseda A, Otero A (2000) Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl Microbiol Biotechnol 53:530–535PubMedCrossRefGoogle Scholar
  188. Fábregas J, Domínguez A, Maseda A, Otero A (2003) Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl Microbiol Biotechnol 61:545–551PubMedCrossRefGoogle Scholar
  189. Fagan T, Morse D, Hastings JW (1999) Circadian synthesis of a nuclear-encoded chloroplast glyceraldehyde-3-phosphate dehydrogenase in the dinoflagellate Gonyaulax polyedra is translationally controlled. Biochemistry 38:7689–7695PubMedCrossRefGoogle Scholar
  190. Fagerstone KD, Quinn JC, Bradley TH, De Long SK, Marchese AJ (2011) Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation. Environ Sci Technol 45:9449–9456PubMedCrossRefGoogle Scholar
  191. Falkowski PG, Dubinsky Z, Santostefano G (1985) Light-enhanced dark respiration in phytoplankton. Internationale Vereinigung für Theoretische und Angewandte Limnologie Verhandlungen 22:2830–2833Google Scholar
  192. Fan L, Vonshak A, Boussiba S (1994) Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae). J Phycol 30:829–833CrossRefGoogle Scholar
  193. Fan L, Vonshak A, Zarka A, Boussiba S (1998) Does astaxanthin protect Haematococcus against light damage? Z Naturforsch 53c:93–100Google Scholar
  194. Farges B, Laroche C, Cornet J-F, Dussap C-G (2009) Spectral kinetic modeling and long-term behavior assessment of Arthrospira platensis growth in photobioreactor under red (620 nm) light illumination. Biotechnol Prog 25:151–162PubMedCrossRefGoogle Scholar
  195. Fernandez E, Galvan A (2008) Nitrate assimilation in Chlamydomonas. Eukaryot Cell 7:555–559PubMedPubMedCentralCrossRefGoogle Scholar
  196. Ferrón S, Ho DT, Johnson ZI, Huntley ME (2012) Air–water fluxes of N2O and CH4 during microalgae (Staurosira sp.) cultivation in an open raceway pond. Environ Sci Technol 46:10842–10848PubMedCrossRefGoogle Scholar
  197. Finkel ZV (2016) Silicification in the microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 289–300Google Scholar
  198. Finkel ZV, Quigg A, Raven JA, Reinfelder JR, Schofield OE, Falkowski PG (2006) Irradiance and the elemental stoichiometry of marine phytoplankton. Limnol Oceanogr 51:2690–2701CrossRefGoogle Scholar
  199. Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137CrossRefGoogle Scholar
  200. Fischer P, Klein U (1988) Localization of nitrogen-assimilating enzymes in the chloroplast of Chlamydomonas reinhardtii. Plant Physiol 88:947–952PubMedPubMedCentralCrossRefGoogle Scholar
  201. Fisher M, Gokhman I, Pick U, Zamir A (1996a) A salt-resistant plasma membrane carbonic anhydrase is induced by salt in Dunaliella salina. J Biol Chem 271:17723Google Scholar
  202. Fisher T, Minnaard J, Dubinsky Z (1996b) Photoacclimation in the marine alga Nannochloropsis sp. (Eustigmatophyte): a kinetic study. J Plankton Res 18:1797–1818CrossRefGoogle Scholar
  203. Flameling IA, Kromkamp J (1997) Photoacclimation of Scenedesmus protuberans (Chlorophyceae) to fluctuating irradiances simulating vertical mixing. J Plankton Res 19:1011–1024CrossRefGoogle Scholar
  204. Flores-Leiva L, Tarifeño E, Cornejo M, Kiene R, Farías L (2010) High peroduction of nitrous oxide (N2O), methans (CH4) and dimethylsulphopropionate (DMSP) in a massive marine phytoplankton culture. Biogeosci Discuss 7:6705–6723CrossRefGoogle Scholar
  205. Flynn KJ (1999) Nitrate transport and ammonium-nitrate interactions at high nitrate concentrations and low temperature. Mar Ecol Prog Ser 187:283–287CrossRefGoogle Scholar
  206. Fon Sing S, Isdepsky A, Borowitzka MA, Lewis DM (2014) Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresour Technol 161:47–54PubMedCrossRefGoogle Scholar
  207. Fon-Sing S, Borowitzka MA (2016) Isolation and screening of euryhaline Tetraselmis spp. suitable for large-scale outdoor culture in hypersaline media for biofuels. J Appl Phycol 28:1–14CrossRefGoogle Scholar
  208. Frenkel J, Vyverman W, Pohnert G (2014) Pheromone signaling during sexual reproduction in algae. Plant J 79:632–644PubMedCrossRefGoogle Scholar
  209. Fruend C, Romem E, Post AF (1993) Ecological physiology of an assembly of photosynthetic microalgae in wastewater oxidation ponds. Water Sci Technol 27:143–149Google Scholar
  210. Fuggi A, Di Martino Rigano V, Vona V, Rigano C (1981) Nitrate and ammonium assimilation in algal cell-suspensions and related pH variations in the external medium, monitored by electrodes. Plant Sci Lett 23:129–138CrossRefGoogle Scholar
  211. Fujiwara S, Ishida N, Tsuzuki M (1996) Circadian expression of the carbonic anhydrase gene, Cah1, in Chlamydomonas reinhardtii. Plant Mol Biol 32:745–749PubMedCrossRefGoogle Scholar
  212. Gabbay-Azaria R, Tel-Or E, Schönfeld M (1988) Glycinebetaine as an osmoregulant and compatible solute in the marine cyanobacterium Spirulina subsalsa. Arch Biochem Biophys 264:333–339PubMedCrossRefGoogle Scholar
  213. Gacheva GV, Gigova LG, Ivanova NY, Pilarski PS, Lukavský J (2013) Growth, biochemical and enzymatic responses of thermal cyanobacterium Gloeocapsa sp. (Cyanophyceae) to temperature and irradiance. Phycol Res 61:217–227CrossRefGoogle Scholar
  214. Garcıa Camacho F, Contreras Gómez A, Mazzuca Sobczuk T, Molina Grima E (2000) Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum. Process Biochem 35:1045–1050CrossRefGoogle Scholar
  215. García-Malea M, Acíen FG, Del Río E, Fernández JM, Cerón MC, Guerrero MG, Molina-Grima E (2009) Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnol Bioeng 102:651–657PubMedCrossRefGoogle Scholar
  216. Gardner RD, Cooksey KE, Mus F, Macur R, Moll K, Eustance E, Carlson RP, Gerlach R, Fields MW, Peyton BM (2012) Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum. J Appl Phycol 24:1311–1320CrossRefGoogle Scholar
  217. Gardner RD, Lohman E, Gerlach R, Cooksey KE, Peyton BM (2013) Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii. Biotechnol Bioeng 110:87–96PubMedCrossRefGoogle Scholar
  218. Gauthier DA, Turpin DH (1994) Inorganic phosphate (Pi) enhancement of dark respiration in the Pi-limited green alga Selenastrum minutum (Interactions between H+/Pi cotransport, the plasmalemma H+-ATPase, and dark respiratory carbon flow). Plant Physiol 104:629–637PubMedPubMedCentralGoogle Scholar
  219. Ge Y, Liu J, Tian G (2011) Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresour Technol 102:130–134PubMedCrossRefGoogle Scholar
  220. Geider RJ, Osborne BA (1989) Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytol 112:327–341CrossRefGoogle Scholar
  221. Geider RJ, Roche JL (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17CrossRefGoogle Scholar
  222. Geider RJ, Platt T, Raven JA (1986) Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar Ecol Prog Ser 30:93–104CrossRefGoogle Scholar
  223. Gibor A (1956) The culture of brine algae. Biol Bull 111:223–229CrossRefGoogle Scholar
  224. Gilstad M, Johnsen G, Sakshaug E (1993) Photosynthetic parameters, pigment composition and respiration rates of the marine diatom Skeletonema costatum grown in continuous light and a 12:12 h light-dark cycle. J Plankton Res 15:939–951CrossRefGoogle Scholar
  225. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Physiol 56:99–131Google Scholar
  226. Giovagnetti V, Flori S, Tramontano F, Lavaud J, Brunet C (2014) The velocity of light intensity increase modulates the photoprotective response in coastal diatoms. PLoS ONE 9:e103782PubMedPubMedCentralCrossRefGoogle Scholar
  227. Goho S, Bell G (2000) The ecology and genetics of fitness in Chlamydomonas. IX. The rate of accumulation of variation of fitness under selection. Evolution 54:416–424PubMedCrossRefGoogle Scholar
  228. Goldman JC, Dennett MR, Riley CB (1982) Effect of nitrogen-mediated changes in alkalinity on pH control and CO2 supply in intensive microalgal cultures. Biotechnol Bioeng 24:619–631PubMedCrossRefGoogle Scholar
  229. Gômez Pinchetti JL, Ramazanov Z, Fontes A, Garcia Reina G (1992) Photosynthetic characteristics of Dunaliella salina (Chlorophyceae, Dunaliellales) in relation to ß-carotene content. J Appl Phycol 4:11–15CrossRefGoogle Scholar
  230. Gong X, Chen F (1997) Optimisation of culture medium for growth of Haematococcus pluvialis. J Appl Phycol 9:437–444CrossRefGoogle Scholar
  231. Goodwin TW, Jamikorn M (1954) Studies in carotenogensis. II. Carotenoid synthesis in the alga Haematococcus pluvialis. Biochem J 57:376–381PubMedPubMedCentralCrossRefGoogle Scholar
  232. Gorai T, Katayama T, Obata M, Murata A, Taguchi S (2014) Low blue light enhances growth rate, light absorption, and photosynthetic characteristics of four marine phytoplankton species. J Exp Mar Biol Ecol 459:87–95CrossRefGoogle Scholar
  233. Grabski K, Tukaj Z (2008) Autoinduction activity of a conditioned medium obtained from high density cultures of the green alga Scenedesmus subspicatus. J Appl Phycol 20:323–330CrossRefGoogle Scholar
  234. Grabski K, Aksmann A, Mucha P, Tukaj Z (2010) Conditioned medium factor produced and released by Desmosdemus subspicatus and its effect on the cell cycle of the producer. J Appl Phycol 22:517–524CrossRefGoogle Scholar
  235. Grant BR (1967) The action of light on nitrate and nitrite assimilation by the marine chlorophyte, Dunaliella tertiolecta (Butcher). J Gen Microbiol 48:379–389PubMedCrossRefGoogle Scholar
  236. Grant BR (1968) The effect of carbon dioxide concentration and buffer system on nitrate and nitrite assimilation by Dunaliella tertiolecta. J Gen Microbiol 54:327–336PubMedCrossRefGoogle Scholar
  237. Grant BR, Turner IM (1969) Light-stimulated nitrate and nitrite assimilation in several species of algae. Comp Biochem Physiol 29:995–1004CrossRefGoogle Scholar
  238. Grant WS, Vadas RL (1976) A diurnal settling rhythm in Platymonas subcordiformis Hazen. J Protozool 23:557–559CrossRefGoogle Scholar
  239. Griffiths MJ, Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001CrossRefGoogle Scholar
  240. Grimsley N, Péquin B, Bachy C, Moreau H, Piganeau G (2010) Cryptic sex in the smallest eukaryotic marine green alga. Mol Biol Evol 27:47–54PubMedCrossRefGoogle Scholar
  241. Grobbelaar JU (1989) Do light/dark cycles of medium frequency enhance phytoplankton productivity ? J Appl Phycol 1:333–340CrossRefGoogle Scholar
  242. Grobbelaar JU (2007) Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? J Appl Phycol 19:591–598CrossRefGoogle Scholar
  243. Grobbelaar N, Huang TC (1992) Effect of oxygen and temperature on the induction of a circadian nitrogenase activity rhythm in Synechococcus RF-1. J Plant Physiol 140:391–394CrossRefGoogle Scholar
  244. Grobbelaar JU, Soeder CJ (1985) Respiration losses in planktonic green algae cultivated in raceway ponds. J Plankton Res 7:497–506CrossRefGoogle Scholar
  245. Grobbelaar JU, Soeder CJ, Stengel E (1990) Modeling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21:297–314CrossRefGoogle Scholar
  246. Grobbelaar JU, Nedbal L, Tichý V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8:335–343CrossRefGoogle Scholar
  247. Grünewald K, Eckert M, Hirschberg J, Hagen C (2000) Phytoene desaturase is localized exclusively in the chloroplast and up- regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiol 122:1261–1268PubMedPubMedCentralCrossRefGoogle Scholar
  248. Grung M, D’Souza FML, Borowitzka MA, Liaaen-Jensen S (1992) Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S,3′S)-astaxanthin esters. J Appl Phycol 4:165–171CrossRefGoogle Scholar
  249. Gsell AS, de Senerpont Domis LN, van Donk E, Ibelings BW (2013) Temperature alters host genotype-specific susceptibility to chytrid infection. PLoS ONE 8:e71737PubMedPubMedCentralCrossRefGoogle Scholar
  250. Guasto JS, Rusconi R, Stocker R (2012) Fluid mechanics of planktonic organisms. Annu Rev Fluid Mech 44:373–400CrossRefGoogle Scholar
  251. Gudin C, Chaumont D (1991) Cell fragility – the key problem of microalgae mass production in closed photobioreactors. Bioresour Technol 38:145–151CrossRefGoogle Scholar
  252. Guieysse B, Plouviez M, Coilhac M, Cazali L (2013) Nitrous oxide (N2O) production in axenic Chlorella vulgaris cultures: evidence, putative pathways, and potential environmental impacts. Biogeosci Discuss 10:9739–9763CrossRefGoogle Scholar
  253. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186PubMedCrossRefGoogle Scholar
  254. Guschina IA, Harwood JL (2013) Algal lipids and their metabolism. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 17–36CrossRefGoogle Scholar
  255. Gutman J, Zarka A, Boussiba S (2009) The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. Eur J Phycol 44:509–514CrossRefGoogle Scholar
  256. Hadj-Romdhane F, Jaouen P, Pruvost J, Grizeau D, Van Vooren G, Bourseau P (2012) Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. Bioresour Technol 123:366–374PubMedCrossRefGoogle Scholar
  257. Hadj-Romdhane F, Zheng X, Jaouen P, Pruvost J, Grizeau D, Croué JP, Bourseau P (2013) The culture of Chlorella vulgaris in a recycled supernatant: effects on biomass production and medium quality. Bioresour Technol 132:285–292PubMedCrossRefGoogle Scholar
  258. Hagen C, Braune W, Bjorn LO (1994) Functional aspects of secondary carotenoids in Haematococcus lacustris (Volvocales).3. Action as a sunshade. J Phycol 30:241–248CrossRefGoogle Scholar
  259. Hagen C, Grünewald C, Schmidt S, Müller J (2000) Accumulation of secondary carotenoids in flagellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. Eur J Phycol 35:75–82CrossRefGoogle Scholar
  260. Hagen C, Siegmund S, Braune W (2002) Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur J Phycol 37:217–226CrossRefGoogle Scholar
  261. Hall DO, Acién Fernández FG, Cañizares Guerrero E, Rao KK, Molina Grima E (2003) Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82:62–73PubMedCrossRefGoogle Scholar
  262. Halldal P (1968) Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Biol Bull 1968:411–424CrossRefGoogle Scholar
  263. Halliwell B, Gutteridge JMC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307:108–112PubMedCrossRefGoogle Scholar
  264. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31:3345–3348CrossRefGoogle Scholar
  265. Harding LW Jr, Meeson BW, Prézelin BB, Sweeney BM (1981) Diel periodicity of photosynthesis in marine phytoplankton. Mar Biol 61:95–105CrossRefGoogle Scholar
  266. Harker M, Tsavalos AJ, Young AJ (1996a) Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 litre airlift photobioreactor. J Ferment Bioeng 82:113–118CrossRefGoogle Scholar
  267. Harker M, Tsavalos AJ, Young AJ (1996b) Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresour Technol 55:207–214CrossRefGoogle Scholar
  268. Harned HS, Davis R (1943) The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°. J Am Chem Soc 65:2030–2037CrossRefGoogle Scholar
  269. Harned HS, Scholes SR (1941) The ionization constant of HCO3 from 0 to 50°. J Am Chem Soc 63:1706–1709CrossRefGoogle Scholar
  270. Harris EH (2009) The Chlamydomonas sourcebook, vol 1, 2nd edn, Introduction to Chlamydomonas and its laboratory use. Elsevier, AmsterdamGoogle Scholar
  271. Harrison PJ, Thompson PA, Calderwood GS (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol 2:45–56CrossRefGoogle Scholar
  272. Harter T, Bossier P, Verreth J, Bodé S, Ha D, Debeer A-E, Boon N, Boeckx P, Vyverman W, Nevejan N (2013) Carbon and nitrogen mass balance during flue gas treatment with Dunaliella salina cultures. J Appl Phycol 25:359–368CrossRefGoogle Scholar
  273. Hartig P, Grobbelaar JU, Soeder CJ, Groeneweg J (1988) On the mass culture of microalgae: areal density as an important factor for achieving maximal productivity. Biomass 15:211–221CrossRefGoogle Scholar
  274. Hartley AM, House WA, Callow ME, Leadbeater BSC (1997) Coprecipitation of phosphate with calcite in the presence of photosynthesizing green algae. Water Res 31:2261–2268CrossRefGoogle Scholar
  275. Hastings JW, Astrachan L, Sweeney BM (1961) Persistent daily rhythm in photosynthesis. J Gen Physiol 45:69–76PubMedPubMedCentralCrossRefGoogle Scholar
  276. Havelková-Doušová H, Prášil O, Behrenfeld MJ (2004) Photoacclimation of Dunaliella tertiolecta (Chlorophyceae) under fluctuating irradiance. Photosynthetica 42:273–281CrossRefGoogle Scholar
  277. Hédoin H, Pearson J, Day J, Philip D, Young A, Hall T (2006) Porphyridium cruentum A-408 and Planktothrix A-404 retain their capacity to produce biotechnologically exploitable metabolites after cryopreservation. J Appl Phycol 18:1–7CrossRefGoogle Scholar
  278. Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG (2011) Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol 28:2921–2933PubMedCrossRefGoogle Scholar
  279. Henley WJ, Major KM, Hironaka JL (2002) Response to salinity and heat stress in two halotolerant chlorophyte algae. J Phycol 38:757–766CrossRefGoogle Scholar
  280. Herman EM, Sweeney BM (1975) Circadian rhythm of chloroplast ultrastructure in Gonyaulax polyedra, concentric organization around a central cluster of ribosomes. J Ultrastruct Res 50:347–354PubMedCrossRefGoogle Scholar
  281. Herndon J, Cochlan WP (2007) Nitrogen utilization by the raphidophyte Heterosigma akashiwo: growth and uptake kinetics in laboratory cultures. Harmful Algae 6:260–270CrossRefGoogle Scholar
  282. Herzig R, Dubinsky Z (1992) Photoacclimation, photosynthesis, and growth in phytoplankton. Israel J Bot 41:199–212Google Scholar
  283. Ho T, Quigg A, Finkel CV, Milligan AJ, Wyman K, Falkowsi PG, Morel FMM (2005) The elemental composition of some phytoplankton. J Phycol 39:1145–1159CrossRefGoogle Scholar
  284. Hoham RW, Bonome TA, Martin CW, Leebens-Mack JH (2002) A combined 18s rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. J Phycol 38:1051–1064CrossRefGoogle Scholar
  285. Holmes JJ, Weger HG, Turpin DH (1989) Chlorophyll a fluorescence predicts total photosynthetic electron flow to CO2 or NO3 /NO2 under transient conditions. Plant Physiol 91:331–337PubMedPubMedCentralCrossRefGoogle Scholar
  286. Hondzo M, Lyn D (1999) Quantified small-scale turbulence inhibits the growth of a green alga. Freshw Biol 41:51–61CrossRefGoogle Scholar
  287. Hough RA, Wetzel RG (1978) Photorespiration and CO2 compensation point in Najas flexilis. Limnol Oceanogr 23:719–724CrossRefGoogle Scholar
  288. Howieson JR (2001) Nutrition and carotenogensis in Haematococcus pluvialis. PhD, Murdoch University, PerthGoogle Scholar
  289. Hreiz R, Sialve B, Morchain J, Escudié R, Steyer J-P, Giraud P (2014) Experimental and numerical investigation of hydrodynamics in raceway reactors used for algaculture. Chem Eng J 250:230–239CrossRefGoogle Scholar
  290. Hu Q, Richmond A (1994) Optimising the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J Appl Phycol 6:391–396CrossRefGoogle Scholar
  291. Hu Q, Guterman H, Richmond A (1996a) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60PubMedCrossRefGoogle Scholar
  292. Hu Q, Guterman H, Richmond A (1996b) Physiological characteristics of Spirulina platensis (Cyanobacteria) cultured at ultrahigh cell densities. J Phycol 32:1066–1073CrossRefGoogle Scholar
  293. Hu Q, Zarmi Y, Richmond A (1998) Combined effects of light intensity, light-path, and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur J Phycol 32:165–171Google Scholar
  294. Hu Z, Li Y, Sommerfeld M, Chen F, Hu Q (2008) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43:365–376CrossRefGoogle Scholar
  295. Huang K, Beck CF (2003) Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc Nat Acad Sci 100:6269–6274PubMedPubMedCentralCrossRefGoogle Scholar
  296. Huang X, Wei L, Huang Z, Yan J (2014) Effect of high ferric ion concentrations on total lipids and lipid characteristics of Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis. J Appl Phycol 26:105–114CrossRefGoogle Scholar
  297. Huertas IE, Lubián LM (1998) Comparative study of dissolved inorganic carbon utilization and photosynthetic responses in Nannochloris (Chlorophyceae) and Nannochloropsis (Eustigmatophyceae) species. Can J Bot 76:1104–1108Google Scholar
  298. Huertas IE, Colman B, Espie GS, Lubian LM (2000a) Active transport of CO2 by three species of marine microalgae. J Phycol 36:314–320CrossRefGoogle Scholar
  299. Huertas IE, Espie GS, Colman B, Lubian LM (2000b) Light-dependent bicarbonate uptake and CO2 efflux in the marine microalga Nannochloropsis gadiata. Planta 211:43–49PubMedCrossRefGoogle Scholar
  300. Huertas IE, Colman B, Espie GS (2002) Inorganic carbon acquisition and its energization in eustigmatophyte algae. Funct Plant Biol 29:271–277CrossRefGoogle Scholar
  301. Iglesias-Rodríguez MD, Schofield OM, Batley J, Medlin L, Hayes PK (2006) Itraspecific genetic diversity in the marine coccolithphore Emiliania huxleyi (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton populations studies. J Phycol 42:526–536CrossRefGoogle Scholar
  302. Iltis A (1968) Tolerance de Salinite de Spirulina plantensis (Gom.) Geitl., (Cyanophyta) dans les mares Natronees du Kanem (Tchad). Cah ORSTOM, ser Hydrobiol 11:119–134Google Scholar
  303. Iluz D, Alexandrovich I, Dubisnky Z (2012) The enhancement of photosynthesis by fluctuating light. In: Najafpour M (ed) Artificial photosynthesis. In Tech, Shanghai, pp 115–134Google Scholar
  304. Imada N, Kobayashi K, Isomura K, Saito H, Kimura S, Tahara K, Oshima Y (1992) Isolation and identification of an autoinhibitor produced by Skeletonema costatum. Nippon Suisan Gakkaishi 58:1687–1692CrossRefGoogle Scholar
  305. Incharoensakdi A, Takabe T, Akazawa T (1986) Effect of betaine on enzyme activity and subunit interaction of ribulose-1,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica. Plant Physiol 81:1044–1049PubMedPubMedCentralCrossRefGoogle Scholar
  306. Inoue S, Ejima K, Iwai E, Hayashi H, Appel J, Tyystjärvi E, Murata N, Nishiyama Y (2011) Protection by α-tocopherol of the repair of photosystem II during photoinhibition in Synechocystis sp. PCC 6803. Biochim Biophys Acta Bioenerg 1807:236–241CrossRefGoogle Scholar
  307. Ip P-F, Wong K-H, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766CrossRefGoogle Scholar
  308. Isdepsky A (2015) Saline microalgae for biofuels: outdoor culture from small scale to pilot scale. PhD, Murdoch University, PerthGoogle Scholar
  309. Issarapayup K, Powtongsook S, Pavasant P (2011) Economical review of Haematococcus pluvialis culture in flat-panel airlift photobioreactors. Aquac Eng 44:65–71CrossRefGoogle Scholar
  310. Iwasaki I, Kurano N, Miyachi S (1996) Effects of high-CO2 stress on photosystem II in a green alga, Chlorococcum littorale, which has a tolerance to high CO2. J Photochem Photobiol B 36:327–332CrossRefGoogle Scholar
  311. Iwasaki I, Hu Q, Kurano N, Miyachi S (1998) Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a ‘high-CO2’ tolerant green alga, Chlorococcum littorale and the intolerant alga Stichococcus bacillaris. J Photochem Photobiol B Biol 44:184–190CrossRefGoogle Scholar
  312. Jacobsen A, Grahl-Nielsen O, Magnesen T (2012) Effects of reduced diameter of bag cultures on content of essential fatty acids and cell density in a continuous algal production system. J Appl Phycol 24:109–116PubMedPubMedCentralCrossRefGoogle Scholar
  313. Jacquet S, Partensky F, Lennon J-F, Vaulot D (2001) Diel patterns of growth and division in marine picoplankton in culture. J Phycol 37:357–369CrossRefGoogle Scholar
  314. Jahn W, Steinbiss J, Zetsche K (1984) Light intensity adaptation of the phycobiliprotein content of the red alga Porphyridium. Planta 161:536–539PubMedCrossRefGoogle Scholar
  315. Jahnke LS (1999) Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. J Photochem Photobiol B Biol 48:68–74CrossRefGoogle Scholar
  316. Jahnke LS, White AL, Sampath-Wiley P (2009) The effects of ultraviolet radiation on Dunaliella: growth, development and metabolism. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The Alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, Enfield, pp 231–272CrossRefGoogle Scholar
  317. Janssen M, Kuijpers TC, Veldhoen B, Ternbach MB, Tramper J, Mur LR, Wijffels RH (1999) Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13–87s. J Biotechnol 70:323–333CrossRefGoogle Scholar
  318. Janssen M, Bathke L, Marquardt J, Krumbein W, Rhiel E (2001) Changes in the photosynthetic apparatus of diatoms in response to low and high light intensities. Int Microbiol 4:27–33PubMedGoogle Scholar
  319. Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210PubMedCrossRefGoogle Scholar
  320. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547CrossRefGoogle Scholar
  321. Jeffrey SW (1984) Responses of unicellular marine plants to natural blue-green light environments. In: Senger H (ed) Blue light effects in biological systems. Springer, Berlin, pp 497–508CrossRefGoogle Scholar
  322. Jewson DH, Wood RB (1975) Some effects on integral photosynthesis of artificial circulation of phytoplankton through light gradients. Verh Int Ver Limnol 19:1037–1044Google Scholar
  323. Jiang Y, Laverty KS, Brown J, Brown L, Chagoya J, Burow M, Quigg A (2015) Effect of silicate limitation on growth, cell composition, and lipid production of three native diatoms to Southwest Texas desert. J Appl Phycol. 27:1433–1442CrossRefGoogle Scholar
  324. Jiménez C, Cossío BR, Labella D, Niell FX (2003) The feasibility of industrial production of Spirulina (Arthrospira) in southern Spain. Aquaculture 217:179–190CrossRefGoogle Scholar
  325. John DE, López-Díaz JM, Cabrera A, Santiago NA, Corredor JE, Bronk DA, Paul JH (2012) A day in the life in the dynamic marine environment: how nutrients shape diel patterns of phytoplankton photosynthesis and carbon fixation gene expression in the Mississippi and Orinoco River plumes. Hydrobiologia 679:155–173CrossRefGoogle Scholar
  326. Johnson KA, Rosenbaum JL (1993) Flagellar regeneration in Chlamydomonas: a model system for studying organelle assembly. Trends Cell Biol 3:156–161PubMedCrossRefGoogle Scholar
  327. Johnston AM, Raven JA (1992) Effect of aeration rates on growth rates and natural abundance 13C/12C ratio of Phaeodactylum tricornutum. Mar Ecol Prog Ser 87:295–300CrossRefGoogle Scholar
  328. Jones H, Cockell C, Rothschild L (1996) Intraspecies variation in Poterioochromonas due to long-term culturing conditions. Phycologist 43:18Google Scholar
  329. Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17PubMedCrossRefGoogle Scholar
  330. Kaftan D, Meszaros T, Whitmarsh J, Nedbal L (1999) Characterization of photosystem II activity and heterogeneity during the cell cycle of the green alga Scenedesmus quadricauda. Plant Physiol 120:433–442PubMedPubMedCentralCrossRefGoogle Scholar
  331. Kang CD, Lee JS, Park TH, Sim SJ (2005) Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl Microbiol Biotechnol 68:237–241PubMedCrossRefGoogle Scholar
  332. Kang C, Lee J, Park T, Sim S (2007) Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Appl Microbiol Biotechnol 74:987–994PubMedCrossRefGoogle Scholar
  333. Karp-Boss L, Boss E, Jumars PA (1996) Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr Mar Biol 34:71–107Google Scholar
  334. Kashtan N, Roggensack SE, Rodrigue S, Thompson JW et al (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416–420PubMedCrossRefGoogle Scholar
  335. Kassen R, Bell G (1998) Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity 80:732–741CrossRefGoogle Scholar
  336. Katsuda T, Lababpour A, Shimahara K, Katoh S (2004) Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzym Microb Technol 35:81–86CrossRefGoogle Scholar
  337. Katz A, Pick U (2001) Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga Dunaliella. Biochim Biophys Acta 1504:423–431PubMedCrossRefGoogle Scholar
  338. Katz A, Paz Y, Pick U (2009) Salinity tolerance and iron deprivation resistance mechanisms revealed by protomic analyzes in Dunaliella salina. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The Alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, Enfield, pp 341–358CrossRefGoogle Scholar
  339. Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 14:1466–1476PubMedCrossRefGoogle Scholar
  340. Khatri W, Hendrix R, Niehaus T, Chappell J, Curtis WR (2014) Hydrocarbon production in high density Botryococcus braunii race B continuous culture. Biotechnol Bioeng 111:493–503PubMedCrossRefGoogle Scholar
  341. Khozin-Goldberg I (2016) Lipid metabolism in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 413–484Google Scholar
  342. Khozin-Goldberg I, Bigogno C, Shrestha P, Cohen Z (2002) Nitrogen starvation induces the accumulation of arachidonic acid in the freshwater green alga Parietochloris incisa (Trebouxiophyceae). J Phycol 38:991–994CrossRefGoogle Scholar
  343. Kianianmomeni A (2014) Cell-type specific light-mediated transcript regulation in the multicellular alga Volvox carteri. BMC Genomics 15:764PubMedPubMedCentralCrossRefGoogle Scholar
  344. Kianianmomeni A, Hallmann A (2014) Algal photoreceptors: in vivo functions and potential applications. Planta 239:1–26PubMedCrossRefGoogle Scholar
  345. Kim D-G, La H-J, Ahn C-Y, Park Y-H, Oh H-M (2011) Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresour Technol 102:3163–3168PubMedCrossRefGoogle Scholar
  346. Kim CW, Sung M-G, Nam K, Moon M, Kwon J-H, Yang J-W (2014) Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresour Technol 159:30–35PubMedCrossRefGoogle Scholar
  347. Kirpenko NI, Kurashov YA, Krylova YV (2012) Component composition of exometabolites in cultures of some algae. Hydrobiol J 48:59–70CrossRefGoogle Scholar
  348. Kliphuis AMJ, Martens DE, Janssen M, Wijffels RH (2011) Effect of O2:CO2 ratio on the primary metabolism of Chlamydomonas reinhardtii. Biotechnol Bioeng 108:2390–2402PubMedCrossRefGoogle Scholar
  349. Klotchkova TA, Kwak MS, Han JW, Motomura T, Nagasato C, Kim GH (2013) Cold-tolerant strain of Haematococcus pluvialis (Haematococcaceae, Chlorophyta) from Blomstrandhalvøya (Svalbard). Algae 28:185–192CrossRefGoogle Scholar
  350. Kobayashi M, Kakizono T, Nishio N, Nagai S (1992a) Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:61–63CrossRefGoogle Scholar
  351. Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, Nagai S (1992b) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J Ferment Bioeng 74:17–20CrossRefGoogle Scholar
  352. Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873PubMedPubMedCentralGoogle Scholar
  353. Kobayashi M, Kurimura Y, Kakizono T, Nishio N, Tsuji Y (1997a) Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J Ferment Bioeng 84:94–97CrossRefGoogle Scholar
  354. Kobayashi M, Kurimura Y, Tsuji Y (1997b) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19:507–509CrossRefGoogle Scholar
  355. Kodama M, Ikemoto H, Miyachi S (1993) A new species of highly CO2-tolerant fast-growing marine microalga for high-density cultivation. J Mar Biotechnol 1:21–25Google Scholar
  356. Kok B (1953) Experiments on photosynthesis by Chlorella in flashing light. In: Burlew JS (ed) Algal culture from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 63–75Google Scholar
  357. Kosmakova VE, Prozumenshchikova LT (1983) Growth and biochemical composition of the algae Dunaliella salina and Platymonas viridis fed on organic and inorganic forms of nitrogen. Biol Morya 1:42–46Google Scholar
  358. Kromkamp J, Limbeek M (1993) Effect of short-term variation in irradiance on light harvesting and photosynthesis of the marine diatom Skeletonema costatum – a laboratory study simulating vertical mixing. J Gen Microbiol 139:2277–2284CrossRefGoogle Scholar
  359. Kromkamp JC, Beardall J, Sukenik A, Kopecky J, Masojidek J, Van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems. Aquat Microb Ecol 56:309–322CrossRefGoogle Scholar
  360. Kühn SF, Hofmann M (1999) Infection of Coscinodiscus granii by the parasitoid nanoflagellate Pirsonia diadema: III. Effects of turbulence on the incidence of infection. J Plankton Res 21:2323–2340CrossRefGoogle Scholar
  361. Kurano N, Sasaki T, Miyachi S (1998) Carbon dioxide and microalgae. In: Inui T, Anpo M, Izui K, Yanagida S, Yamaguchi T (eds) Studies in surface science and catalysis, vol 114. Elsevier, Amsterdam, pp 55–63Google Scholar
  362. Kwon J-H, Bernát G, Wagner H, Rögner M, Rexroth S (2013) Reduced light-harvesting antenna: consequences on cyanobacterial metabolism and photosynthetic productivity. Algal Res 2:188–195CrossRefGoogle Scholar
  363. L’Helguen S, Maguer J-F, Caradec J (2008) Inhibition kinetics of nitrate uptake by ammonium in size-fractionated oceanic phytoplankton communities: implications for new production and f-ratio estimates. J Plankton Res 30:1179–1188CrossRefGoogle Scholar
  364. Lababpour A, Shimahara K, Hada K, Kyoui Y, Katsuda T, Katoh S (2005) Fed-batch culture under illumination with blue light emitting diodes (LEDs) for astaxanthin production by Haematococcus pluvialis. J Biosci Bioeng 100:339–342PubMedCrossRefGoogle Scholar
  365. Lakeman MB, Cattolico RA (2007) Cryptic diversity in phytoplankton cultures is revealed using a simple plating technique. J Phycol 43:662–647CrossRefGoogle Scholar
  366. Lakeman MB, von Dassow P, Cattolico RA (2009) The strain concept in phytoplankton ecology. Harmful Algae 8:746–758CrossRefGoogle Scholar
  367. Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2010) Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng 106:638–648PubMedCrossRefGoogle Scholar
  368. Lane TW, Morel FMM (2000) Regulation of carbonic anhydrase expression by zinc, cobal, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiol 123:345–352PubMedPubMedCentralCrossRefGoogle Scholar
  369. Larkum AW (2016) Photosynthesis and light harvesting in algae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 67–87Google Scholar
  370. Larkum AWD, Roberts G, Kuo J, Strother S (1989) Gaseous movement in seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. Elsevier, Amsterdam, pp 686–722Google Scholar
  371. Larkum AWD, Ross IL, Kruse O, Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30:198–205PubMedCrossRefGoogle Scholar
  372. Larsdotter K, Jansen JC, Dalhammar G (2007) Biologically mediated phosphorus precipitation in wastewater treatment with microalgae. Environ Technol 28:953–960PubMedCrossRefGoogle Scholar
  373. Laws EA, Berning JL (1991) A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: implications for use of power plant stack gases. Biotechnol Bioeng 37:936–947PubMedCrossRefGoogle Scholar
  374. Laws E, Caperon J (1976) Carbon and nitrogen metabolism by Monochrysis lutheri: measurement of growth-rate-dependent respiration rates. Mar Biol 36:85–97CrossRefGoogle Scholar
  375. Laws EA, Terry KL, Wickman J, Chalup MS (1983) A simple algal production system designed to utilize the flashing light effect. Biotechnol Bioeng 25:2319–2335PubMedCrossRefGoogle Scholar
  376. Lazar B, Starinsky A, Katz A, Sass E, Ben-Yaakov S (1983) The carbonate system in hypersaline solutions: alkalinity and CaCO3 solubility of evaporated seawater. Limnol Oceanogr 28:978–986CrossRefGoogle Scholar
  377. Lazier JRN, Mann KH (1989) Turbulence and the diffusive layers around small organisms. Deep Sea Res A 36:1721–1733CrossRefGoogle Scholar
  378. Lee YK, Ding SY (1994) Cell cycle and accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J Phycol 30:445–449CrossRefGoogle Scholar
  379. Lee YK, Soh CW (1991) Accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J Phycol 27:575–577CrossRefGoogle Scholar
  380. Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285PubMedCrossRefGoogle Scholar
  381. Lerche W (1937) Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch Protistenk 88:236–268Google Scholar
  382. Leupold M, Hindersin S, Gust G, Kerner M, Hanelt D (2013) Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii. J Appl Phycol 25:485–495CrossRefGoogle Scholar
  383. Li YT, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 22:253–263PubMedPubMedCentralCrossRefGoogle Scholar
  384. Liang Y, Mai K, Sun S (2005) Differences in growth, total lipid content and fatty acid composition among 60 clones of Cylindrotheca fusiformis. J Appl Phycol 17:61–65CrossRefGoogle Scholar
  385. Livansky K (1995) Inhibition of Scenedesmus obliquus growth by O2 affected by temperature and CO2 partial pressure. In: Kretschmer P, Pulz O, Gudin C, Semenenko V (eds) 2nd European workshop biotechnology of microalgae. Institut fur Getreideverarbeitung GmbH, Bergholz/Rehbrucke, pp 112–115Google Scholar
  386. Lívanský K, Dedic K, Binova J, Tichy V, Novotny P, Doucha J (1996) Influence of the nutrient solution recycling on the productivity of Scenedesmus obliquus, utilization of nutrients and water in outdoor cultures. Algol Stud 81:105–113Google Scholar
  387. Loeblich LA (1982) Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). J Mar Biol Assoc U K 62:493–508CrossRefGoogle Scholar
  388. Lomas MW, Glibert PM (1999) Interactions between NH4 + and NO3 - uptake and assimilation: comparison of diatoms and dinoflagellates at several growth temperatures. Mar Biol 133:541–551CrossRefGoogle Scholar
  389. López-Sandoval DC, Rodríguez-Ramos T, Cermeño P, Sobrino C, Marañón E (2014) Photosynthesis and respiration in marine phytoplankton: relationship with cell size, taxonomic affiliation, and growth phase. J Exp Mar Biol Ecol 457:151–159CrossRefGoogle Scholar
  390. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167PubMedCrossRefGoogle Scholar
  391. Luque I, Flores E, Herrero A (1994) Nitrate and nitrite transport in the cyanobacterium Synechococcus sp PCC 7942 are mediated by the same permease. Biochim Biophys Acta Bioenerg 1184:296–298CrossRefGoogle Scholar
  392. Lv H, Jia S, Xiao Y, Yuan N, Dai Y (2014) Growth characteristics of Nostoc flagelliforme at intermittent elevated CO2 concentrations. Phycol Res 62:250–256CrossRefGoogle Scholar
  393. Maberly SC, Ball LA, Raven JA, Sültemeyer D (2009) Inorganic carbon acquisition by chrysophytes. J Phycol 45:1052–1061CrossRefGoogle Scholar
  394. MacIntyre HL, Kana TM, Geider RJ (2000) The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci 5:12–17PubMedCrossRefGoogle Scholar
  395. MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38CrossRefGoogle Scholar
  396. Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339PubMedCrossRefGoogle Scholar
  397. MacKay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191Google Scholar
  398. Mackenzie TDB, Morse D (2011) Circadian photosynthetic reductant flow in the dinoflagellate Lingulodinium is limited by carbon availability. Plant Cell Environ 34:669–680PubMedCrossRefGoogle Scholar
  399. Maeshima M (2001) Tonoplast transporters: organisation and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497PubMedCrossRefGoogle Scholar
  400. Mandalam RK, Palsson BØ (1998) Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol Bioeng 59:605–611PubMedCrossRefGoogle Scholar
  401. Marañón E, Cermeño P, López-Sandoval DC, Rodríguez-Ramos T, Sobrino C, Huete-Ortega M, Blanco JM, Rodríguez J (2013) Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol Lett 16:371–379PubMedCrossRefGoogle Scholar
  402. Marchetti A, Maldonado MT (2016) Iron. In: Borowitzka MA, Beardall J, Raven JA (eds). Physiology of Microalgae. Springer, Dordrecht, pp 233–279Google Scholar
  403. Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840CrossRefGoogle Scholar
  404. Martins CA, Kulis D, Franca S, Anderson DM (2004) The loss of PSP toxin production in a formerly toxic Alexandrium lusitanicum clone. Toxicon 43:195–205PubMedCrossRefGoogle Scholar
  405. Masojídek J, Papác¡ek S, Sergejeková M, Jirka V, Cerveny J, Kunk J, Koreco J, Verbikova O, Kopecky J, Stys D, Torzillo G (2003) A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance. J Appl Phycol 15:239–258CrossRefGoogle Scholar
  406. Masojídek J, Kopecký J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38:307–317PubMedCrossRefGoogle Scholar
  407. Masojidek J, Vonshak A, Torzillo G (2011) Chlorophyll fluorescence applications in microalgal mass cultures. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic science: methods and applications. Springer, Dordrecht, pp 277–292Google Scholar
  408. Massyuk NP (1966) Mass culture of the carotene containing alga Dunaliella salina Teod. Ukranskaya Botanichnya Zhournal 23:12–19Google Scholar
  409. Massyuk NP, Abdula EG (1969) First experiment of growing carotene-containing algae under semi- industrial conditions. Ukranskaya Botanichnya Zhournal 26:21–27Google Scholar
  410. Matthijs HCP, Balke H, Vanhes UM, Kroon BMA, Mur LR, Binot RA (1996) Application of light-emitting diodes in bioreactors – flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol Bioeng 50:98–107PubMedCrossRefGoogle Scholar
  411. Matusiak-Mikulin K, Tukaj C, Tukaj Z (2006) Relationships between growth, development and photosynthetic activity during the cell cycle of Desmodesmus armatus (Chlorophyta) in synchronous cultures. Eur J Phycol 41:29–38CrossRefGoogle Scholar
  412. McLachlan J (1973) Growth media – marine. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 25–51Google Scholar
  413. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  414. Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280CrossRefGoogle Scholar
  415. Melis A, Neidhardt J, Benemann J (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525CrossRefGoogle Scholar
  416. Mendoza H, Martel A, Jiménez del Río M, García Reina G (1999) Oleic acid is the main fatty acid related with carotenogenesis in Dunaliella salina. J Appl Phycol 11:15–19CrossRefGoogle Scholar
  417. Mendoza JL, Granados MR, de Godos I, Acién FG, Molina E, Banks C, Heaven S (2013) Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenergy 54:267–275CrossRefGoogle Scholar
  418. Merchant SS, Prochnik SE, Vallon O, Harris EH et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250PubMedPubMedCentralCrossRefGoogle Scholar
  419. Mergenhagen D (1984) Circadian clock: genetic characterization of a short period mutant of Chlamydomonas reinhardii. Eur J Cell Biol 33:13–18PubMedGoogle Scholar
  420. Mezzari MP, da Silva MLB, Nicoloso RS, Ibelli AMG, Bortoli M, Viancelli A, Soares HM (2013) Assessment of N2O emission from a photobioreactor treating ammonia-rich swine wastewater digestate. Bioresour Technol 149:327–332PubMedCrossRefGoogle Scholar
  421. Michels MHA, Slegers PM, Vermuë MH, Wijffels RH (2014) Effect of biomass concentration on the productivity of Tetraselmis suecica in a pilot-scale tubular photobioreactor using natural sunlight. Algal Res 4:12–18CrossRefGoogle Scholar
  422. Mil’ko ES (1962) Study of the requirement of two Dunaliella spp in mineral and organic components of the medium. Moscow Univ Vestn Biologya 6:21–23Google Scholar
  423. Millie DF, Schofield OME, Kirkpatrick GJ, Johnsen G, Envens TJ (2002) Using absorbance and fluorescence spectra to discriminate microalgae. Eur J Phycol 37:313–322CrossRefGoogle Scholar
  424. Miquel P (1892) De la culture artificielle des Diatomées. CR Acad Sci Paris 94:780–782Google Scholar
  425. Miranda KM, Paolocci N, Katori T, Thomas DD, Ford E, Bartberger MD, Espey MG, Kass DA, Feelisch M, Fukuto JM, Wink DA (2003) A biochemical rationale for the discrete behavior of nitroxyl and nitric oxide in the cardiovascular system. Proc Nat Acad Sci 100:9196–9201PubMedPubMedCentralCrossRefGoogle Scholar
  426. Mitra M, Kirst H, Dewez D, Melis A (2012) Modulation of the light-harvesting chlorophyll antenna size in Chlamydomonas reinhardtii by TLA1 gene over-expression and RNA interference. Phil Trans Roy Soc B 367:3430–3443CrossRefGoogle Scholar
  427. Mittag M (2001) Circadian rhythms in microalgae. Int Rev Cytol 206:213–247PubMedCrossRefGoogle Scholar
  428. Mittag M, Wagner V (2003) The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii. Biol Chem 384:689–695PubMedCrossRefGoogle Scholar
  429. Miyachi S, Kanai R, Mihara S, Miyachi S, Aoki S (1964) Metabolic roles of inorganic polyphosphates in Chlorella cells. Biochim Biophys Acta Gen Subj 93:625–634CrossRefGoogle Scholar
  430. Miyachi S, Iwasaki I, Shiraiwa Y (2003) Historical perspective on microalgae and cyanobacterial acclimation to low- and extremely high-CO2 conditions. Photosynth Res 77:139–153PubMedCrossRefGoogle Scholar
  431. Miyairi S (1995) CO2 assimilation in a thermophilic cyanobacterium. Energy Convers Manag 36:763–766CrossRefGoogle Scholar
  432. Moheimani NR (2005) The culture of coccolithophorid algae for carbon dioxide bioremediation. PhD, Murdoch University, PerthGoogle Scholar
  433. Moheimani NR (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25:387–398CrossRefGoogle Scholar
  434. Moheimani NR, Borowitzka MA (2007) Limits to growth of Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96:27–36PubMedCrossRefGoogle Scholar
  435. Moheimani NR, Borowitzka MA (2011) Increased CO2 and the effect of pH on the growth and calcification of Pleurochrysis carterae and Emilianea huxleyi (Haptophyta) in semi-continuous cultures. Appl Microbiol Biotechnol 90:1399–1407PubMedCrossRefGoogle Scholar
  436. Moheimani NR, Parlevliet D (2013) Sustainable solar energy conversion to chemical and electrical energy. Renew Sustain Energy Rev 27:494–504CrossRefGoogle Scholar
  437. Moheimani NR, Isdepsky A, Lisec J, Raes E, Borowitzka MA (2011) Coccolithophorid algae culture in closed photobioreactors. Biotechnol Bioeng 108:2078–2087PubMedCrossRefGoogle Scholar
  438. Molina Grima E, Ácien Fernandez FG, Garcia Camacho F, Chisti Y (1999) Photobioreactors: light regieme, mass transfer, and scaleup. J Biotechnol 70:231–247CrossRefGoogle Scholar
  439. Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24:141–153CrossRefGoogle Scholar
  440. Mostafa N, Omar H, Tan SG, Napis S (2011) Studies on the genetic variation of the green unicellular alga Haematococcus pluvialis (Chlorophyceae) obtained from different geographical locations Using ISSR and RAPD molecular marker. Molecules 16:2599–2608PubMedCrossRefGoogle Scholar
  441. Mouget JL, Tremblin G, Morant-Marceau A, Morancais M, Robert JM (1999) Long-term photoacclimation of Haslea ostrearia (Bacillariophyta): effect of irradiance on growth rates, pigment content and photosynthesis. Eur J Phycol 34:109–115CrossRefGoogle Scholar
  442. Mouget J-L, Rosa P, Tremblin G (2004) Acclimation of Haslea ostrearia to light of different spectral qualities – confirmation of ‘chromatic adaptation’ in diatoms. J Photochem Photobiol B 75:1–11PubMedCrossRefGoogle Scholar
  443. Mouget J-L, Rosa P, Vachoux C, Tremblin G (2005) Enhancement of marennine production by blue light in the diatom Haslea ostrearia. J Appl Phycol 17:437–445CrossRefGoogle Scholar
  444. Moulton TP, Sommer TR, Burford MA, Borowitzka LJ (1987) Competition between Dunaliella species at high salinity. Hydrobiologia 151/152:107–116CrossRefGoogle Scholar
  445. Müller B, Schagerl M (2004) Primary productivity and photoacclimation in cyanobacteria – a comparison of carbon fixation, oxygen evolution and in vivo fluorescence. Algol Stud 113:143–157CrossRefGoogle Scholar
  446. Muller-Feuga A, Pruvost J, Le Guédes R, Le Déan L, Legentilhomme P, Legrand J (2003) Swirling flow implementation in a photobioreactor for batch and continuous cultures of Porphyridium cruentum. Biotechnol Bioeng 84:544–551PubMedCrossRefGoogle Scholar
  447. Muller-Feuga A, Lemar M, Vermel E, Pradelles R, Rimbaud L, Valiorgue P (2012) Appraisal of a horizontal two-phase flow photobioreactor for industrial production of delicate microalgae species. J Appl Phycol 24:349–355CrossRefGoogle Scholar
  448. Muller-Fuega A (2004) Microalgae for aquaculture. The current global situation and future trends. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 352–364Google Scholar
  449. Muradyan EA, Klyachko-Gurvich GL, Tsoglin LN, Sergeyenko TV, Pronina NA (2004) Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russ J Plant Physiol 51:53–62CrossRefGoogle Scholar
  450. Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta Bioenerg 1767:414–421CrossRefGoogle Scholar
  451. Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta Bioenerg 1817:1127–1133CrossRefGoogle Scholar
  452. Murphy TP, Hall KJ, Yesaki I (1983) Coprecipitation of phosphate with calcite in a naturally eutrophic lake. Limnol Oceanogr 28:58–69CrossRefGoogle Scholar
  453. Murphy TE, Macon K, Berberoglu H (2014) Rapid algal culture diagnostics for open ponds using multispectral image analysis. Biotechnol Prog 30:233–240PubMedCrossRefGoogle Scholar
  454. Mussgnug JH, Thomas-Hall SR, Ruprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814PubMedCrossRefGoogle Scholar
  455. Myers J (1946) Culture conditions and the development of the photosynthetic mechanism: III. Influence of light intensity on cellular characteristics of Chlorella. J Gen Physiol 29:419–427PubMedCentralCrossRefGoogle Scholar
  456. Myers J, Graham J (1958) On the mass culture of algae II. Yield as a function of cell concentration under continuous sunlight irradiance. Plant Physiol 34:345–352CrossRefGoogle Scholar
  457. Nagase H, Yoshihara K-I, Eguchi K, Yokota Y, Matsui R, Hirata K, Miyamoto K (1997) Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolecta culture system. J Ferment Bioeng 83:461–465CrossRefGoogle Scholar
  458. Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microalgal suspensions by reducing the content of light harvesting pigments. J Appl Phycol 9:503–510Google Scholar
  459. Nakajima Y, Ueda R (1999) Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigments. J Appl Phycol 11:151–201CrossRefGoogle Scholar
  460. Nakajima Y, Ueda R (2000) The effect of reducing light-harvesting pigment on marine microalgae productivity. J Appl Phycol 12:285–290CrossRefGoogle Scholar
  461. Nakano Y, Miyatake K, Okuno H, Hamazaki K, Takenaka S, Hionami N, Kiyota M, Aiga I, Kondo J (1996) Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. Acta Horticult 440:549–554Google Scholar
  462. Nassoury N, Fritz L, Morse D (2001) Circadian changes in ribulose-1,5-bisphosphate carboxylase/oxygenase distribution inside individual chloroplasts can account for the rhythm in dinoflagellate carbon fixation. Plant Cell Online 13:923–934CrossRefGoogle Scholar
  463. Nedbal L, Tichy L, Xiong F, Grobbelaar JU (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8:325–333CrossRefGoogle Scholar
  464. Negoro M, Shioji N, Miyamoto K, Miura Y (1991) Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl Biochem Biotechnol 28–9:877–886CrossRefGoogle Scholar
  465. Neori A (2011) “Green water” microalgae: the leading sector in world aquaculture. J Appl Phycol 23:143–149CrossRefGoogle Scholar
  466. Nichols HW (1973) Growth media – freshwater. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 7–24Google Scholar
  467. Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of Photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330PubMedCrossRefGoogle Scholar
  468. Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46PubMedCrossRefGoogle Scholar
  469. Nomsawai P, Tandeau de Marsac N, Thomas JC, Tanticharoen M, Cheevadhanarak S (1999) Light regulation of phycobilisome structure and gene expression in Spirulina platensis Cl (Arthrospira sp. PCC 9438). Plant Cell Physiol 40:1194–1202CrossRefGoogle Scholar
  470. O’Neill JS, Van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget F-Y, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:544–558Google Scholar
  471. Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 23:1121–1132CrossRefGoogle Scholar
  472. Ogawa T, Fujii T, Aiba S (1980) Effect of oxygen on the growth (yield) of Chlorella vulgaris. Arch Microbiol 127:25–31CrossRefGoogle Scholar
  473. Ogbonna JC, Tanaka H (1996) Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa. J Ferment Bioeng 82:558–564CrossRefGoogle Scholar
  474. Oh-hama T, Miyachi S (1988) Chlorella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 3–26Google Scholar
  475. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506CrossRefGoogle Scholar
  476. Olofsson M, Lamela T, Nilsson E, Bergé J-P, del Pino V, Uronen P, Legrand C (2014) Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata. Mar Drugs 12:1891–1910PubMedPubMedCentralCrossRefGoogle Scholar
  477. Olsen LM, Öztürk M, Sakshaug E, Johnsen G (2006) Photosynthesis-induced phosphate precipitation in seawater: ecological implications for phytoplankton. Mar Ecol Prog Ser 319:103–110CrossRefGoogle Scholar
  478. Ono E, Cuello JL (2003) Selection of optimal microalgae species for CO2 sequestration. In: 2nd annual conference on carbon sequestration, Alexandria, VA, USA, pp 1–7Google Scholar
  479. Oren A (2007) Diversity of organic osmotic compounds and osmotic adaptation in cyanobacteria and algae. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments, vol 11, Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 639–655CrossRefGoogle Scholar
  480. Ort DR, Zhu X, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85PubMedPubMedCentralCrossRefGoogle Scholar
  481. Østgaard K, Jensen A (1982) Diurnal and circadian rhythms in the turbidity of growing Skeletonema costatum cultures. Mar Biol 66:261–268CrossRefGoogle Scholar
  482. Oswald WJ (1988a) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 357–394Google Scholar
  483. Oswald WJ (1988b) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 305–328Google Scholar
  484. Owens TG, Falkowski PG, Whitledge TE (1980) Diel periodicity in cellular chlorophyll content in marine diatoms. Mar Biol 59:71–77CrossRefGoogle Scholar
  485. Pais BMC (2011) In-culture evolution in phytoplankton. M Eng Biol Thesis, Universitage de Algarve, FaroGoogle Scholar
  486. Pajuelo E, Pajuelo P, Clemente MT, Marquez AJ (1995) Regulation of the expression of ferredoxin-nitrite reductase in synchronous cultures of Chlamydomonas reinhardtii. Biochim Biophys Acta 1249:72–78PubMedCrossRefGoogle Scholar
  487. Paleg LG, Douglas TJ, van Daal A, Keech DB (1981) Proline, betaine and other organic solutes protect enzymes against heat inactivation. Aust J Plant Physiol 8:107–114Google Scholar
  488. Palmer JD, Livingston L, Zusy FD (1964) A persistent diurnal rhythm in photosynthetic capacity. Nature 203:1087–1088PubMedCrossRefGoogle Scholar
  489. Papageorgiou G, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem II complex. Photosynth Res 44:243–252PubMedCrossRefGoogle Scholar
  490. Papazi A, Makridis P, Divanach P, Kotzabasis K (2008) Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production. Physiol Plant 132:338–349PubMedCrossRefGoogle Scholar
  491. Park JBK, Craggs RJ (2011) Nutrient removal in wastewater treatment high rate algal ponds with carbon dioxide addition. Water Sci Technol 36:1758–1764CrossRefGoogle Scholar
  492. Parslow JS, Harrison PJ, Thompson PA (1984) Saturated uptake kinetics: transient response of the marine diatom Thalassiosira pseudonana to ammonium, nitrate silicate or phosphate starvation. Mar Biol 83:51–59CrossRefGoogle Scholar
  493. Payer HD, Chiemvichak Y, Hosakul K, Kongpanichkul C, Kraidej L, Nguitragul M, Reungmanipytoon S, Buri P (1980) Temperature as an important climatic factor during mass production of microscopic algae. In: Shelef G, Soeder CJ (eds) Algae biomass. Production and use. Elsevier/North Holland Biomedical Press, Amsterdam, pp 389–399Google Scholar
  494. Perrine Z, Negi S, Sayre RT (2012) Optimization of photosynthetic light energy utilization by microalgae. Algal Res 1:134–142CrossRefGoogle Scholar
  495. Perrineau M-M, Zelzion E, Gross J, Price DC, Boyd J, Bhattacharya D (2014a) Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii. Environ Microbiol 16:1755–1766PubMedCrossRefGoogle Scholar
  496. Perrineau M, Gross J, Zelzion E, Price DC, Levitan O, Boyd J, Bhattacharya D (2014b) Using natural selection to explore the adaptive potential of Chlamydomonas reinhardtii. PLoS ONE 9(3):e92533PubMedPubMedCentralCrossRefGoogle Scholar
  497. Pesheva I, Kodama M, Dionisio-Sese ML, Miyachi S (1994) Changes in photosynthetic characteristics induced by transferring air-grown cells of Chlorococcum littorale to high-CO2 Conditions. Plant Cell Physiol 35:379–387Google Scholar
  498. Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41PubMedCrossRefGoogle Scholar
  499. Phillips JN, Myers J (1954) Growth rate of Chlorella in flashing light. Plant Physiol 29:152–161PubMedPubMedCentralCrossRefGoogle Scholar
  500. Pick U, Karni L, Avron M (1986) Determination of ion content and ion fluxes in the halotolerant algae Dunaliella salina. Plant Physiol 81:92PubMedPubMedCentralCrossRefGoogle Scholar
  501. Pimolrat P, Direkbusarakom S, Chinajariawong C, Powtongsook S (2010) The effect of sodium bicarbonate concentrations on growth and biochemical composition of Chaetoceros gracilis Schutt. Kasetart Univ Fish Res Bull 34:40–47Google Scholar
  502. Polle JEW, Kanakagiri S, Jin ES, Masuda T, Melis A (2002) Truncated chlorophyll antenna size of the photosystems- a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrog Energy 27:1257–1264CrossRefGoogle Scholar
  503. Polle JEW, Kanakagiri S, Melis A (2003) tla1, a DNA insertional transformant of the antenna size. Planta 217:49–59PubMedGoogle Scholar
  504. Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim Acta 62:69–77CrossRefGoogle Scholar
  505. Post FJ (1977) The microbial ecology of the Great Salt Lake. Microb Ecol 3:143–165PubMedCrossRefGoogle Scholar
  506. Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T (1983) The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105:95–113CrossRefGoogle Scholar
  507. Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae – defining the polyphosphate dynamics. Water Res 43:4207–4213PubMedCrossRefGoogle Scholar
  508. Powtongsook S, Kaewpintong K, Shotipruk A, Pavasant P (2006) Effect of superficial gas velocity on growth of the green microalga Haematococcus pluvialis in airlift photobioreactor. Stud Surf Sci Catal 159:481–484CrossRefGoogle Scholar
  509. Prathima Devi M, Venkata Mohan S (2012) CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Bioresour Technol 112:116–123PubMedCrossRefGoogle Scholar
  510. Premkumar L, Bageshwar UK, Gokhman I, Zamir A, Sussman JL (2003) An unusual halotolerant α-type carbonic anhydrase from the alga Dunaliella salina functionally expressed in Escherichia coli. Protein Expr Purif 28:151–157PubMedCrossRefGoogle Scholar
  511. Prézelin BB, Sweeney BM (1977) Characterization of photosynthetic rhythms in marine dinoflagellates. II. Photosynthesis irradiance curves and in vivo chlorophyll a fluorescence. Plant Physiol 60:388–392PubMedPubMedCentralCrossRefGoogle Scholar
  512. Prézelin BB, Meeson BW, Sweeney BM (1977) Characterization of photosynthetic rhythms in marine dinoflagellates: I. Pigmentation, photosynthetic capacity and respiration. Plant Physiol 60:384–387PubMedPubMedCentralCrossRefGoogle Scholar
  513. Price NM, Morel FMM (1991) Colimitation of phytoplankton growth by nickel and nitrogen. Limnol Oceanogr 36:1071–1077CrossRefGoogle Scholar
  514. Pronina N, Kodama M, Miyachi S (1993) Changes in intracellular pH values in various microalgae indiced by raising CO2 concentrations. In: Furuya M (ed) XV International Botanical Congress, Yokohama, p 419Google Scholar
  515. Prussi M, Buffi M, Casini D, Chiaramonti D, Martelli F, Carnevale M, Tredici MR, Rodolfi L (2014) Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. Biomass Bioenergy 67:390–400CrossRefGoogle Scholar
  516. Qiu B, Li Y (2006) Photosynthetic acclimation and photoprotective mechanism of Haematococcus pluvialis (Chlorophyceae) during the accumulation of secondary carotenoids at elevated irradiation. Phycologia 45:117–126CrossRefGoogle Scholar
  517. Quigg A (2016) Micronutrients. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 211–231Google Scholar
  518. Raateoja MP, Seppälä J (2001) Light utilization and photosynthetic efficiency of Nannochloris sp. (Chlorophyceae) approached by spectral absortption characteristics and Fast Repetition Rate Fluorometry (FRRF). Boreal Environ Res 6:205–220Google Scholar
  519. Rabbani S, Beyer P, Lintig JV, Hugeney P, Kleinig H (1998) Induced b-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248PubMedPubMedCentralCrossRefGoogle Scholar
  520. Ragni M, d’Alcalà MR (2007) Circadian variability in the photobiology of Phaeodactylum tricornutum: pigment content. J Plankton Res 29:141–156CrossRefGoogle Scholar
  521. Ralph PJ, Wilhelm C, Lavaud J, Petrou K, Kranz SA (2011) Fluorescence as a tool to understand changes in photosynthetic electron flow regulation. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences. Methods and applications. Spinger, Dordrecht, pp 75–89Google Scholar
  522. Ramalho CB, Hastings JW, Colepicolo P (1995) Circadian oscillation of nitrate reductase activity in Gonyaulax polyedra is due to changes in cellular protein levels. Plant Physiol 107:225–231PubMedPubMedCentralCrossRefGoogle Scholar
  523. Raso S, Genugten B, Vermuë M, Wijffels R (2012) Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. J Appl Phycol 24:863–871PubMedPubMedCentralCrossRefGoogle Scholar
  524. Raven JA (1981) Respiration and photorespiration. In: Platt T (ed) Physiological bases of phytoplankton ecology. Department of Fisheries and Oceans, Ottawa, pp 55–82Google Scholar
  525. Raven JA (1998) The twelfth Tansley lecture. Small is beautiful: the picophytoplankton. Funct Ecol 12:503–513CrossRefGoogle Scholar
  526. Raven JA (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth Res 106:123–134PubMedCrossRefGoogle Scholar
  527. Raven JA, Beardall J (2016) Dark respiration and organic carbon loss. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 129–140Google Scholar
  528. Raven JA, Geider RJ (2003) Adaptation, acclimation and regulation in algal photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 385–412CrossRefGoogle Scholar
  529. Raven JA, Giodano M (2016) Combined nitrogen. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 143–154Google Scholar
  530. Raven JA, Ralph PJ (2015) Enhanced biofuel production using optimality, pathway modification and waste minimization. J Appl Phycol 27:1–31CrossRefGoogle Scholar
  531. Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149CrossRefGoogle Scholar
  532. Raven JA, Giordano M, Beardall J, Maberly SC (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res 109:281–296PubMedCrossRefGoogle Scholar
  533. Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Phil Trans R Soc B 367:493–507PubMedPubMedCentralCrossRefGoogle Scholar
  534. Rebolloso Fuentes MM, Garcia Sánchez JL, Fernández Sevilla JM, Acién Fernandez FG, Sánchez Pérez JA, Molina Grima E (1999) Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantitative analysis of the daily cyclic variation of culture parameters. J Biotechnol 70:271–288CrossRefGoogle Scholar
  535. Reboud X, Bell G (1997) Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time. Heredity 78:507–514CrossRefGoogle Scholar
  536. Recht L, Zarka A, Boussiba S (2012) Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl Microbiol Biotechnol 94:1495–1503PubMedCrossRefGoogle Scholar
  537. Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC, Moore DJ, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Lett 39:51–56CrossRefGoogle Scholar
  538. Reichardt TA, Collins AM, Garcia OF, Ruffing AM, Jones HDT, Timlin JA (2012) Spectroradiometric monitoring of Nannochloropsis salina growth. Algal Res 1:22–31CrossRefGoogle Scholar
  539. Reichardt TA, Collins AM, McBride RC, Behnke CA, Timlin JA (2014) Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria. Appl Opt 53:F31–F45PubMedCrossRefGoogle Scholar
  540. Reize IB, Melkonian M (1987) Flagellar regeneration in the scaly green flagellateTetraselmis striata (Prasinophyceae): regeneration kinetics and effect of inhibitors. Helgoländer Meeresun 41:149–164CrossRefGoogle Scholar
  541. Renstrøm B, Borch G, Skulberg OM, Liaaen-Jensen S (1981) Optical purity of (3S,3′S)-astaxanthin from Haematococcus pluvialis. Phytochemistry 20:2561–2564CrossRefGoogle Scholar
  542. Řezanka T, Lukavský J, Nedbalová L, Sigler K (2011) Effect of nitrogen and phosphorus starvation on the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga Trachydiscus minutus. Phytochemistry 72:2342–2351PubMedCrossRefGoogle Scholar
  543. Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93:157–191CrossRefGoogle Scholar
  544. Richmond A (1988) Spirulina. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 85–121Google Scholar
  545. Richmond A (1996) Efficient utilization of high irradiance for production of photoautotrophic cell mass: a survey. J Appl Phycol 8:381–387CrossRefGoogle Scholar
  546. Richmond A (2000) Microalgal biotechnology at the turn of the millenium: a personal view. J Appl Phycol 12:441–451CrossRefGoogle Scholar
  547. Richmond A (2013) Biological principles of mass cultivation of photoautotrophic microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, Chichester, pp 171–204CrossRefGoogle Scholar
  548. Richmond A, Grobbelaar JU (1986) Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10:253–264CrossRefGoogle Scholar
  549. Richmond A, Vonshak A (1978) Spirulina culture in Israel. Arch Hydrobiol 11:274–280Google Scholar
  550. Richmond A, Zou N (1999) Efficient utilisation of high photon irradiance for mass production of photoautotrophic micro-organisms. J Appl Phycol 11:123–127CrossRefGoogle Scholar
  551. Richmond A, Vonshak A, Arad S (1980) Environmental limitations in outdoor production of algal biomass. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 65–72Google Scholar
  552. Richmond A, Zhang C, Zarmi Y (2003) Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20:229–236PubMedCrossRefGoogle Scholar
  553. Riebesell U, Wolfgladrow DA, Smetacek V (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361:249–251CrossRefGoogle Scholar
  554. Robinson DH, Kolber Z, Sullivan CW (1997) Photophysiology and photoacclimation in surface sea ice algae from McMurdo Sound, Antarctica. Mar Ecol Prog Ser 147:243–256CrossRefGoogle Scholar
  555. Rodolfi L, Zittelli GC, Barsanti L, Rosati C, Tredeci MR (2003) Growth medium recycling in Nannochloropsis sp. mass culture. Biomol Eng 20:243–248PubMedCrossRefGoogle Scholar
  556. Rodríguez JJG, Mirón AS, Camacho FG, García MCC, Belarbi EH, Chisti Y, Grima EM (2009) Causes of shear sensitivity of the toxic dinoflagellate Protoceratium reticulatum. Biotechnol Prog 25:792–800CrossRefGoogle Scholar
  557. Roessler PG (1988) Effects of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella cryptica. J Phycol 24:394–400CrossRefGoogle Scholar
  558. Rwehumbiza VM, Harrison R, Thomsen L (2012) Alum-induced flocculation of preconcentrated Nannochloropsis salina: residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chem Eng J 200–202:168–175CrossRefGoogle Scholar
  559. Ryther JH, Kramer DD (1961) Relative iron requirement of some coastal and offshore plankton algae. Ecology 42:444–446CrossRefGoogle Scholar
  560. Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43:290–297PubMedCrossRefGoogle Scholar
  561. Salguero A, León R, Mariotti A, de la Morena B, Vega JM, Vilchez C (2005) UV-A mediated induction of carotenoid accumulation in Dunaliella bardawil with retention of cell viability. Appl Microbiol Biotechnol 66:506–511PubMedCrossRefGoogle Scholar
  562. Samson R, Leduy A (1985) Multistage continuous cultivation of blue-green alga Spirulina maxima in the flat tank photobioreactors with recycle. Can J Chem Eng 65:105–112CrossRefGoogle Scholar
  563. Samuelsson G, Sweeney BM, Matlick HA, Prézelin BB (1983) Changes in Photosystem II account for the circadian rhythm in photosynthesis in Gonyaulax polyedra. Plant Physiol 73:329–331PubMedPubMedCentralCrossRefGoogle Scholar
  564. Sánchez Mirón A, Cerón García MC, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297CrossRefGoogle Scholar
  565. Sarrafzadeh MH, La H-J, Lee J-Y, Cho D-H, Shin S-Y, Kim W-J, Oh H-M (2015) Microalgae biomass quantification by digital image processing and RGB color analysis. J Appl Phycol. 27:205–209CrossRefGoogle Scholar
  566. Sasaki T, Pronina NA, Maeshima M, Iwasaki I, Kurano N, Miyachi S (1999) Development of vacuoles and vacuolar H+-ATPase activity under extremely high CO2 conditions in Chlorococcum littorale cells. Plant Biol 1:68–75CrossRefGoogle Scholar
  567. Satoh A, Kurano N, Miyachi S (2001) Inhibition of photosynthesis by intracellular carbonic anhydrase in microalgae under excess concentrations of CO2. Photosynth Res 68:215–224PubMedCrossRefGoogle Scholar
  568. Sayed OH, El-Shahed AM (2000) Growth, photosynthesis and circadian patterns in Chlorella vulgaris (Chlorophyta) in response to growth temperature. Cryptogam Algol 21:283–290CrossRefGoogle Scholar
  569. Schellenberger Costa B, Jungandreas A, Jakob T, Weisheit W, Mittag M, Wilhelm C (2013) Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J Exp Bot 64:483–493PubMedPubMedCentralCrossRefGoogle Scholar
  570. Scherholz M, Curtis W (2013) Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. BMC Biotechnol 13:39PubMedPubMedCentralCrossRefGoogle Scholar
  571. Schlipalius L (1991) The extensive commercial cultivation of Dunaliella salina. Bioresour Technol 38:241–243CrossRefGoogle Scholar
  572. Schoefs B, Rmiki N, Rachadi J, Lemoine Y (2001) Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids. FEBS Lett 500:125–128PubMedCrossRefGoogle Scholar
  573. Schulze PSC, Barreira LA, Pereira HGC, Perales JA, Varela JCS (2014) Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol 32:422–430PubMedCrossRefGoogle Scholar
  574. Seckbach J, Baker FA, Shugarman PM (1970) Algae thrive under pure CO2. Nature 227:744–745PubMedCrossRefGoogle Scholar
  575. Senger H (1970) Charakterisierung einer Synchronkultur von Scenedesmus obliquus, ihrer potentiellen Photosyntheseleistung und des Photosynthese-Quotienten während des Entwicklungscyclus (Characterization of a synchronous culture of Scenedesmus obliquus, its potential photosynthetic capacity and its photosynthetic quotient during life cycle.). Planta 90:243–266PubMedCrossRefGoogle Scholar
  576. Sergeenko TV, Muradyan EA, Pronina NA, Klyachko-Gurich GL, Mishina IM, Tsoglin LN (2000) The effect of extremely high CO2 concentration on the growth and biochemical composition of microalgae. Russ J Plant Physiol 47:632–638Google Scholar
  577. Setlík I, Sust V, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algol Stud 11:111–164Google Scholar
  578. Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T (2012) Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS ONE 7:e38975PubMedPubMedCentralCrossRefGoogle Scholar
  579. Shaish A, Avron M, Pick U, Ben-Amotz A (1993) Are active oxygen species involved in induction of beta-carotene in Dunaliella bardawil. Planta 190:363–368CrossRefGoogle Scholar
  580. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory, Golden, pp 1–328, NREL/TP-580-24190CrossRefGoogle Scholar
  581. Shelly K, Holland D, Beardall J (2011) Assessing nutrient status of microalgae using chlorophyll a fluorescence. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences. Methods and applications. Springer, Dordrecht, pp 223–235Google Scholar
  582. Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17:374–384CrossRefGoogle Scholar
  583. Shiraiwa Y, Miyachi S (1983) Factors controlling induction of carbonic anhydrase and efficiency of photosynthesis in Chlorella vulgaris 11 h cells. Plant Cell Physiol 26:919–923Google Scholar
  584. Shiraiwa Y, Goyal A, Tolbert NE (1993) Alkalization of the medium by unicellular green algae during uptake of dissolved inorganic carbon. Plant Cell Physiol 34:649–657Google Scholar
  585. Silva HJ, Cortinas T, Ertola RJ (1987) Effect of hydrodynamic stress on Dunaliella growth. J Chem Technol Biotechnol 40:41049Google Scholar
  586. Simmer J, Tichý V, Doucha J (1994) What kind of lamp for the cultivation of algae? J Appl Phycol 6:309–313CrossRefGoogle Scholar
  587. Smith BM, Morrissey PJ, Guenther JE, Nemson JA, Harrison MA, Allen JF, Melis A (1990) Response of the photosynthetic apparatus in Dunaliella salina (green algae) to irradiance stress. Plant Physiol 93:1433–1440PubMedPubMedCentralCrossRefGoogle Scholar
  588. Soeder CJ (1980) Massive cultivation of microalgae: results and prospects. Hydrobiologia 72:197–209CrossRefGoogle Scholar
  589. Soeder CJ, Engelmann G (1984) Nickel requirement in Chlorella emersonii. Arch Microbiol 137:85–87CrossRefGoogle Scholar
  590. Solovchenko A, Khozin-Goldberg I (2013) High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol Lett 35:1745–1752PubMedCrossRefGoogle Scholar
  591. Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251CrossRefGoogle Scholar
  592. Solovchenko AE, Chivkunova OB, Maslova IP (2011) Pigment composition, optical properties, and resistance to photodamage of the microalga Haematococcus pluvialis cultivated under high light. Russ J Plant Physiol 58:9–17CrossRefGoogle Scholar
  593. Song L, Qin JG, Su SQ, Xu JH, Clarke S, Shan YC (2012) Micronutrient requirements for growth and hydrocarbon production in the oil producing green alga Botryococcus braunii (Chlorophyta). PLoS ONE 7:e41459PubMedPubMedCentralCrossRefGoogle Scholar
  594. Sorek M, Yakobi YZ, Roopin M, Berman-Frank I, Levy O (2013) Photosynthetic circadian rhythmicity patterns of Symbiodium, the coral endosymbiotic algae. Proc R Soc B 280:20122942PubMedPubMedCentralCrossRefGoogle Scholar
  595. Sorokin C (1957) Changes in photosynthetic activity in the course of cell development in Chlorella. Physiol Plant 10:659–666CrossRefGoogle Scholar
  596. Sorokin C, Myers J (1957) The course of respiration during the life cycle of Chlorella cells. J Gen Physiol 40:579–592PubMedPubMedCentralCrossRefGoogle Scholar
  597. Sousa C, de Winter L, Janssen M, Vermuë MH, Wijffels RH (2012) Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity. Bioresour Technol 104:565–570PubMedCrossRefGoogle Scholar
  598. Sousa C, Compadre A, Vermuë MH, Wijffels RH (2013) Effect of oxygen at low and high light intensities on the growth of Neochloris oleoabundans. Algal Res 2:122–126CrossRefGoogle Scholar
  599. Stambler N (2006) Light and picophytoplankton in the Gulf of Eilat (Aqaba). J Geophys Res: Oceans 111:C11009CrossRefGoogle Scholar
  600. Stamenković M, Hanelt D (2013) Adaptation of growth and photosynthesis to certain temperature regimes is an indicator for the geographical distribution of Cosmarium strains (Zygnematophyceae, Streptophyta). Eur J Phycol 48:116–127CrossRefGoogle Scholar
  601. Steinbrenner J, Linden H (2001) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 125:810–817PubMedPubMedCentralCrossRefGoogle Scholar
  602. Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox potential. Plant Mol Biol 52:343–356PubMedCrossRefGoogle Scholar
  603. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128PubMedCrossRefGoogle Scholar
  604. Straley SC, Bruce VG (1979) Stickiness to glass. Circadian changes in the cell surface of Chlamydomonas reinhardi. Plant Physiol 63:1175–1181PubMedPubMedCentralCrossRefGoogle Scholar
  605. Strizh IG, Popova LG, Balnokin YV (2004) Physiological aspects of adaptation of the marine microalga Tetraselmis (Platymonas) viridis to various medium salinity. Russ J Plant Physiol 51:176–182CrossRefGoogle Scholar
  606. Stross RG (1963) Nitrate preference in Haematococcus as controlled by strain age of inoculum and pH of the medium. Can J Microbiol 9:33–40CrossRefGoogle Scholar
  607. Su C-H, Chien L-J, Gomes J, Lin Y-S, Yu Y-K, Liou J-S, Syu R-J (2011) Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23:903–908CrossRefGoogle Scholar
  608. Suggett DJ, Moore CM, Geider RJ (2011) Estimating aquatic productivity from active fluorescence measurements. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences; methods and applications. Springer, Dordrecht, pp 103–127Google Scholar
  609. Sukenik A (1991) Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp (Eustigmatophyceae). Bioresour Technol 35:263–269CrossRefGoogle Scholar
  610. Sukenik A, Carmeli Y (1990) Lipid synthesis and fatty acid composition in Nannochloropsis sp (Eustigmatophyceae) grown in a light-dark cycle. J Phycol 26:463–469CrossRefGoogle Scholar
  611. Sukenik A, Levy RS, Levy Y, Falkowski PG, Dubinsky Z (1991) Optimizing algal biomass production in an outdoor pond – a simulation model. J Appl Phycol 3:191–201CrossRefGoogle Scholar
  612. Sukenik A, Yamaguchi Y, Livne A (1993) Alterations in lipid molecular species of the marine eustigmatophyte Nannochloropsis sp. J Phycol 29:620–626CrossRefGoogle Scholar
  613. Sullivan CW, Volcani BE (1981) Silicon in the cellular metabolism of diatoms. In: Simpson TL, Volcani BE (eds) Silicon and siliceous structures in biological systems. Springer-Verlag, New York, pp 15–42CrossRefGoogle Scholar
  614. Sun Z, Cunningham FX, Gantt E (1998) Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc Nat Acad Sci 95:11482–11488PubMedPubMedCentralCrossRefGoogle Scholar
  615. Sun X-M, Tang Y-P, Meng X-Z, Zhang W-W, Li S, Deng Z-R, Xu Z-K, Song R-T (2006) Sequencing and analysis of a genomic fragment provide an insight into the Dunaliella viridis genomic sequence. Acta Biochim Biophys Sinica 38:812–820CrossRefGoogle Scholar
  616. Sutherland DL, Howard-Williams C, Turnbull MH, Broady PA, Craggs RJ (2015) Frequency of CO2 supply affects wastewater microalgal photosynthesis, productivity and nutrient removal efficiency in mesocosms: implications for full-scale high rate algal ponds. J Appl Phycol. 27:1901–1911CrossRefGoogle Scholar
  617. Sweeney B (1986) The loss of the circadian rhythm in photosynthesis in an old strain of Gonyaulax polyedra. Plant Physiol 80:978PubMedPubMedCentralCrossRefGoogle Scholar
  618. Sweeney BM, Hastings JW (1962) Rhythms. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic, New York, pp 687–700Google Scholar
  619. Sylvestre S, Lessard P, Delanoue J (1996) Removal performance of nitrogen and phosphorus compounds by a photobioreactor using a biomass of cyanobacteria Phormidium bohneri. Environ Technol 17:697–706Google Scholar
  620. Tababa HG, Hirabayashi S, Inubushi K (2012) Media optimization of Parietochloris incisa for arachidonic acid accumulation in an outdoor vertical tubular photobioreactor. J Appl Phycol 24:887–895PubMedPubMedCentralCrossRefGoogle Scholar
  621. Takano H, Arai T, Hirano M, Matsunaga T (1995) Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp NKBG 042902. Appl Microbiol Biotechnol 43:1014–1018CrossRefGoogle Scholar
  622. Talbot P, Thébault JM, Dauta A, de la Noüe J (1991) A comparative study and mathematical modeling of temperature, light and growth of three microalgae potentially useful for wastewater treatment. Water Res 25:465–472CrossRefGoogle Scholar
  623. Tamburic B, Szabó M, Tran N-AT, Larkum AWD, Suggett DJ, Ralph PJ (2014) Action spectra of oxygen production and chlorophyll a fluorescence in the green microalga Nannochloropsis oculata. Bioresour Technol 169:320–327PubMedCrossRefGoogle Scholar
  624. Tamiya H (1957) Mass culture of algae. Annu Rev Plant Physiol 8:309–344CrossRefGoogle Scholar
  625. Tan S, Cunningham FX, Youmans M, Grabowski B, Sun Z, Gantt E (1995) Cytochrome f loss in astaxanthin-accumulating red cells of Haematococcus pluvialis (Chlorophyceae): comparison of photosynthetic activity, photosynthetic enzymes, and thylakoid membrane polypeptides in red and green cells. J Phycol 31:897–905CrossRefGoogle Scholar
  626. Teoh ML, Phang SM, Chu WL (2013) Responses of Antarctic, temperate and tropical microalgae to temperature stress. J Appl Phycol 25:285–297CrossRefGoogle Scholar
  627. Terry KL (1986) Photosynthesis in modulated light: quantitative dependence of photosynthetic enhancement on flashing rate. Biotechnol Bioeng 28:988–995PubMedCrossRefGoogle Scholar
  628. Tesson B, Gaillard C, Martin-Jézéquel V (2008) Brucite formation mediated by the diatom Phaeodactylum tricornutum. Mar Chem 109:60–76CrossRefGoogle Scholar
  629. Thacker ANN, Syrett PJ (1972) The assimilation of nitrate and ammonium by Chlamydomonas reinhardi. New Phytol 71:423–433CrossRefGoogle Scholar
  630. Thimijan RW, Heins RD (1983) Photometric, radiometric and quantum light units of measure. A review of procedures for interconversion. Hortscience 18:818–822Google Scholar
  631. Thomas WH, Gibson CH (1990) Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra Stein. Deep-Sea Res 37:1583–1593CrossRefGoogle Scholar
  632. Thompson PA, Levasseur ME, Harrison PJ (1989) Light-limited growth on ammonium vs. nitrate: what is the advantage for marine phytoplankton? Limnol Oceanogr 34:1014–1024CrossRefGoogle Scholar
  633. Tjahjono AE, Hayama Y, Kakizono T, Terada Y, Nishio N, Nagai S (1994) Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol Lett 16:133–138CrossRefGoogle Scholar
  634. Tocquin P, Fratamico A, Franck F (2012) Screening for a low-cost Haematococcus pluvialis medium reveals an unexpected impact of a low N/P ratio on vegetative growth. J Appl Phycol 24:365–373CrossRefGoogle Scholar
  635. Tomaselli L, Boldrini G, Margheri MC (1997) Physiological behaviour of Arthrospira (Spirulina) maxima during acclimation to changes in irradiance. J Appl Phycol 9:37–43CrossRefGoogle Scholar
  636. Torzillo G, Vonshak A (1994) Effect of light and temperature on the photosynthetic activity of the cyanobacterium Spirulina plantensis. Biomass Bioenergy 6:399–403CrossRefGoogle Scholar
  637. Torzillo G, Vonshak A (2013) Environmental stress physiology with reference to mass cultures. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied physiology and biotechnology. Wiley, Chichester, pp 90–111CrossRefGoogle Scholar
  638. Torzillo G, Sacchi A, Materassi R (1991a) Temperature as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Bioresour Technol 38:95–100CrossRefGoogle Scholar
  639. Torzillo G, Sacchi A, Materassi R, Richmond A (1991b) Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J Appl Phycol 3:103–109CrossRefGoogle Scholar
  640. Torzillo G, Accolla P, Pinzani E, Masojidek J (1996) In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stress in Spirulina cultures grown outdoors in photobioreactors. J Appl Phycol 8:283–291CrossRefGoogle Scholar
  641. Torzillo G, Faraloni C, Silva AM, Kopecký J, Pilný J, Masojídek J (2012) Photoacclimation of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in photobioreactors and open ponds. Eur J Phycol 47:169–181CrossRefGoogle Scholar
  642. Uemura K, Anwaruzzaman S, Miyachi S, Yokota A (1997) Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem Biophys Res Commun 233:568–571PubMedCrossRefGoogle Scholar
  643. Ullrich WR, Glaser E (1982) Sodium-phosphate cotransport in the green alga Ankistrodesmus braunii. Plant Sci Lett 27:155–161CrossRefGoogle Scholar
  644. Ullrich-Eberius CI (1973) Die pH-Abhängigkeit der Aufnahme von H2PO4 -, SO4 -, Na+ und K+ und ihre gegenseitige Beeinflussung bei Ankistrodesmus braunii. Planta 109:161–176PubMedCrossRefGoogle Scholar
  645. Ullrich-Eberius CI, Yingchol Y (1974) Phosphate uptake and its pH-dependence in halophytic and glycophytic algae and higher plants. Oecologia 17:17–26CrossRefGoogle Scholar
  646. Valiente EF, Avendano MD (1993) Sodium-stimulation of phosphate uptake in the cyanobacterium Anabaena-PCC-7119. Plant Cell Physiol 34:201–207Google Scholar
  647. Valiorgue P, Ben Hadid H, El Hajem M, Rimbaud L, Muller-Feuga A, Champagne JY (2014) CO2 mass transfer and conversion to biomass in a horizontal gas–liquid photobioreactor. Chem Eng Res Des. doi: 10.1016/j.cherd.2014.02.021 Google Scholar
  648. van de Poll WH, Buma AGJ, Visser RJW, Janknegt PJ, Villafañe VE, Helbling EW (2010) Xanthophyll cycle activity and photosynthesis of Dunaliella tertiolecta (Chlorophyceae) and Thalassiosira weissflogii (Bacillariophyceae) during fluctuating solar radiation. Phycologia 49:249–259CrossRefGoogle Scholar
  649. Vega-Estrada J, Montes-Horcasitas MC, Domínguez-Bocanegra AR, Cañizares-Villanueva RO (2005) Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift photobioreactor under aeration conditions avoiding cell damage. Appl Microbiol Biotechnol 68:31–35PubMedCrossRefGoogle Scholar
  650. Vergara JJ, Berges JA, Falkowski PG (1998) Diel periodicity of nitrate reductase activity and protein levels in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol 34:952–961CrossRefGoogle Scholar
  651. Vítová M, Bišová K, Umysová D, Hlavová M, Kawano S, Zachleder V, Čížková M (2011) Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity. Planta 233:75–86PubMedCrossRefGoogle Scholar
  652. Voleti RS (2012) Experimental studies of vertical mixing in an open channel raceway for algae biofuel production. M.Sc., Utah State University, LoganGoogle Scholar
  653. von Dassow P, Montresor M (2011) Unveiling the mysteries of phytoplankton life cycles: patterns and opportunities behind complexity. J Plankton Res 33:3–12CrossRefGoogle Scholar
  654. Von Dassow P, Bearon RN, Latz MI (2005) Bioluminescent response of the dinoflagellate Lingulodinium polyedrum to developing flow: tuning of sensitivity and the role of desensitization in controlling a defensive behavior of a planktonic cell. Limnol Oceanogr 50:607–619CrossRefGoogle Scholar
  655. von Dassow P, Petersen TW, Chepurnov VA, Armbrust EV (2008) Inter- and intraspecific relationships between nuclear DNA content and cell size in selected members of the centric diatom genus Thalassiosira (Bacillariophyceae). J Phycol 44:335–349CrossRefGoogle Scholar
  656. Vonshak A (1997) Outdoor mass production of Spirulina: the basic concept. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 79–99Google Scholar
  657. Vonshak A, Guy R (1992) Photoadaptation, photoinhibition and productivity in the blue-green alga, Spirulina platensis grown outdoors. Plant Cell Environ 15:613–616CrossRefGoogle Scholar
  658. Vonshak A, Novoplansky N (2008) Acclimation to low temperature of two Arthrospira platensis (cyanobacteria) strains involves down-regulation of PSII and improved resistance to photoinhibition. J Phycol 44:1071–1079CrossRefGoogle Scholar
  659. Vonshak A, Torzillo G (2004) Environmental stress physiology. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 57–62Google Scholar
  660. Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ 24:1113–1118CrossRefGoogle Scholar
  661. Wallen DG, Geen GH (1971) Light quality in relation to growth photosynthetic rates and carbon metabolism in 2 species of marine plankton algae. Mar Biol 10:34–43CrossRefGoogle Scholar
  662. Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124CrossRefGoogle Scholar
  663. Wang C-Y, Fu C-C, Liu Y-C (2007) Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J 37:21–25CrossRefGoogle Scholar
  664. Wang H-C, Cho M-G, Riznichenko G, Rubin AB, Lee J-H (2011) Investigation of the maximum quantum yield of PS II in Haematococcus pluvialis cell cultures during growth: effects of chemical or high-intensity light treatment. J Photochem Photobiol B 104:394–398PubMedCrossRefGoogle Scholar
  665. Wang J, Han D, Sommerfeld MR, Lu C, Hu Q (2013a) Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. J Appl Phycol 25:253–260CrossRefGoogle Scholar
  666. Wang Y, Liu Z, Qin S (2013b) Effects of iron on fatty acid and astaxanthin accumulation in mixotrophic Chromochloris zofingiensis. Biotechnol Lett 35:351–357PubMedCrossRefGoogle Scholar
  667. Wang DS, Xu D, Wang YT, Fan X, Ye NH, Wang WQ, Zhang XW, Mou SL, Guan Z (2015) Adaptation involved in nitrogen metabolism in sea ice alga Chlamydomonas sp. ICE-L to Antarctic extreme environments. J Appl Phycol. 27:787–796CrossRefGoogle Scholar
  668. Wang X-W, Liang J-R, Luo C-S, Chen C-P, Gao Y-H (2014) Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Bioresour Technol 161:124–130PubMedCrossRefGoogle Scholar
  669. Warnaars TA, Hondzo M (2006) Small-scale fluid motion mediates growth and nutrient uptake of Selenastrum capricornutum. Freshw Biol 51:999–1015CrossRefGoogle Scholar
  670. Warr SRC, Reed RH, Stewart WDP (1988) The compatibility of osmotica in cyanobacteria. Plant Cell Environ 11:137–142Google Scholar
  671. Wayama M, Ota S, Matsuura H, Nango N, Hirata A, Kawano S (2013) Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS ONE 8:e53618PubMedPubMedCentralCrossRefGoogle Scholar
  672. Weathers PJ (1984) N2O evolution by green algae. Appl Environ Microbiol 48:1251–1253PubMedPubMedCentralGoogle Scholar
  673. Weathers PJ, Niedzielski JJ (1986) Nitrous oxide production by cyanobacteria. Arch Microbiol 146:204–206CrossRefGoogle Scholar
  674. Wegmann K, Ben-Amotz A, Avron M (1980) Effect of temperature on glycerol retention in the halotolerant algae Dunaliella and Asteromonas. Plant Physiol 66:1196–1197PubMedPubMedCentralCrossRefGoogle Scholar
  675. Weiss M, Haimovich G, Pick U (2001) Phosphate and sulfate uptake in the halotolerant alga Dunaliella are driven by Na+-symport mechanism. J Plant Physiol 158:1519–1525CrossRefGoogle Scholar
  676. Weissmann JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilisation, and oxygen accumulation. Biotechnol Bioeng 31:336–344CrossRefGoogle Scholar
  677. Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290PubMedCrossRefGoogle Scholar
  678. Welter C, Schwenk J, Kanani B, Van Blargan J, Belovich JM (2013) Minimal medium for optimal growth and lipid production of the microalgae Scenedesmus dimorphus. Environ Prog Sustain Energy 32:937–945CrossRefGoogle Scholar
  679. Werner R (2002) Chlamydomonas reinhardtii as a unicellular model for circadian rhythm analysis. Chronobiol Int 19:325–343PubMedCrossRefGoogle Scholar
  680. White DA, Pagarette A, Rooks P, Ali ST (2013) The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. J Appl Phycol 25:153–165CrossRefGoogle Scholar
  681. Wijnen H, Young MW (2006) Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet 40:409–448PubMedCrossRefGoogle Scholar
  682. Wilhelm C, Jakob T (2006) Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation. Photosynth Res 87:323–329PubMedCrossRefGoogle Scholar
  683. Williams TG, Colman B (1996) The effects of pH and dissolved inorganic carbon on external carbonic anhydrase activity in Chlorella saccharophila. Plant Cell Environ 19:485–489CrossRefGoogle Scholar
  684. Williamson CE (1980) Phased cell division in natural and laboratory populations of marine planktonic diatoms. J Exp Mar Biol Ecol 43:271–279CrossRefGoogle Scholar
  685. Winter J, Brandt P (1986) Stage-specific State I-State II transitions during the cell cycle of Euglena gracilis. Plant Physiol 81:548–552PubMedPubMedCentralCrossRefGoogle Scholar
  686. Witt U, Koske PH, Kuhlmann D, Lenz J, Nellen W (1981) Production of Nannochloris spec. (Chlorophyceae) in large-scale outdoor tanks and its use as a food organism in marine aquaculture. Aquaculture 23:171–181CrossRefGoogle Scholar
  687. Wolf-Gladrow D, Riebesell U (1997) Diffusion and reactions in the vicinity of plankton: a refined model for inorganic carbon transport. Mar Chem 59:17–34CrossRefGoogle Scholar
  688. Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A (2012) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502PubMedCrossRefGoogle Scholar
  689. Wynn J, Behrens P, Sundararajan A, Hansen J, Apt K (2010) Production of single cell oils from dinoflagellates. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 115–129CrossRefGoogle Scholar
  690. Yang Y, Gao K (2003) Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol 15:379–389CrossRefGoogle Scholar
  691. Yang D, Qing Y, Min C (2010) Incorporation of the chlorophyll d-binding light-harvesting protein from Acaryochloris marina and its localization within the photosynthetic apparatus of Synechocystis sp. PCC6803. Biochim Biophys Acta Bioenerg 1797:204–211CrossRefGoogle Scholar
  692. Yee D, Morel FMM (1996) In vivo substitution of zinc by cobalt in carbonic anhydrase of a marine diatom. Limnol Oceanogr 41:573–577CrossRefGoogle Scholar
  693. Ying K, Gilmour DJ, Zimmerman WB (2014) Effects of CO2 and pH on growth of the microalga Dunaliella salina. Micro Biochem Technol 6:167–173Google Scholar
  694. Yong YYR, Lee YK (1991) Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta). Phycologia 30:257–261CrossRefGoogle Scholar
  695. You T, Barnett SM (2004) Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem Eng J 19:251–258CrossRefGoogle Scholar
  696. Young EB, Beardall J (2005) Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron, and light availability. Can J Bot 83:917–928CrossRefGoogle Scholar
  697. Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam, p 346Google Scholar
  698. Zhang BY, Geng YH, Li ZK, Hu HJ, Li YG (2009) Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture 295:275–281CrossRefGoogle Scholar
  699. Zhang Q, Wu X, Xue S, Liang K, Cong W (2013) Study of hydrodynamic characteristics in tubular photobioreactors. Bioprocess Biosyst Eng 36:143–150PubMedCrossRefGoogle Scholar
  700. Zhekisheva M, Boussiba S, Khozina-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331CrossRefGoogle Scholar
  701. Zlotnik I, Dubinsky Z (1989) The effect of light and temperature on DOC excretion by phytoplankton. Limnol Oceanogr 34:831–839CrossRefGoogle Scholar
  702. Zlotnik I, Sukenik A, Dubinsky Z (1993) Physiological and photosynthetic changes during the formation of red aplanospores in the chlorophyte Haematococcus pluvialis. J Phycol 29:463–469CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Algae R&D Centre, School of Veterinary and Life SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations