Skip to main content

Algal Physiology and Large-Scale Outdoor Cultures of Microalgae

  • Chapter
  • First Online:
The Physiology of Microalgae

Part of the book series: Developments in Applied Phycology ((DAPH,volume 6))

Abstract

The reliable and efficient production of microalgae in large-scale commercial culture, whether in open ponds or in closed photobioreactors, requires a good understanding of the physiology of the alga being cultured. Since large-scale cultivation is almost always carried out outdoors, the algae experience an environment which changes during the day, from day-to-day, and also seasonally. Key environmental factors are light and temperature, and efficient use of the available light is critical for obtaining maximum productivity. How algal cell metabolism is regulated under such conditions is important as is the ability of the algae to acclimate to changed environmental conditions. Algal productivity and the formation of desired cell products such as carotenoids (e.g. β-carotene and astaxanthin) or long-chain polyunsaturated fatty acids is further affected by nutrient sources and availability and the nutrient requirements of the algae under intensive large-scale culture need to be understood. The availability of inorganic carbon either as carbon dioxide or bicarbonate is especially important. Understanding of the physiology and biochemistry of the algae also enables manipulation of the culture conditions to optimise the productivity of the desired algal metabolite (product). Understanding diurnal and circadian rhythms may also aid in optimising culture conditions and maximising yields by adjusting the timing of harvesting. Monitoring of large-scale cultures is difficult and also requires a good understanding of the physiology of the algae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Wherever possible the currently accepted names for species are used. The name used in the paper cited is also indicated. For details of names see chapter “Systematics, Taxonomy and Species Names: Do They Matter?” of this book (Borowitzka 2016).

  2. 2.

    For definition of fluorescence parameters see Cosgrove and Borowitzka (2011).

References

  • Aach HG (1952) Über Wachstum und Zusammensetzung von Chlorella pyrenoidosa bei unterschiedlichen Lichtstärken und Nitratmengen. Arch Mikrobiol 17:213–246

    Article  Google Scholar 

  • Abeliovich A, Dickbuck S (1977) Factors affecting infection of Scenedesmus obliquus by a Chytridium sp. in sewage oxidation ponds. Appl Environ Microbiol 34:32–37

    Google Scholar 

  • Abeliovich A, Weisman D (1978) Role of heterotrophic nutrition in growth of the alga Scenedesmus obliquus in high rate oxidation ponds. Appl Environ Microbiol 35:32–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abiusi F, Sampietro G, Marturano G, Biondi N, Rodolfi L, D’Ottavio M, Tredici MR (2014) Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M-M33 grown with LEDs of different colors. Biotechnol Bioeng 111:956–964

    Article  CAS  PubMed  Google Scholar 

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    Article  PubMed  Google Scholar 

  • Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–305

    Article  CAS  PubMed  Google Scholar 

  • Akimoto H, Kinumi T, Ohmiya Y (2005) Circadian rhythm of a TCA cycle enzyme is apparently regulated at the translational level in the dinoflagellate Lingulodinium polyedrum. J Biol Rhythms 20:479–489

    Article  CAS  PubMed  Google Scholar 

  • Alcántara C, Muñoz R, Norvill Z, Plouviez M, Guieysse B (2015) Nitrous oxide emissions from high rate algal ponds treating domestic wastewater. Bioresour Technol 177:110–117

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Berges JA, Harrisson PJ, Watanabe MM (2005) Recipies for freshwater and seawater media. In: Anderson RA (ed) Algal culturing techniques. Elsevier Academic Press, Amsterdam, pp 429–538

    Google Scholar 

  • Arad (Malis) S, van Moppers D (2013) Novel sulphated polysaccharides of red microalgae; basics and applications. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley-Blackwell, Chichester, pp 406–416

    Chapter  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1994) Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis: from molecular mechanisms to field studies. Bios Scientific Publishers, Oxford, pp 129–142

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Averill BA (1996) Dissimilatory nitrite and nitric oxide reductases. Chem Rev 96:2951–2964

    Article  CAS  PubMed  Google Scholar 

  • Azov Y, Shelef G, Moraine R, Oron G (1980) Alternative operating strategies for high-rate sewage oxidation ponds. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 523–529

    Google Scholar 

  • Baba M, Shiraiwa Y (2012) High-CO2 response mechanisms in microalgae. In: Najafpour M (ed) Advances in photosynthesis – fundamental aspects. InTech, Rijeka, pp 299–320

    Google Scholar 

  • Baba M, Kikuta F, Suzuki I, Watanabe MM, Shiraiwa Y (2012) Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii. Bioresour Technol 109:266–270

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Collatz GJ (1977) Studies on the kinetic mechanism of ribulose-1,5-bisphosphate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie Inst Yearb 76:355–361

    Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1052–1071

    CAS  Google Scholar 

  • Badger MR, Von Cammerer S, Ruuska S, Nakono H (2000) Electron flow to O2 in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and Rubisco oxygenase. Phil Trans R Soc Lond B Biol Sci 335:1433–1446

    Article  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Bañares-España E, López-Rodas V, Salgado C, Costas E, Flores-Moya A (2006) Inter-strain variability in the photosynthetic use of inorganic carbon, exemplified by the pH compensation point, in the cyanobacterium Microcystis aeruginosa. Aquat Bot 85:159–162

    Article  CAS  Google Scholar 

  • Banavar JR, Damuth J, Maritan A, Rinaldo A (2002) Supply–demand balance and metabolic scaling. Proc Nat Acad Sci 99:10506–10509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banse K (1976) Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size – a review. J Phycol 12:135–140

    Google Scholar 

  • Barclay W, Weaver C, Metz J, Hansen J (2010) Development of docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 75–96

    Chapter  Google Scholar 

  • Beardall J (1991) Effects of photon flux density on the CO2-concentrating mechanism of the cyanobacterium Anabaena variabilis. J Plankton Res 13:S133–S141

    Google Scholar 

  • Beardall J, Raven JA (2013) Limits to phototrophic growth in dense culture: CO2 supply and light. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 91–97

    Chapter  Google Scholar 

  • Beardall J, Raven JA (2016) Carbon acquisition by microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 89–99

    Google Scholar 

  • Beardall J, Burger-Wiersma T, Rijkeboer M, Sukenik A, Lemoalle J, Dubinsky Z, Fontvielle D (1994) Studies on enhanced post-illumination respiration in microalgae. J Plankton Res 16:1401–1410

    Article  Google Scholar 

  • Beardall J, Young E, Roberts S (2001) Approaches for determining phytoplankton nutrient limitation. Aquat Sci 63:44–69

    Article  CAS  Google Scholar 

  • Beardall J, Quigg A, Raven JA (2003) Oxygen consumption: photorespiration and chlororespiration. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 157–181

    Chapter  Google Scholar 

  • Beardall J, Allen D, Bragg J, Finkel ZV, Flynn KJ, Quigg A, Rees TAV, Richardson A, Raven JA (2009) Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol 181:295–309

    Article  CAS  PubMed  Google Scholar 

  • Bec B, Collos Y, Vaquer A, Mouillot D, Souchu P (2008) Growth rate peaks at intermediate cell size in marine photosynthetic picoeukaryotes. Limnol Oceanogr 53:863–867

    Article  Google Scholar 

  • Behrenfeld MJ, Westberry TK, Boss ES, O’Malley RT et al (2009) Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences 6:779–794

    Article  Google Scholar 

  • Beijerinck MW (1890) Kulturversuche mit Zoochloren, Lichenengonidien und anderen niederen Algen. Botanische Zeitschrift 48:725–785

    Google Scholar 

  • Belay A (1997) Mass culture of Spirulina outdoors – the earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 131–158

    Google Scholar 

  • Belay A (2008) Spirulina (Arthrospira): production and quality assurance. In: Gershwin ME, Belay A (eds) Spirulina in human nutrition and health. CRC Press, Boca Raton, pp 1–25

    Google Scholar 

  • Belay A, Fogg GE (1978) Photoinhibition of photosynthesis in Asterionella formosa (Bacillariophyceae). J Phycol 14:341–347

    Article  CAS  Google Scholar 

  • Belay A, Ota Y, Miyakawa K, Shimamatsu H (1994) Production of high quality Spirulina at Earthrise Farms. In: Phang SM, Lee K, Borowitzka MA, Whitton B (eds) Algal biotechnology in the Asia-Pacific region. University of Malaya, Institute of Advanced Studies, Kuala Lumpur, pp 92–102

    Google Scholar 

  • Belyanin VN, Trenkenshu RP, Silkin VA (1979) Growth of the alga Platymonas viridis in experiments on optimization of microelement composition of the medium. Biol Morya 4:14–19

    Google Scholar 

  • Ben-Amotz A (1980) Glycerol production in the alga Dunaliella. In: San Pietro A (ed) Biochemical and photosynthetic aspects of energy production. Academic, New York, pp 191–208

    Google Scholar 

  • Ben-Amotz A (1995) New mode of Dunaliella biotechnology: two-phase growth for ß-carotene production. J Appl Phycol 7:65–68

    Article  CAS  Google Scholar 

  • Ben-Amotz A (1999) Production of beta-carotene from Dunaliella. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 196–204

    Google Scholar 

  • Ben-Amotz A, Avron M (1983) On the factors which determine the massive ß-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72:593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126

    Article  CAS  Google Scholar 

  • Bender SJ, Parker MS, Armbrust EV (2012) Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over a diel cycle in the marine diatom Thalassiosira pseudonana. Protist 163:232–251

    Article  CAS  PubMed  Google Scholar 

  • Bendif EM, Probert I, Schroeder DC, Vargas C (2013) On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J Appl Phycol 25:1763–1776

    Article  CAS  Google Scholar 

  • Benemann JR (1989) The future of microalgal biotechnology. In: Cresswell RC, Rees TAV, Shah M (eds) Algal and cyanobacterial biotechnology. Longman Scientific & Technical, Harlow, pp 317–337

    Google Scholar 

  • Berdalet E, Estrada M (2006) Effects of small-scale turbulence on the physiological functioning of marine microalgae. In: Subba Rao DV (ed) Algal cultures, alalogues of blooms and applications. Science Publishers, Plymouth, pp 459–500

    Google Scholar 

  • Berges JA, Varela DE, Harrison PJ (2002) Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Mar Ecol Prog Ser 225:139–146

    Article  Google Scholar 

  • Bernard O, Rémond B (2012) Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresour Technol 123:520–527

    Article  CAS  PubMed  Google Scholar 

  • Bhatti S, Colman B (2008) Inorganic carbon acquisition in some synurophyte algae. Physiol Plant 133:33–40

    Article  CAS  PubMed  Google Scholar 

  • Bhatti S, Huertas IE, Colman B (2002) Acquisition of inorganic carbon by the marine haptophyte Isochrysis galbana (Prymnesiophyceae). J Phycol 38:914–921

    Article  CAS  Google Scholar 

  • Blackburn S, Parker N (2005) Microalgal life cycles: encystment and excystment. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 399–417

    Google Scholar 

  • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner M, Junge W, Kramer DM, Melis A (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  CAS  PubMed  Google Scholar 

  • Bolier G, de Koningh MCJ, Schmale JC, Donze M (1992) Differential luxury phosphate response of planktonic algae to phosphorus removal. Hydrobiologia 243/244:113–118

    Article  Google Scholar 

  • Bonente G, Formighieri C, Mantelli M, Catalanotti C, Giuliano G, Morosinotto T, Bassi R (2011) Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors. Photosynth Res 108:107–120

    Article  CAS  PubMed  Google Scholar 

  • Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M (2012) Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J Biol Chem 287:5833–5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth WA, Beardall J (1991) Effects of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant alga Dunaliella salina (Chlorophyta). Phycologia 30:220–225

    Article  Google Scholar 

  • Borowitzka LJ (1981a) The microflora. Adaptations to life in extremely saline lakes. Hydrobiologia 81:33–46

    Article  Google Scholar 

  • Borowitzka LJ (1981b) Solute accumulation and regulation of cell water activity. In: Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic, Sydney, pp 97–130

    Google Scholar 

  • Borowitzka MA (1988a) Algal growth media and sources of cultures. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 456–465

    Google Scholar 

  • Borowitzka MA (1988b) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 257–287

    Google Scholar 

  • Borowitzka MA (1992) Comparing carotenogenesis in Dunaliella and Haematococcus: implications for commercial production strategies. In: Villa TG, Abalde J (eds) Profiles on biotechnology. Universidade de Santiago de Compostela, Santiago de Compostela, pp 301–310

    Google Scholar 

  • Borowitzka MA (1997) Algae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Borowitzka MA (1998) Limits to growth. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae. Springer-Verlag, Berlin, pp 203–226

    Chapter  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013a) Dunaliella: biology, production, and markets. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Wiley-Blackwell, Chichester, pp 359–368

    Google Scholar 

  • Borowitzka MA (2013b) Energy from microalgae: a short history. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  • Borowitzka MA (2013c) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013d) Strain selection. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 77–89

    Chapter  Google Scholar 

  • Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988a) Dunaliella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 27–58

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988b) Limits to growth and carotenogenesis in laboratory and large-scale outdoor cultures of Dunaliella salina. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, Barking, pp 371–381

    Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1990) Commercial production of ß-carotene by Dunaliella salina in open ponds. Bull Mar Sci 47:244–252

    Google Scholar 

  • Borowitzka MA, Moheimani NR (eds) (2013a) Algae for biofuels and energy. Chichester: Springer, Dordrecht, p 288

    Google Scholar 

  • Borowitzka MA, Moheimani NR (2013b) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Chang 18:13–25

    Article  Google Scholar 

  • Borowitzka LJ, Borowitzka MA, Moulton T (1984) The mass culture of Dunaliella: from laboratory to pilot plant. Hydrobiologia 116/117:115–121

    Article  Google Scholar 

  • Borowitzka MA, Borowitzka LJ, Kessly D (1990) Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J Appl Phycol 2:111–119

    Article  Google Scholar 

  • Borowitzka MA, Huisman JM, Osborn A (1991) Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J Appl Phycol 3:295–304

    Article  CAS  Google Scholar 

  • Botebol H, Sutak R, Scheiber I, Blaiseau P-L, Bouget F-Y, Camadro J-M, Lesuisse E (2014) Different iron sources to study the physiology and biochemistry of iron metabolism in marine micro-algae. Biometals 27:75–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouget F-Y, Lefranc M, Thommen Q, Pfeuty B, Lozano J-C, Schatt P, Botebol H, Vergé V (2014) Transcriptional versus non-transcriptional clocks: a case study in Ostreococcus. Mar Genomics 14:17–22

    Article  PubMed  Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    Article  CAS  Google Scholar 

  • Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082

    CAS  Google Scholar 

  • Boussiba S, Vonshak A, Cohen Z, Richmond A (1997) A procedure for large-scale production of astaxanthin from Haematococcus. PCT Patent 9,728,274

    Google Scholar 

  • Boussiba S, Bing W, Yuan J, Zarka A, Chen F (1999) Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol Lett 21:601–604

    Article  CAS  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Brand LE (1982) Persistent diel rhythms in the chlorophyll fluorescence of marine phytoplankton species. Mar Biol 69:253–262

    Article  Google Scholar 

  • Braun R, Farré EM, Schurr U, Matsubara S (2014) Effects of light and circadian clock on growth and chlorophyll accumulation of Nannochloropsis gaditana. J Phycol 50:515–525

    Article  CAS  PubMed  Google Scholar 

  • Brewer PG, Goldman JC (1976) Alkalinity changes generated by phytoplankton growth. Limnol Oceanogr 21:108–117

    Article  CAS  Google Scholar 

  • Brown AD, Borowitzka LJ (1979) Halotolerance of Dunaliella. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa, vol 1. Academic, New York, pp 139–190

    Google Scholar 

  • Brown AD, Simpson JR (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol 72:589–591

    Article  CAS  PubMed  Google Scholar 

  • Brown KL, Twing KI, Robertson DL (2009) Unraveling the regulation of nitrogen assimilation in the marine diatom Thalassiosira pseudonana (Bacillariophyceae): diurnal variations in transcript levels for five genes involved in nitrogen assimilation. J Phycol 45:413–426

    Article  CAS  Google Scholar 

  • Bruce VG (1970) The biological clock of Chlamydomonas reinhardii. J Protozool 17:328–334

    Article  Google Scholar 

  • Bruning K (1991a) Effects of phosphorus limitation on the epidemiology of a chytrid phytoplankton parasite. Freshw Biol 25:409–417

    Article  Google Scholar 

  • Bruning K (1991b) Effects of temperature and light on the population dynamics of the Asterionella-Rhizophydium association. J Plankton Res 13:707–719

    Article  Google Scholar 

  • Bruning K (1991c) Infection of the diatom Asterionella by a Chytrid.1. Effects of light on reproduction and infectivity of the parasite. J Plankton Res 13:103–117

    Article  Google Scholar 

  • Bruning K (1991d) Infection of the diatom Asterionella by a chytrid.2. Effects of light on survival and epidemic development of the parasite. J Plankton Res 13:119–129

    Article  Google Scholar 

  • Bruyant F, Babin M, Genty B, Prasil O, Behrenfeld MJ, Claustre H, Bricaud A, Garczarek L, Holtzendorff J, Koblizek M, Dousova H, Partensky F (2005) Diel variations in the photosynthetic parameters of Prochlorococcus strain PCC 9511: combined effects of light and cell cycle. Limnol Oceanogr 50:850–863

    Google Scholar 

  • Brzezinski MA, Olson RJ, Chisholm SW (1990) Silicon availability and cell-cycle progression in marine diatoms. Mar Ecol Prog Ser 67:83–96

    Article  CAS  Google Scholar 

  • Buchheim MA, Sutherland DM, Buchheim JA, Wolf M (2013) The blood alga: phylogeny of Haematococcus (Chlorophyceae) inferred from ribosomal RNA gene sequence data. Eur J Phycol 48:318–329

    Article  Google Scholar 

  • Burkiewicz K, Synak R (1996) Biological activity of the media after algal cultures can result from extracellular carbohydrates. J Plant Physiol 148:662–666

    Article  CAS  Google Scholar 

  • Burlew JS (1953a) Algae culture from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC

    Google Scholar 

  • Burlew JS (1953b) Current status of large-scale culture of algae. In: Burlew JS (ed) Algal culture from laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 3–23

    Google Scholar 

  • Butterwick C, Heaney SI, Talling JF (2005) Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshw Biol 50:291–300

    Article  Google Scholar 

  • Byrne TE, Wells MR, Johnson CH (1992) Circadian rhythms of chemotaxis to ammonium and of methylammonium uptake in Chlamydomonas. Plant Physiol 98:879–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho Rubio F, Acien Fernandez FG, Sanchez Perez JA, Garcia Camacho F, Molina Grima E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86

    Article  Google Scholar 

  • Camacho-Rodríguez J, González-Céspedes AM, Cerón-García MC, Fernández-Sevilla JM, Acién-Fernández FG, Molina-Grima E (2014) A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance. Appl Microbiol Biotechnol 98:2429–2440

    Article  PubMed  CAS  Google Scholar 

  • Carney LT, Lane TW (2014) Parasites in algae mass culture. Front Microbiol 5:278

    PubMed  PubMed Central  Google Scholar 

  • Cazzaniga S, Dall’Osto L, Szaub J, Scibilia L, Ballottari M, Purton S, Bassi R (2014) Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnol Biofuels 7:1–13

    Article  CAS  Google Scholar 

  • Cembella AD, Antia NJ, Harrison PJ (1982) The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: Part I. Crit Rev Microbiol 10:317–391

    Article  Google Scholar 

  • Cepák V, PŘibyl P, Kohoutková J, Kaštánek P (2014) Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus. J Appl Phycol 26:181–190

    Google Scholar 

  • Chaumont D, Thepenier C (1995) Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle. J Appl Phycol 7:529–537

    Article  CAS  Google Scholar 

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Liu H (2010) Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol Oceanogr 55:965–972

    Article  CAS  Google Scholar 

  • Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzym Microbiol Technol 20:221–224

    Article  CAS  Google Scholar 

  • Chen T-H, Pen S-Y, Huang T-C (1993) Induction of nitrogen-fixing circadian rhythm Synechococcus RF-1 by light signals. Plant Sci 92:179–182

    Article  CAS  Google Scholar 

  • Chen M, Quinnell RG, Larkum AWD (2002) Chlorophyll d as the major photopigment in Acaryochloris marina. J Porphyrins Phthalocyanines 06:763–773

    Article  CAS  Google Scholar 

  • Chen X, Goh QY, Tan W, Hossain I, Chen WN, Lau R (2011) Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresour Technol 102:6005–6012

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Wang G, Niu J (2012) Variation in Rubisco and other photosynthetic parameters in the life cycle of Haematococcus pluvialis. Chin J Oceanol Limnol 30:136–145

    Article  CAS  Google Scholar 

  • Cheng-Wu Z, Cohen Z, Khozin-Goldberg I, Richmond A (2002) Characterization of growth and arachidonic acid production of Parietochloris incisa comb. nov (Trebouxiophyceae, Chlorophyta). J Appl Phycol 14:453–460

    Article  Google Scholar 

  • Chien L-F, Vonshak A (2011) Enzymatic antioxidant response to low-temperature acclimation in the cyanobacterium Arthrospira platensis. J Appl Phycol 23:887–894

    Article  CAS  Google Scholar 

  • Chini Zitelli G, Lavista F, Bastianini A, Rodolfi L, Vincencini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312

    Article  Google Scholar 

  • Chisholm SW, Brand LE (1981) Persistance of cell division phasing in marine phytoplankton in continuous light after entrainment to light:dark cycles. J Exp Mar Biol Ecol 51:107–118

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Hiramatsu K, Ogawa M, Omura T, Ishimaru T, Oshima Y (2008) Non-toxic and toxic subclones obtained from a toxic clonal culture of Alexandrium tamarense (Dinophyceae): toxicity and molecular biological feature. Harmful Algae 7:740–751

    Article  CAS  Google Scholar 

  • Chow Y, Thung L (2015) Quantifying the competitive advantage of light green algal strains in batch culture. J Appl Phycol. 27:1805–1812

    Article  CAS  Google Scholar 

  • Chrismadha T, Borowitzka MA (1994) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J Appl Phycol 6:67–74

    Article  Google Scholar 

  • Claquin P, Kromkamp JC, Martin-Jezequel V (2004) Relationship between photosynthetic metabolism and cell cycle in a synchronized culture of the marine alga Cylindrotheca fusiformis (Bacillariophyceae). Eur J Phycol 39:33–41

    Article  CAS  Google Scholar 

  • Coesel S, Mangogna M, Ishikawa T, Heijde M, Rogato A, Finazzi G, Todo T, Bowler C, Falciatore A (2009) Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Rep 10:655–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogne G, Lehmann B, Dussap CG, Gros JB (2003) Uptake of macrominerals and trace elements by the cyanobacterium Spirulina platensis (Arthrospira platensis PCC 8005) under photoautotrophic conditions: culture medium optimization. Biotechnol Bioeng 81:588–593

    Article  CAS  PubMed  Google Scholar 

  • Cohen Z (1990) The production potential of eicosapentaenoic and arachidonic acids by the red alga Porphyridium cruentum. J Am Oil Chem Soc 67:916–920

    Article  CAS  Google Scholar 

  • Cohen Z, Khozin-Goldberg I (2005) Searching for PUFA-rich microalgae. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Press, Champaign, pp 53–72

    Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. J Phycol 24:328–332

    CAS  Google Scholar 

  • Colegrave N, Kaltz O, Bell G (2002) The ecology and genetics of fitness in Chlamydomonas. VIII. The dynamics of adaptation to novel environments after a single episode of sex. Evolution 56:14–21

    Article  PubMed  Google Scholar 

  • Coleman AW (1975) Long-term maintenance of fertile algal clones: experience with Pandorina (Chlorophyceae). J Phycol 11:282–286

    Google Scholar 

  • Coleman AW, Pröschold T (2005) Control of sexual reproduction in algae in culture. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 389–397

    Google Scholar 

  • Collins S, Bell G (2004) Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431:566–569

    Article  CAS  PubMed  Google Scholar 

  • Collins AM, Jones HDT, Han DX, Hu Q, Beechem TE, Timlin JA (2011) Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS ONE 6:e24302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colman B, Huertas IE, Bhatti S, Dason JS (2002) The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Funct Plant Biol 29:261–270

    Article  CAS  Google Scholar 

  • Contreras A, García F, Molina E, Merchuk JC (1998) Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng 60:317–325

    Article  CAS  PubMed  Google Scholar 

  • Corellou F, Schwartz C, Motta J-P, Djouani-Tahri EB, Sanchez F, Bouget F-Y (2009) Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus. Plant Cell Online 21:3436–3449

    Article  CAS  Google Scholar 

  • Cosgrove J, Borowitzka MA (2011) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 1–17

    Google Scholar 

  • Costas E, Nieto B, Lopez-Rodas V, Salgado C, Toro M (1998) Adaptation to competition by new mutations in clones of Alexandrium minutum. Evolution 52:6190613

    Article  Google Scholar 

  • Cózar A, Echevarría F (2005) Size structure of the planktonic community in microcosm with different levels of turbulence. Sci Mar 69:187–197

    Article  Google Scholar 

  • Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337

    Article  CAS  Google Scholar 

  • Craggs RJ, Lundquist TJ, Benemann JR (2013) Wastewater treatment and algal biofuel production. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 153–164

    Chapter  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    Article  CAS  PubMed  Google Scholar 

  • Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryot Cell 5:1175–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham FX, Dennenberg RJ, Mustardy L, Jursinic PA, Gantt E (1989) Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance. Plant Physiol 91:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva TL, Gouveia L, Reis A (2014) Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production. Appl Microbiol Biotechnol 98:1043–1053

    Article  PubMed  CAS  Google Scholar 

  • Darzins A, Pienkos P, Edye L (2010) Current status and potential for algal biofuels production. BioiIndustry Partners and NREL, Bioenergy Task 39 p 131

    Google Scholar 

  • Das P, Lei W, Aziz SS, Obbard JP (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol 102:3883–3887

    Article  CAS  PubMed  Google Scholar 

  • Day JG, Brand JJ (2005) Cryopresenrvation methods for maintaining microalgal cultures. In: Anderson RA (ed) Algal culturing techniques. Elsevier Academic Press, London, pp 165–187

    Google Scholar 

  • De Bruin A, Ibelings BW, Rijkeboer M, Brehm M, Van Donk E (2004) Genetic variation in Asterionella formosa (Bacillariophyceae): is it linked to frequent epidemics of host-specific parasitic fungi? J Phycol 40:823–830

    Article  CAS  Google Scholar 

  • de Mooij T, Janssen M, Cerezo-Chinarro O, Mussgnug J, Kruse O, Ballottari M, Bassi R, Bujaldon S, Wollman F-A, Wijffels R (2014) Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized. J Appl Phycol. 27:1063–1077

    Article  CAS  Google Scholar 

  • de Morais MG, Costa JAV (2007) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manag 48:2169–2173

    Article  CAS  Google Scholar 

  • De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A (2009) Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 37:e96–e96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Winter L, Klok AJ, Cuaresma Franco M, Barbosa MJ, Wijffels RH (2013) The synchronized cell cycle of Neochloris oleoabundans and its influence on biomass composition under constant light conditions. Algal Res 2:313–320

    Article  Google Scholar 

  • Degerlund M, Huseby S, Zingone A, Sarno D, Landfald B (2012) Functional diversity in cryptic species of Chaetoceros socialis Lauder (Bacillariophyceae). J Plankton Res 34:416–431

    Article  CAS  Google Scholar 

  • Del Rio E, Acién FG, García-Malena MC, Rivas J, Molina Grima E, Guerrero MG (2005) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 91:808–815

    Article  PubMed  CAS  Google Scholar 

  • Delavari Amrei H, Nasernejad B, Ranjbar R, Rastegar S (2014) Spectral shifting of UV-A wavelengths to blue light for enhancing growth rate of cyanobacteria. J Appl Phycol 26:1493–1500

    Article  CAS  Google Scholar 

  • D'Elia CF, Guillard RRL, Nelson DM (1979) Growth and competition of the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. 1. Nutrient effects. Mar Biol 50:305–312

    Article  Google Scholar 

  • Demidov E, Iwasaki I, Sato N (2000) Short-term responses of photosynthetic reactions to extremely high-CO2 stress in a high-CO2 tolerant green alga Chlorococcum littorale and an intolerant green alga Stichococcus bacillaris. Russ J Plant Physiol 47:622–631

    CAS  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouze P et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103:11647–11652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanam DS, Dhandayuthapani K (2013) Optimisation of β-carotene production by marine microalga – Dunaliella salina. Int J Curr Microbiol Appl Sci 2:37–43

    Google Scholar 

  • Diaz MM, Maberly SC (2009) Carbon-concentrating mechanisms in acidophilic algae. Phycologia 48:77–85

    Article  CAS  Google Scholar 

  • Dong Q, Zhao X, Xing X, Hu J, Gong J (2007) Concomitant NH4 + secretion during astaxanthin synthesis in Haematococcus pluvialis under high irradiance and nitrogen deficient conditions. Chin J Chem Eng 15:162–166

    Article  CAS  Google Scholar 

  • Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K (1999) Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the same. USA Patent 5,981,271

    Google Scholar 

  • Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K (2014) High density outdoor microalgal culture. In: Balpai R, Prokop A, Zappi M (eds) Algal biorefineries, vol 1, Cultivation of cells and products. Springer, Dordrecht, pp 147–173

    Chapter  Google Scholar 

  • Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36:3925–3940

    Article  CAS  PubMed  Google Scholar 

  • Droop MR (1955) Carotogenesis in Haematococcus pluvialis. Nature 175:42

    Article  CAS  Google Scholar 

  • Droop MR (1961) Haematococcus pluvialis and its allies. III. Organic nutrition. Rev Algol NS 4:247–259

    Google Scholar 

  • Droop MR (2007) Vitamins, phytoplankton and bacteria: symbiosis or scavenging? J Plankton Res 29:107–113

    Article  CAS  Google Scholar 

  • Duan Z, Sun R, Zhu C, Chou I-M (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO4 2-. Mar Chem 98:131–139

    Article  CAS  Google Scholar 

  • Dubinsky Z, Stambler N (2009) Photoacclimation processes in phytoplankton: mechanisms, consequences, and applications. Aquat Microb Ecol 56:163–176

    Article  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of 3 microalgae grown in mass culture. J Appl Phycol 5:71–83

    Article  CAS  Google Scholar 

  • Dupont CL, Barbeau K, Palenik B (2008) Ni uptake and limitation in marine Synechococcus strains. Appl Environ Microbiol 74:23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duxbury Z, Schliep M, Ritchie RJ, Larkum AWD, Chen M (2009) Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. Photosynth Res 101:69–75

    Article  CAS  PubMed  Google Scholar 

  • Dyhrman ST (2016) Nutrients and their acquisition: phosphorus physiology in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 155–183

    Google Scholar 

  • Eisele R, Ullrich WR (1975) Stiochiometry between photosynthetic nitrate reduction and alkalinisation by Ankistrodesmus braunii in vivo. Planta 123:117–123

    Article  CAS  PubMed  Google Scholar 

  • Elliott AM (1931) Morphology and life history of Haematococcus pluvialis. Arch Protistenk 82:250–272

    Google Scholar 

  • Esterhuizen-Londt M, Zeelie B (2013) Outdoor large scale microalgae consortium culture for biofuel production in South Africa: overcoming adverse environmental effects on microalgal growth. J Energy Technol Policy 3:39–45

    Google Scholar 

  • Fabregas J, Dominguez A, Reguireo M, Maseda A, Otero A (2000) Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl Microbiol Biotechnol 53:530–535

    Article  CAS  PubMed  Google Scholar 

  • Fábregas J, Domínguez A, Maseda A, Otero A (2003) Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl Microbiol Biotechnol 61:545–551

    Article  PubMed  CAS  Google Scholar 

  • Fagan T, Morse D, Hastings JW (1999) Circadian synthesis of a nuclear-encoded chloroplast glyceraldehyde-3-phosphate dehydrogenase in the dinoflagellate Gonyaulax polyedra is translationally controlled. Biochemistry 38:7689–7695

    Article  CAS  PubMed  Google Scholar 

  • Fagerstone KD, Quinn JC, Bradley TH, De Long SK, Marchese AJ (2011) Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation. Environ Sci Technol 45:9449–9456

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Dubinsky Z, Santostefano G (1985) Light-enhanced dark respiration in phytoplankton. Internationale Vereinigung für Theoretische und Angewandte Limnologie Verhandlungen 22:2830–2833

    Google Scholar 

  • Fan L, Vonshak A, Boussiba S (1994) Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae). J Phycol 30:829–833

    Article  Google Scholar 

  • Fan L, Vonshak A, Zarka A, Boussiba S (1998) Does astaxanthin protect Haematococcus against light damage? Z Naturforsch 53c:93–100

    Google Scholar 

  • Farges B, Laroche C, Cornet J-F, Dussap C-G (2009) Spectral kinetic modeling and long-term behavior assessment of Arthrospira platensis growth in photobioreactor under red (620 nm) light illumination. Biotechnol Prog 25:151–162

    Article  CAS  PubMed  Google Scholar 

  • Fernandez E, Galvan A (2008) Nitrate assimilation in Chlamydomonas. Eukaryot Cell 7:555–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrón S, Ho DT, Johnson ZI, Huntley ME (2012) Air–water fluxes of N2O and CH4 during microalgae (Staurosira sp.) cultivation in an open raceway pond. Environ Sci Technol 46:10842–10848

    Article  PubMed  CAS  Google Scholar 

  • Finkel ZV (2016) Silicification in the microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 289–300

    Google Scholar 

  • Finkel ZV, Quigg A, Raven JA, Reinfelder JR, Schofield OE, Falkowski PG (2006) Irradiance and the elemental stoichiometry of marine phytoplankton. Limnol Oceanogr 51:2690–2701

    Article  CAS  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137

    Article  CAS  Google Scholar 

  • Fischer P, Klein U (1988) Localization of nitrogen-assimilating enzymes in the chloroplast of Chlamydomonas reinhardtii. Plant Physiol 88:947–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher M, Gokhman I, Pick U, Zamir A (1996a) A salt-resistant plasma membrane carbonic anhydrase is induced by salt in Dunaliella salina. J Biol Chem 271:17723

    Google Scholar 

  • Fisher T, Minnaard J, Dubinsky Z (1996b) Photoacclimation in the marine alga Nannochloropsis sp. (Eustigmatophyte): a kinetic study. J Plankton Res 18:1797–1818

    Article  Google Scholar 

  • Flameling IA, Kromkamp J (1997) Photoacclimation of Scenedesmus protuberans (Chlorophyceae) to fluctuating irradiances simulating vertical mixing. J Plankton Res 19:1011–1024

    Article  Google Scholar 

  • Flores-Leiva L, Tarifeño E, Cornejo M, Kiene R, Farías L (2010) High peroduction of nitrous oxide (N2O), methans (CH4) and dimethylsulphopropionate (DMSP) in a massive marine phytoplankton culture. Biogeosci Discuss 7:6705–6723

    Article  Google Scholar 

  • Flynn KJ (1999) Nitrate transport and ammonium-nitrate interactions at high nitrate concentrations and low temperature. Mar Ecol Prog Ser 187:283–287

    Article  CAS  Google Scholar 

  • Fon Sing S, Isdepsky A, Borowitzka MA, Lewis DM (2014) Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresour Technol 161:47–54

    Article  CAS  PubMed  Google Scholar 

  • Fon-Sing S, Borowitzka MA (2016) Isolation and screening of euryhaline Tetraselmis spp. suitable for large-scale outdoor culture in hypersaline media for biofuels. J Appl Phycol 28:1–14

    Article  CAS  Google Scholar 

  • Frenkel J, Vyverman W, Pohnert G (2014) Pheromone signaling during sexual reproduction in algae. Plant J 79:632–644

    Article  CAS  PubMed  Google Scholar 

  • Fruend C, Romem E, Post AF (1993) Ecological physiology of an assembly of photosynthetic microalgae in wastewater oxidation ponds. Water Sci Technol 27:143–149

    CAS  Google Scholar 

  • Fuggi A, Di Martino Rigano V, Vona V, Rigano C (1981) Nitrate and ammonium assimilation in algal cell-suspensions and related pH variations in the external medium, monitored by electrodes. Plant Sci Lett 23:129–138

    Article  CAS  Google Scholar 

  • Fujiwara S, Ishida N, Tsuzuki M (1996) Circadian expression of the carbonic anhydrase gene, Cah1, in Chlamydomonas reinhardtii. Plant Mol Biol 32:745–749

    Article  CAS  PubMed  Google Scholar 

  • Gabbay-Azaria R, Tel-Or E, Schönfeld M (1988) Glycinebetaine as an osmoregulant and compatible solute in the marine cyanobacterium Spirulina subsalsa. Arch Biochem Biophys 264:333–339

    Article  CAS  PubMed  Google Scholar 

  • Gacheva GV, Gigova LG, Ivanova NY, Pilarski PS, Lukavský J (2013) Growth, biochemical and enzymatic responses of thermal cyanobacterium Gloeocapsa sp. (Cyanophyceae) to temperature and irradiance. Phycol Res 61:217–227

    Article  CAS  Google Scholar 

  • Garcıa Camacho F, Contreras Gómez A, Mazzuca Sobczuk T, Molina Grima E (2000) Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum. Process Biochem 35:1045–1050

    Article  Google Scholar 

  • García-Malea M, Acíen FG, Del Río E, Fernández JM, Cerón MC, Guerrero MG, Molina-Grima E (2009) Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnol Bioeng 102:651–657

    Article  PubMed  CAS  Google Scholar 

  • Gardner RD, Cooksey KE, Mus F, Macur R, Moll K, Eustance E, Carlson RP, Gerlach R, Fields MW, Peyton BM (2012) Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum. J Appl Phycol 24:1311–1320

    Article  CAS  Google Scholar 

  • Gardner RD, Lohman E, Gerlach R, Cooksey KE, Peyton BM (2013) Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii. Biotechnol Bioeng 110:87–96

    Article  CAS  PubMed  Google Scholar 

  • Gauthier DA, Turpin DH (1994) Inorganic phosphate (Pi) enhancement of dark respiration in the Pi-limited green alga Selenastrum minutum (Interactions between H+/Pi cotransport, the plasmalemma H+-ATPase, and dark respiratory carbon flow). Plant Physiol 104:629–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Liu J, Tian G (2011) Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresour Technol 102:130–134

    Article  CAS  PubMed  Google Scholar 

  • Geider RJ, Osborne BA (1989) Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytol 112:327–341

    Article  Google Scholar 

  • Geider RJ, Roche JL (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17

    Article  Google Scholar 

  • Geider RJ, Platt T, Raven JA (1986) Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar Ecol Prog Ser 30:93–104

    Article  CAS  Google Scholar 

  • Gibor A (1956) The culture of brine algae. Biol Bull 111:223–229

    Article  Google Scholar 

  • Gilstad M, Johnsen G, Sakshaug E (1993) Photosynthetic parameters, pigment composition and respiration rates of the marine diatom Skeletonema costatum grown in continuous light and a 12:12 h light-dark cycle. J Plankton Res 15:939–951

    Article  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Physiol 56:99–131

    CAS  Google Scholar 

  • Giovagnetti V, Flori S, Tramontano F, Lavaud J, Brunet C (2014) The velocity of light intensity increase modulates the photoprotective response in coastal diatoms. PLoS ONE 9:e103782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goho S, Bell G (2000) The ecology and genetics of fitness in Chlamydomonas. IX. The rate of accumulation of variation of fitness under selection. Evolution 54:416–424

    Article  CAS  PubMed  Google Scholar 

  • Goldman JC, Dennett MR, Riley CB (1982) Effect of nitrogen-mediated changes in alkalinity on pH control and CO2 supply in intensive microalgal cultures. Biotechnol Bioeng 24:619–631

    Article  CAS  PubMed  Google Scholar 

  • Gômez Pinchetti JL, Ramazanov Z, Fontes A, Garcia Reina G (1992) Photosynthetic characteristics of Dunaliella salina (Chlorophyceae, Dunaliellales) in relation to ß-carotene content. J Appl Phycol 4:11–15

    Article  Google Scholar 

  • Gong X, Chen F (1997) Optimisation of culture medium for growth of Haematococcus pluvialis. J Appl Phycol 9:437–444

    Article  CAS  Google Scholar 

  • Goodwin TW, Jamikorn M (1954) Studies in carotenogensis. II. Carotenoid synthesis in the alga Haematococcus pluvialis. Biochem J 57:376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorai T, Katayama T, Obata M, Murata A, Taguchi S (2014) Low blue light enhances growth rate, light absorption, and photosynthetic characteristics of four marine phytoplankton species. J Exp Mar Biol Ecol 459:87–95

    Article  Google Scholar 

  • Grabski K, Tukaj Z (2008) Autoinduction activity of a conditioned medium obtained from high density cultures of the green alga Scenedesmus subspicatus. J Appl Phycol 20:323–330

    Article  Google Scholar 

  • Grabski K, Aksmann A, Mucha P, Tukaj Z (2010) Conditioned medium factor produced and released by Desmosdemus subspicatus and its effect on the cell cycle of the producer. J Appl Phycol 22:517–524

    Article  Google Scholar 

  • Grant BR (1967) The action of light on nitrate and nitrite assimilation by the marine chlorophyte, Dunaliella tertiolecta (Butcher). J Gen Microbiol 48:379–389

    Article  CAS  PubMed  Google Scholar 

  • Grant BR (1968) The effect of carbon dioxide concentration and buffer system on nitrate and nitrite assimilation by Dunaliella tertiolecta. J Gen Microbiol 54:327–336

    Article  CAS  PubMed  Google Scholar 

  • Grant BR, Turner IM (1969) Light-stimulated nitrate and nitrite assimilation in several species of algae. Comp Biochem Physiol 29:995–1004

    Article  CAS  Google Scholar 

  • Grant WS, Vadas RL (1976) A diurnal settling rhythm in Platymonas subcordiformis Hazen. J Protozool 23:557–559

    Article  Google Scholar 

  • Griffiths MJ, Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001

    Article  CAS  Google Scholar 

  • Grimsley N, Péquin B, Bachy C, Moreau H, Piganeau G (2010) Cryptic sex in the smallest eukaryotic marine green alga. Mol Biol Evol 27:47–54

    Article  CAS  PubMed  Google Scholar 

  • Grobbelaar JU (1989) Do light/dark cycles of medium frequency enhance phytoplankton productivity ? J Appl Phycol 1:333–340

    Article  Google Scholar 

  • Grobbelaar JU (2007) Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? J Appl Phycol 19:591–598

    Article  CAS  Google Scholar 

  • Grobbelaar N, Huang TC (1992) Effect of oxygen and temperature on the induction of a circadian nitrogenase activity rhythm in Synechococcus RF-1. J Plant Physiol 140:391–394

    Article  CAS  Google Scholar 

  • Grobbelaar JU, Soeder CJ (1985) Respiration losses in planktonic green algae cultivated in raceway ponds. J Plankton Res 7:497–506

    Article  Google Scholar 

  • Grobbelaar JU, Soeder CJ, Stengel E (1990) Modeling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21:297–314

    Article  Google Scholar 

  • Grobbelaar JU, Nedbal L, Tichý V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8:335–343

    Article  CAS  Google Scholar 

  • Grünewald K, Eckert M, Hirschberg J, Hagen C (2000) Phytoene desaturase is localized exclusively in the chloroplast and up- regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiol 122:1261–1268

    Article  PubMed  PubMed Central  Google Scholar 

  • Grung M, D’Souza FML, Borowitzka MA, Liaaen-Jensen S (1992) Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S,3′S)-astaxanthin esters. J Appl Phycol 4:165–171

    Article  CAS  Google Scholar 

  • Gsell AS, de Senerpont Domis LN, van Donk E, Ibelings BW (2013) Temperature alters host genotype-specific susceptibility to chytrid infection. PLoS ONE 8:e71737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guasto JS, Rusconi R, Stocker R (2012) Fluid mechanics of planktonic organisms. Annu Rev Fluid Mech 44:373–400

    Article  Google Scholar 

  • Gudin C, Chaumont D (1991) Cell fragility – the key problem of microalgae mass production in closed photobioreactors. Bioresour Technol 38:145–151

    Article  Google Scholar 

  • Guieysse B, Plouviez M, Coilhac M, Cazali L (2013) Nitrous oxide (N2O) production in axenic Chlorella vulgaris cultures: evidence, putative pathways, and potential environmental impacts. Biogeosci Discuss 10:9739–9763

    Article  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  PubMed  Google Scholar 

  • Guschina IA, Harwood JL (2013) Algal lipids and their metabolism. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 17–36

    Chapter  Google Scholar 

  • Gutman J, Zarka A, Boussiba S (2009) The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. Eur J Phycol 44:509–514

    Article  CAS  Google Scholar 

  • Hadj-Romdhane F, Jaouen P, Pruvost J, Grizeau D, Van Vooren G, Bourseau P (2012) Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. Bioresour Technol 123:366–374

    Article  CAS  PubMed  Google Scholar 

  • Hadj-Romdhane F, Zheng X, Jaouen P, Pruvost J, Grizeau D, Croué JP, Bourseau P (2013) The culture of Chlorella vulgaris in a recycled supernatant: effects on biomass production and medium quality. Bioresour Technol 132:285–292

    Article  CAS  PubMed  Google Scholar 

  • Hagen C, Braune W, Bjorn LO (1994) Functional aspects of secondary carotenoids in Haematococcus lacustris (Volvocales).3. Action as a sunshade. J Phycol 30:241–248

    Article  CAS  Google Scholar 

  • Hagen C, Grünewald C, Schmidt S, Müller J (2000) Accumulation of secondary carotenoids in flagellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. Eur J Phycol 35:75–82

    Article  Google Scholar 

  • Hagen C, Siegmund S, Braune W (2002) Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur J Phycol 37:217–226

    Article  Google Scholar 

  • Hall DO, Acién Fernández FG, Cañizares Guerrero E, Rao KK, Molina Grima E (2003) Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82:62–73

    Article  CAS  PubMed  Google Scholar 

  • Halldal P (1968) Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Biol Bull 1968:411–424

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307:108–112

    Article  CAS  PubMed  Google Scholar 

  • Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31:3345–3348

    Article  CAS  Google Scholar 

  • Harding LW Jr, Meeson BW, Prézelin BB, Sweeney BM (1981) Diel periodicity of photosynthesis in marine phytoplankton. Mar Biol 61:95–105

    Article  Google Scholar 

  • Harker M, Tsavalos AJ, Young AJ (1996a) Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 litre airlift photobioreactor. J Ferment Bioeng 82:113–118

    Article  CAS  Google Scholar 

  • Harker M, Tsavalos AJ, Young AJ (1996b) Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresour Technol 55:207–214

    Article  CAS  Google Scholar 

  • Harned HS, Davis R (1943) The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°. J Am Chem Soc 65:2030–2037

    Article  CAS  Google Scholar 

  • Harned HS, Scholes SR (1941) The ionization constant of HCO3 from 0 to 50°. J Am Chem Soc 63:1706–1709

    Article  CAS  Google Scholar 

  • Harris EH (2009) The Chlamydomonas sourcebook, vol 1, 2nd edn, Introduction to Chlamydomonas and its laboratory use. Elsevier, Amsterdam

    Google Scholar 

  • Harrison PJ, Thompson PA, Calderwood GS (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol 2:45–56

    Article  Google Scholar 

  • Harter T, Bossier P, Verreth J, Bodé S, Ha D, Debeer A-E, Boon N, Boeckx P, Vyverman W, Nevejan N (2013) Carbon and nitrogen mass balance during flue gas treatment with Dunaliella salina cultures. J Appl Phycol 25:359–368

    Article  CAS  Google Scholar 

  • Hartig P, Grobbelaar JU, Soeder CJ, Groeneweg J (1988) On the mass culture of microalgae: areal density as an important factor for achieving maximal productivity. Biomass 15:211–221

    Article  Google Scholar 

  • Hartley AM, House WA, Callow ME, Leadbeater BSC (1997) Coprecipitation of phosphate with calcite in the presence of photosynthesizing green algae. Water Res 31:2261–2268

    Article  CAS  Google Scholar 

  • Hastings JW, Astrachan L, Sweeney BM (1961) Persistent daily rhythm in photosynthesis. J Gen Physiol 45:69–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havelková-Doušová H, Prášil O, Behrenfeld MJ (2004) Photoacclimation of Dunaliella tertiolecta (Chlorophyceae) under fluctuating irradiance. Photosynthetica 42:273–281

    Article  Google Scholar 

  • Hédoin H, Pearson J, Day J, Philip D, Young A, Hall T (2006) Porphyridium cruentum A-408 and Planktothrix A-404 retain their capacity to produce biotechnologically exploitable metabolites after cryopreservation. J Appl Phycol 18:1–7

    Article  CAS  Google Scholar 

  • Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG (2011) Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol 28:2921–2933

    Article  CAS  PubMed  Google Scholar 

  • Henley WJ, Major KM, Hironaka JL (2002) Response to salinity and heat stress in two halotolerant chlorophyte algae. J Phycol 38:757–766

    Article  Google Scholar 

  • Herman EM, Sweeney BM (1975) Circadian rhythm of chloroplast ultrastructure in Gonyaulax polyedra, concentric organization around a central cluster of ribosomes. J Ultrastruct Res 50:347–354

    Article  CAS  PubMed  Google Scholar 

  • Herndon J, Cochlan WP (2007) Nitrogen utilization by the raphidophyte Heterosigma akashiwo: growth and uptake kinetics in laboratory cultures. Harmful Algae 6:260–270

    Article  Google Scholar 

  • Herzig R, Dubinsky Z (1992) Photoacclimation, photosynthesis, and growth in phytoplankton. Israel J Bot 41:199–212

    Google Scholar 

  • Ho T, Quigg A, Finkel CV, Milligan AJ, Wyman K, Falkowsi PG, Morel FMM (2005) The elemental composition of some phytoplankton. J Phycol 39:1145–1159

    Article  Google Scholar 

  • Hoham RW, Bonome TA, Martin CW, Leebens-Mack JH (2002) A combined 18s rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. J Phycol 38:1051–1064

    Article  CAS  Google Scholar 

  • Holmes JJ, Weger HG, Turpin DH (1989) Chlorophyll a fluorescence predicts total photosynthetic electron flow to CO2 or NO3 /NO2 under transient conditions. Plant Physiol 91:331–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hondzo M, Lyn D (1999) Quantified small-scale turbulence inhibits the growth of a green alga. Freshw Biol 41:51–61

    Article  Google Scholar 

  • Hough RA, Wetzel RG (1978) Photorespiration and CO2 compensation point in Najas flexilis. Limnol Oceanogr 23:719–724

    Article  CAS  Google Scholar 

  • Howieson JR (2001) Nutrition and carotenogensis in Haematococcus pluvialis. PhD, Murdoch University, Perth

    Google Scholar 

  • Hreiz R, Sialve B, Morchain J, Escudié R, Steyer J-P, Giraud P (2014) Experimental and numerical investigation of hydrodynamics in raceway reactors used for algaculture. Chem Eng J 250:230–239

    Article  CAS  Google Scholar 

  • Hu Q, Richmond A (1994) Optimising the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J Appl Phycol 6:391–396

    Article  Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996a) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996b) Physiological characteristics of Spirulina platensis (Cyanobacteria) cultured at ultrahigh cell densities. J Phycol 32:1066–1073

    Article  Google Scholar 

  • Hu Q, Zarmi Y, Richmond A (1998) Combined effects of light intensity, light-path, and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur J Phycol 32:165–171

    Google Scholar 

  • Hu Z, Li Y, Sommerfeld M, Chen F, Hu Q (2008) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43:365–376

    Article  CAS  Google Scholar 

  • Huang K, Beck CF (2003) Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc Nat Acad Sci 100:6269–6274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Wei L, Huang Z, Yan J (2014) Effect of high ferric ion concentrations on total lipids and lipid characteristics of Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis. J Appl Phycol 26:105–114

    Article  CAS  Google Scholar 

  • Huertas IE, Lubián LM (1998) Comparative study of dissolved inorganic carbon utilization and photosynthetic responses in Nannochloris (Chlorophyceae) and Nannochloropsis (Eustigmatophyceae) species. Can J Bot 76:1104–1108

    CAS  Google Scholar 

  • Huertas IE, Colman B, Espie GS, Lubian LM (2000a) Active transport of CO2 by three species of marine microalgae. J Phycol 36:314–320

    Article  Google Scholar 

  • Huertas IE, Espie GS, Colman B, Lubian LM (2000b) Light-dependent bicarbonate uptake and CO2 efflux in the marine microalga Nannochloropsis gadiata. Planta 211:43–49

    Article  CAS  PubMed  Google Scholar 

  • Huertas IE, Colman B, Espie GS (2002) Inorganic carbon acquisition and its energization in eustigmatophyte algae. Funct Plant Biol 29:271–277

    Article  CAS  Google Scholar 

  • Iglesias-Rodríguez MD, Schofield OM, Batley J, Medlin L, Hayes PK (2006) Itraspecific genetic diversity in the marine coccolithphore Emiliania huxleyi (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton populations studies. J Phycol 42:526–536

    Article  CAS  Google Scholar 

  • Iltis A (1968) Tolerance de Salinite de Spirulina plantensis (Gom.) Geitl., (Cyanophyta) dans les mares Natronees du Kanem (Tchad). Cah ORSTOM, ser Hydrobiol 11:119–134

    Google Scholar 

  • Iluz D, Alexandrovich I, Dubisnky Z (2012) The enhancement of photosynthesis by fluctuating light. In: Najafpour M (ed) Artificial photosynthesis. In Tech, Shanghai, pp 115–134

    Google Scholar 

  • Imada N, Kobayashi K, Isomura K, Saito H, Kimura S, Tahara K, Oshima Y (1992) Isolation and identification of an autoinhibitor produced by Skeletonema costatum. Nippon Suisan Gakkaishi 58:1687–1692

    Article  Google Scholar 

  • Incharoensakdi A, Takabe T, Akazawa T (1986) Effect of betaine on enzyme activity and subunit interaction of ribulose-1,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica. Plant Physiol 81:1044–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue S, Ejima K, Iwai E, Hayashi H, Appel J, Tyystjärvi E, Murata N, Nishiyama Y (2011) Protection by α-tocopherol of the repair of photosystem II during photoinhibition in Synechocystis sp. PCC 6803. Biochim Biophys Acta Bioenerg 1807:236–241

    Article  CAS  Google Scholar 

  • Ip P-F, Wong K-H, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766

    Article  CAS  Google Scholar 

  • Isdepsky A (2015) Saline microalgae for biofuels: outdoor culture from small scale to pilot scale. PhD, Murdoch University, Perth

    Google Scholar 

  • Issarapayup K, Powtongsook S, Pavasant P (2011) Economical review of Haematococcus pluvialis culture in flat-panel airlift photobioreactors. Aquac Eng 44:65–71

    Article  Google Scholar 

  • Iwasaki I, Kurano N, Miyachi S (1996) Effects of high-CO2 stress on photosystem II in a green alga, Chlorococcum littorale, which has a tolerance to high CO2. J Photochem Photobiol B 36:327–332

    Article  CAS  Google Scholar 

  • Iwasaki I, Hu Q, Kurano N, Miyachi S (1998) Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a ‘high-CO2’ tolerant green alga, Chlorococcum littorale and the intolerant alga Stichococcus bacillaris. J Photochem Photobiol B Biol 44:184–190

    Article  CAS  Google Scholar 

  • Jacobsen A, Grahl-Nielsen O, Magnesen T (2012) Effects of reduced diameter of bag cultures on content of essential fatty acids and cell density in a continuous algal production system. J Appl Phycol 24:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquet S, Partensky F, Lennon J-F, Vaulot D (2001) Diel patterns of growth and division in marine picoplankton in culture. J Phycol 37:357–369

    Article  Google Scholar 

  • Jahn W, Steinbiss J, Zetsche K (1984) Light intensity adaptation of the phycobiliprotein content of the red alga Porphyridium. Planta 161:536–539

    Article  CAS  PubMed  Google Scholar 

  • Jahnke LS (1999) Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. J Photochem Photobiol B Biol 48:68–74

    Article  CAS  Google Scholar 

  • Jahnke LS, White AL, Sampath-Wiley P (2009) The effects of ultraviolet radiation on Dunaliella: growth, development and metabolism. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The Alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, Enfield, pp 231–272

    Chapter  Google Scholar 

  • Janssen M, Kuijpers TC, Veldhoen B, Ternbach MB, Tramper J, Mur LR, Wijffels RH (1999) Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13–87s. J Biotechnol 70:323–333

    Article  CAS  Google Scholar 

  • Janssen M, Bathke L, Marquardt J, Krumbein W, Rhiel E (2001) Changes in the photosynthetic apparatus of diatoms in response to low and high light intensities. Int Microbiol 4:27–33

    CAS  PubMed  Google Scholar 

  • Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210

    Article  CAS  PubMed  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Jeffrey SW (1984) Responses of unicellular marine plants to natural blue-green light environments. In: Senger H (ed) Blue light effects in biological systems. Springer, Berlin, pp 497–508

    Chapter  Google Scholar 

  • Jewson DH, Wood RB (1975) Some effects on integral photosynthesis of artificial circulation of phytoplankton through light gradients. Verh Int Ver Limnol 19:1037–1044

    Google Scholar 

  • Jiang Y, Laverty KS, Brown J, Brown L, Chagoya J, Burow M, Quigg A (2015) Effect of silicate limitation on growth, cell composition, and lipid production of three native diatoms to Southwest Texas desert. J Appl Phycol. 27:1433–1442

    Article  CAS  Google Scholar 

  • Jiménez C, Cossío BR, Labella D, Niell FX (2003) The feasibility of industrial production of Spirulina (Arthrospira) in southern Spain. Aquaculture 217:179–190

    Article  Google Scholar 

  • John DE, López-Díaz JM, Cabrera A, Santiago NA, Corredor JE, Bronk DA, Paul JH (2012) A day in the life in the dynamic marine environment: how nutrients shape diel patterns of phytoplankton photosynthesis and carbon fixation gene expression in the Mississippi and Orinoco River plumes. Hydrobiologia 679:155–173

    Article  CAS  Google Scholar 

  • Johnson KA, Rosenbaum JL (1993) Flagellar regeneration in Chlamydomonas: a model system for studying organelle assembly. Trends Cell Biol 3:156–161

    Article  CAS  PubMed  Google Scholar 

  • Johnston AM, Raven JA (1992) Effect of aeration rates on growth rates and natural abundance 13C/12C ratio of Phaeodactylum tricornutum. Mar Ecol Prog Ser 87:295–300

    Article  Google Scholar 

  • Jones H, Cockell C, Rothschild L (1996) Intraspecies variation in Poterioochromonas due to long-term culturing conditions. Phycologist 43:18

    Google Scholar 

  • Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17

    Article  CAS  PubMed  Google Scholar 

  • Kaftan D, Meszaros T, Whitmarsh J, Nedbal L (1999) Characterization of photosystem II activity and heterogeneity during the cell cycle of the green alga Scenedesmus quadricauda. Plant Physiol 120:433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang CD, Lee JS, Park TH, Sim SJ (2005) Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl Microbiol Biotechnol 68:237–241

    Article  CAS  PubMed  Google Scholar 

  • Kang C, Lee J, Park T, Sim S (2007) Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Appl Microbiol Biotechnol 74:987–994

    Article  CAS  PubMed  Google Scholar 

  • Karp-Boss L, Boss E, Jumars PA (1996) Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr Mar Biol 34:71–107

    Google Scholar 

  • Kashtan N, Roggensack SE, Rodrigue S, Thompson JW et al (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416–420

    Article  CAS  PubMed  Google Scholar 

  • Kassen R, Bell G (1998) Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity 80:732–741

    Article  Google Scholar 

  • Katsuda T, Lababpour A, Shimahara K, Katoh S (2004) Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzym Microb Technol 35:81–86

    Article  CAS  Google Scholar 

  • Katz A, Pick U (2001) Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga Dunaliella. Biochim Biophys Acta 1504:423–431

    Article  CAS  PubMed  Google Scholar 

  • Katz A, Paz Y, Pick U (2009) Salinity tolerance and iron deprivation resistance mechanisms revealed by protomic analyzes in Dunaliella salina. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The Alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, Enfield, pp 341–358

    Chapter  Google Scholar 

  • Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 14:1466–1476

    Article  CAS  PubMed  Google Scholar 

  • Khatri W, Hendrix R, Niehaus T, Chappell J, Curtis WR (2014) Hydrocarbon production in high density Botryococcus braunii race B continuous culture. Biotechnol Bioeng 111:493–503

    Article  CAS  PubMed  Google Scholar 

  • Khozin-Goldberg I (2016) Lipid metabolism in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 413–484

    Google Scholar 

  • Khozin-Goldberg I, Bigogno C, Shrestha P, Cohen Z (2002) Nitrogen starvation induces the accumulation of arachidonic acid in the freshwater green alga Parietochloris incisa (Trebouxiophyceae). J Phycol 38:991–994

    Article  CAS  Google Scholar 

  • Kianianmomeni A (2014) Cell-type specific light-mediated transcript regulation in the multicellular alga Volvox carteri. BMC Genomics 15:764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kianianmomeni A, Hallmann A (2014) Algal photoreceptors: in vivo functions and potential applications. Planta 239:1–26

    Article  CAS  PubMed  Google Scholar 

  • Kim D-G, La H-J, Ahn C-Y, Park Y-H, Oh H-M (2011) Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresour Technol 102:3163–3168

    Article  CAS  PubMed  Google Scholar 

  • Kim CW, Sung M-G, Nam K, Moon M, Kwon J-H, Yang J-W (2014) Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresour Technol 159:30–35

    Article  CAS  PubMed  Google Scholar 

  • Kirpenko NI, Kurashov YA, Krylova YV (2012) Component composition of exometabolites in cultures of some algae. Hydrobiol J 48:59–70

    Article  Google Scholar 

  • Kliphuis AMJ, Martens DE, Janssen M, Wijffels RH (2011) Effect of O2:CO2 ratio on the primary metabolism of Chlamydomonas reinhardtii. Biotechnol Bioeng 108:2390–2402

    Article  CAS  PubMed  Google Scholar 

  • Klotchkova TA, Kwak MS, Han JW, Motomura T, Nagasato C, Kim GH (2013) Cold-tolerant strain of Haematococcus pluvialis (Haematococcaceae, Chlorophyta) from Blomstrandhalvøya (Svalbard). Algae 28:185–192

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nishio N, Nagai S (1992a) Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:61–63

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, Nagai S (1992b) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J Ferment Bioeng 74:17–20

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Kurimura Y, Kakizono T, Nishio N, Tsuji Y (1997a) Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J Ferment Bioeng 84:94–97

    Article  CAS  Google Scholar 

  • Kobayashi M, Kurimura Y, Tsuji Y (1997b) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19:507–509

    Article  CAS  Google Scholar 

  • Kodama M, Ikemoto H, Miyachi S (1993) A new species of highly CO2-tolerant fast-growing marine microalga for high-density cultivation. J Mar Biotechnol 1:21–25

    Google Scholar 

  • Kok B (1953) Experiments on photosynthesis by Chlorella in flashing light. In: Burlew JS (ed) Algal culture from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 63–75

    Google Scholar 

  • Kosmakova VE, Prozumenshchikova LT (1983) Growth and biochemical composition of the algae Dunaliella salina and Platymonas viridis fed on organic and inorganic forms of nitrogen. Biol Morya 1:42–46

    Google Scholar 

  • Kromkamp J, Limbeek M (1993) Effect of short-term variation in irradiance on light harvesting and photosynthesis of the marine diatom Skeletonema costatum – a laboratory study simulating vertical mixing. J Gen Microbiol 139:2277–2284

    Article  Google Scholar 

  • Kromkamp JC, Beardall J, Sukenik A, Kopecky J, Masojidek J, Van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems. Aquat Microb Ecol 56:309–322

    Article  Google Scholar 

  • Kühn SF, Hofmann M (1999) Infection of Coscinodiscus granii by the parasitoid nanoflagellate Pirsonia diadema: III. Effects of turbulence on the incidence of infection. J Plankton Res 21:2323–2340

    Article  Google Scholar 

  • Kurano N, Sasaki T, Miyachi S (1998) Carbon dioxide and microalgae. In: Inui T, Anpo M, Izui K, Yanagida S, Yamaguchi T (eds) Studies in surface science and catalysis, vol 114. Elsevier, Amsterdam, pp 55–63

    Google Scholar 

  • Kwon J-H, Bernát G, Wagner H, Rögner M, Rexroth S (2013) Reduced light-harvesting antenna: consequences on cyanobacterial metabolism and photosynthetic productivity. Algal Res 2:188–195

    Article  Google Scholar 

  • L’Helguen S, Maguer J-F, Caradec J (2008) Inhibition kinetics of nitrate uptake by ammonium in size-fractionated oceanic phytoplankton communities: implications for new production and f-ratio estimates. J Plankton Res 30:1179–1188

    Article  CAS  Google Scholar 

  • Lababpour A, Shimahara K, Hada K, Kyoui Y, Katsuda T, Katoh S (2005) Fed-batch culture under illumination with blue light emitting diodes (LEDs) for astaxanthin production by Haematococcus pluvialis. J Biosci Bioeng 100:339–342

    Article  CAS  PubMed  Google Scholar 

  • Lakeman MB, Cattolico RA (2007) Cryptic diversity in phytoplankton cultures is revealed using a simple plating technique. J Phycol 43:662–647

    Article  CAS  Google Scholar 

  • Lakeman MB, von Dassow P, Cattolico RA (2009) The strain concept in phytoplankton ecology. Harmful Algae 8:746–758

    Article  Google Scholar 

  • Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2010) Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng 106:638–648

    Article  CAS  PubMed  Google Scholar 

  • Lane TW, Morel FMM (2000) Regulation of carbonic anhydrase expression by zinc, cobal, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiol 123:345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkum AW (2016) Photosynthesis and light harvesting in algae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 67–87

    Google Scholar 

  • Larkum AWD, Roberts G, Kuo J, Strother S (1989) Gaseous movement in seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. Elsevier, Amsterdam, pp 686–722

    Google Scholar 

  • Larkum AWD, Ross IL, Kruse O, Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30:198–205

    Article  CAS  PubMed  Google Scholar 

  • Larsdotter K, Jansen JC, Dalhammar G (2007) Biologically mediated phosphorus precipitation in wastewater treatment with microalgae. Environ Technol 28:953–960

    Article  CAS  PubMed  Google Scholar 

  • Laws EA, Berning JL (1991) A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: implications for use of power plant stack gases. Biotechnol Bioeng 37:936–947

    Article  CAS  PubMed  Google Scholar 

  • Laws E, Caperon J (1976) Carbon and nitrogen metabolism by Monochrysis lutheri: measurement of growth-rate-dependent respiration rates. Mar Biol 36:85–97

    Article  CAS  Google Scholar 

  • Laws EA, Terry KL, Wickman J, Chalup MS (1983) A simple algal production system designed to utilize the flashing light effect. Biotechnol Bioeng 25:2319–2335

    Article  CAS  PubMed  Google Scholar 

  • Lazar B, Starinsky A, Katz A, Sass E, Ben-Yaakov S (1983) The carbonate system in hypersaline solutions: alkalinity and CaCO3 solubility of evaporated seawater. Limnol Oceanogr 28:978–986

    Article  CAS  Google Scholar 

  • Lazier JRN, Mann KH (1989) Turbulence and the diffusive layers around small organisms. Deep Sea Res A 36:1721–1733

    Article  CAS  Google Scholar 

  • Lee YK, Ding SY (1994) Cell cycle and accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J Phycol 30:445–449

    Article  CAS  Google Scholar 

  • Lee YK, Soh CW (1991) Accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J Phycol 27:575–577

    Article  CAS  Google Scholar 

  • Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285

    Article  CAS  PubMed  Google Scholar 

  • Lerche W (1937) Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch Protistenk 88:236–268

    CAS  Google Scholar 

  • Leupold M, Hindersin S, Gust G, Kerner M, Hanelt D (2013) Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii. J Appl Phycol 25:485–495

    Article  CAS  Google Scholar 

  • Li YT, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 22:253–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Mai K, Sun S (2005) Differences in growth, total lipid content and fatty acid composition among 60 clones of Cylindrotheca fusiformis. J Appl Phycol 17:61–65

    Article  CAS  Google Scholar 

  • Livansky K (1995) Inhibition of Scenedesmus obliquus growth by O2 affected by temperature and CO2 partial pressure. In: Kretschmer P, Pulz O, Gudin C, Semenenko V (eds) 2nd European workshop biotechnology of microalgae. Institut fur Getreideverarbeitung GmbH, Bergholz/Rehbrucke, pp 112–115

    Google Scholar 

  • Lívanský K, Dedic K, Binova J, Tichy V, Novotny P, Doucha J (1996) Influence of the nutrient solution recycling on the productivity of Scenedesmus obliquus, utilization of nutrients and water in outdoor cultures. Algol Stud 81:105–113

    Google Scholar 

  • Loeblich LA (1982) Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). J Mar Biol Assoc U K 62:493–508

    Article  CAS  Google Scholar 

  • Lomas MW, Glibert PM (1999) Interactions between NH4 + and NO3 - uptake and assimilation: comparison of diatoms and dinoflagellates at several growth temperatures. Mar Biol 133:541–551

    Article  CAS  Google Scholar 

  • López-Sandoval DC, Rodríguez-Ramos T, Cermeño P, Sobrino C, Marañón E (2014) Photosynthesis and respiration in marine phytoplankton: relationship with cell size, taxonomic affiliation, and growth phase. J Exp Mar Biol Ecol 457:151–159

    Article  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  PubMed  Google Scholar 

  • Luque I, Flores E, Herrero A (1994) Nitrate and nitrite transport in the cyanobacterium Synechococcus sp PCC 7942 are mediated by the same permease. Biochim Biophys Acta Bioenerg 1184:296–298

    Article  CAS  Google Scholar 

  • Lv H, Jia S, Xiao Y, Yuan N, Dai Y (2014) Growth characteristics of Nostoc flagelliforme at intermittent elevated CO2 concentrations. Phycol Res 62:250–256

    Article  CAS  Google Scholar 

  • Maberly SC, Ball LA, Raven JA, Sültemeyer D (2009) Inorganic carbon acquisition by chrysophytes. J Phycol 45:1052–1061

    Article  CAS  Google Scholar 

  • MacIntyre HL, Kana TM, Geider RJ (2000) The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci 5:12–17

    Article  CAS  PubMed  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38

    Article  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  CAS  PubMed  Google Scholar 

  • MacKay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191

    CAS  Google Scholar 

  • Mackenzie TDB, Morse D (2011) Circadian photosynthetic reductant flow in the dinoflagellate Lingulodinium is limited by carbon availability. Plant Cell Environ 34:669–680

    Article  PubMed  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organisation and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  CAS  PubMed  Google Scholar 

  • Mandalam RK, Palsson BØ (1998) Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol Bioeng 59:605–611

    Article  CAS  PubMed  Google Scholar 

  • Marañón E, Cermeño P, López-Sandoval DC, Rodríguez-Ramos T, Sobrino C, Huete-Ortega M, Blanco JM, Rodríguez J (2013) Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol Lett 16:371–379

    Article  PubMed  Google Scholar 

  • Marchetti A, Maldonado MT (2016) Iron. In: Borowitzka MA, Beardall J, Raven JA (eds). Physiology of Microalgae. Springer, Dordrecht, pp 233–279

    Google Scholar 

  • Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840

    Article  Google Scholar 

  • Martins CA, Kulis D, Franca S, Anderson DM (2004) The loss of PSP toxin production in a formerly toxic Alexandrium lusitanicum clone. Toxicon 43:195–205

    Article  CAS  PubMed  Google Scholar 

  • Masojídek J, Papác¡ek S, Sergejeková M, Jirka V, Cerveny J, Kunk J, Koreco J, Verbikova O, Kopecky J, Stys D, Torzillo G (2003) A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance. J Appl Phycol 15:239–258

    Article  Google Scholar 

  • Masojídek J, Kopecký J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38:307–317

    Article  PubMed  CAS  Google Scholar 

  • Masojidek J, Vonshak A, Torzillo G (2011) Chlorophyll fluorescence applications in microalgal mass cultures. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic science: methods and applications. Springer, Dordrecht, pp 277–292

    Google Scholar 

  • Massyuk NP (1966) Mass culture of the carotene containing alga Dunaliella salina Teod. Ukranskaya Botanichnya Zhournal 23:12–19

    Google Scholar 

  • Massyuk NP, Abdula EG (1969) First experiment of growing carotene-containing algae under semi- industrial conditions. Ukranskaya Botanichnya Zhournal 26:21–27

    Google Scholar 

  • Matthijs HCP, Balke H, Vanhes UM, Kroon BMA, Mur LR, Binot RA (1996) Application of light-emitting diodes in bioreactors – flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol Bioeng 50:98–107

    Article  CAS  PubMed  Google Scholar 

  • Matusiak-Mikulin K, Tukaj C, Tukaj Z (2006) Relationships between growth, development and photosynthetic activity during the cell cycle of Desmodesmus armatus (Chlorophyta) in synchronous cultures. Eur J Phycol 41:29–38

    Article  Google Scholar 

  • McLachlan J (1973) Growth media – marine. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 25–51

    Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280

    Article  CAS  Google Scholar 

  • Melis A, Neidhardt J, Benemann J (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525

    Article  Google Scholar 

  • Mendoza H, Martel A, Jiménez del Río M, García Reina G (1999) Oleic acid is the main fatty acid related with carotenogenesis in Dunaliella salina. J Appl Phycol 11:15–19

    Article  CAS  Google Scholar 

  • Mendoza JL, Granados MR, de Godos I, Acién FG, Molina E, Banks C, Heaven S (2013) Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenergy 54:267–275

    Article  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mergenhagen D (1984) Circadian clock: genetic characterization of a short period mutant of Chlamydomonas reinhardii. Eur J Cell Biol 33:13–18

    CAS  PubMed  Google Scholar 

  • Mezzari MP, da Silva MLB, Nicoloso RS, Ibelli AMG, Bortoli M, Viancelli A, Soares HM (2013) Assessment of N2O emission from a photobioreactor treating ammonia-rich swine wastewater digestate. Bioresour Technol 149:327–332

    Article  CAS  PubMed  Google Scholar 

  • Michels MHA, Slegers PM, Vermuë MH, Wijffels RH (2014) Effect of biomass concentration on the productivity of Tetraselmis suecica in a pilot-scale tubular photobioreactor using natural sunlight. Algal Res 4:12–18

    Article  Google Scholar 

  • Mil’ko ES (1962) Study of the requirement of two Dunaliella spp in mineral and organic components of the medium. Moscow Univ Vestn Biologya 6:21–23

    Google Scholar 

  • Millie DF, Schofield OME, Kirkpatrick GJ, Johnsen G, Envens TJ (2002) Using absorbance and fluorescence spectra to discriminate microalgae. Eur J Phycol 37:313–322

    Article  Google Scholar 

  • Miquel P (1892) De la culture artificielle des Diatomées. CR Acad Sci Paris 94:780–782

    Google Scholar 

  • Miranda KM, Paolocci N, Katori T, Thomas DD, Ford E, Bartberger MD, Espey MG, Kass DA, Feelisch M, Fukuto JM, Wink DA (2003) A biochemical rationale for the discrete behavior of nitroxyl and nitric oxide in the cardiovascular system. Proc Nat Acad Sci 100:9196–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra M, Kirst H, Dewez D, Melis A (2012) Modulation of the light-harvesting chlorophyll antenna size in Chlamydomonas reinhardtii by TLA1 gene over-expression and RNA interference. Phil Trans Roy Soc B 367:3430–3443

    Article  CAS  Google Scholar 

  • Mittag M (2001) Circadian rhythms in microalgae. Int Rev Cytol 206:213–247

    Article  CAS  PubMed  Google Scholar 

  • Mittag M, Wagner V (2003) The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii. Biol Chem 384:689–695

    Article  CAS  PubMed  Google Scholar 

  • Miyachi S, Kanai R, Mihara S, Miyachi S, Aoki S (1964) Metabolic roles of inorganic polyphosphates in Chlorella cells. Biochim Biophys Acta Gen Subj 93:625–634

    Article  CAS  Google Scholar 

  • Miyachi S, Iwasaki I, Shiraiwa Y (2003) Historical perspective on microalgae and cyanobacterial acclimation to low- and extremely high-CO2 conditions. Photosynth Res 77:139–153

    Article  CAS  PubMed  Google Scholar 

  • Miyairi S (1995) CO2 assimilation in a thermophilic cyanobacterium. Energy Convers Manag 36:763–766

    Article  CAS  Google Scholar 

  • Moheimani NR (2005) The culture of coccolithophorid algae for carbon dioxide bioremediation. PhD, Murdoch University, Perth

    Google Scholar 

  • Moheimani NR (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25:387–398

    Article  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2007) Limits to growth of Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96:27–36

    Article  CAS  PubMed  Google Scholar 

  • Moheimani NR, Borowitzka MA (2011) Increased CO2 and the effect of pH on the growth and calcification of Pleurochrysis carterae and Emilianea huxleyi (Haptophyta) in semi-continuous cultures. Appl Microbiol Biotechnol 90:1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Moheimani NR, Parlevliet D (2013) Sustainable solar energy conversion to chemical and electrical energy. Renew Sustain Energy Rev 27:494–504

    Article  CAS  Google Scholar 

  • Moheimani NR, Isdepsky A, Lisec J, Raes E, Borowitzka MA (2011) Coccolithophorid algae culture in closed photobioreactors. Biotechnol Bioeng 108:2078–2087

    Article  CAS  PubMed  Google Scholar 

  • Molina Grima E, Ácien Fernandez FG, Garcia Camacho F, Chisti Y (1999) Photobioreactors: light regieme, mass transfer, and scaleup. J Biotechnol 70:231–247

    Article  CAS  Google Scholar 

  • Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24:141–153

    Article  CAS  Google Scholar 

  • Mostafa N, Omar H, Tan SG, Napis S (2011) Studies on the genetic variation of the green unicellular alga Haematococcus pluvialis (Chlorophyceae) obtained from different geographical locations Using ISSR and RAPD molecular marker. Molecules 16:2599–2608

    Article  PubMed  CAS  Google Scholar 

  • Mouget JL, Tremblin G, Morant-Marceau A, Morancais M, Robert JM (1999) Long-term photoacclimation of Haslea ostrearia (Bacillariophyta): effect of irradiance on growth rates, pigment content and photosynthesis. Eur J Phycol 34:109–115

    Article  Google Scholar 

  • Mouget J-L, Rosa P, Tremblin G (2004) Acclimation of Haslea ostrearia to light of different spectral qualities – confirmation of ‘chromatic adaptation’ in diatoms. J Photochem Photobiol B 75:1–11

    Article  CAS  PubMed  Google Scholar 

  • Mouget J-L, Rosa P, Vachoux C, Tremblin G (2005) Enhancement of marennine production by blue light in the diatom Haslea ostrearia. J Appl Phycol 17:437–445

    Article  Google Scholar 

  • Moulton TP, Sommer TR, Burford MA, Borowitzka LJ (1987) Competition between Dunaliella species at high salinity. Hydrobiologia 151/152:107–116

    Article  Google Scholar 

  • Müller B, Schagerl M (2004) Primary productivity and photoacclimation in cyanobacteria – a comparison of carbon fixation, oxygen evolution and in vivo fluorescence. Algol Stud 113:143–157

    Article  Google Scholar 

  • Muller-Feuga A, Pruvost J, Le Guédes R, Le Déan L, Legentilhomme P, Legrand J (2003) Swirling flow implementation in a photobioreactor for batch and continuous cultures of Porphyridium cruentum. Biotechnol Bioeng 84:544–551

    Article  CAS  PubMed  Google Scholar 

  • Muller-Feuga A, Lemar M, Vermel E, Pradelles R, Rimbaud L, Valiorgue P (2012) Appraisal of a horizontal two-phase flow photobioreactor for industrial production of delicate microalgae species. J Appl Phycol 24:349–355

    Article  CAS  Google Scholar 

  • Muller-Fuega A (2004) Microalgae for aquaculture. The current global situation and future trends. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 352–364

    Google Scholar 

  • Muradyan EA, Klyachko-Gurvich GL, Tsoglin LN, Sergeyenko TV, Pronina NA (2004) Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russ J Plant Physiol 51:53–62

    Article  CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta Bioenerg 1767:414–421

    Article  CAS  Google Scholar 

  • Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta Bioenerg 1817:1127–1133

    Article  CAS  Google Scholar 

  • Murphy TP, Hall KJ, Yesaki I (1983) Coprecipitation of phosphate with calcite in a naturally eutrophic lake. Limnol Oceanogr 28:58–69

    Article  CAS  Google Scholar 

  • Murphy TE, Macon K, Berberoglu H (2014) Rapid algal culture diagnostics for open ponds using multispectral image analysis. Biotechnol Prog 30:233–240

    Article  CAS  PubMed  Google Scholar 

  • Mussgnug JH, Thomas-Hall SR, Ruprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814

    Article  CAS  PubMed  Google Scholar 

  • Myers J (1946) Culture conditions and the development of the photosynthetic mechanism: III. Influence of light intensity on cellular characteristics of Chlorella. J Gen Physiol 29:419–427

    Article  CAS  PubMed Central  Google Scholar 

  • Myers J, Graham J (1958) On the mass culture of algae II. Yield as a function of cell concentration under continuous sunlight irradiance. Plant Physiol 34:345–352

    Article  Google Scholar 

  • Nagase H, Yoshihara K-I, Eguchi K, Yokota Y, Matsui R, Hirata K, Miyamoto K (1997) Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolecta culture system. J Ferment Bioeng 83:461–465

    Article  CAS  Google Scholar 

  • Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microalgal suspensions by reducing the content of light harvesting pigments. J Appl Phycol 9:503–510

    CAS  Google Scholar 

  • Nakajima Y, Ueda R (1999) Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigments. J Appl Phycol 11:151–201

    Article  Google Scholar 

  • Nakajima Y, Ueda R (2000) The effect of reducing light-harvesting pigment on marine microalgae productivity. J Appl Phycol 12:285–290

    Article  CAS  Google Scholar 

  • Nakano Y, Miyatake K, Okuno H, Hamazaki K, Takenaka S, Hionami N, Kiyota M, Aiga I, Kondo J (1996) Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. Acta Horticult 440:549–554

    Google Scholar 

  • Nassoury N, Fritz L, Morse D (2001) Circadian changes in ribulose-1,5-bisphosphate carboxylase/oxygenase distribution inside individual chloroplasts can account for the rhythm in dinoflagellate carbon fixation. Plant Cell Online 13:923–934

    Article  CAS  Google Scholar 

  • Nedbal L, Tichy L, Xiong F, Grobbelaar JU (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8:325–333

    Article  CAS  Google Scholar 

  • Negoro M, Shioji N, Miyamoto K, Miura Y (1991) Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl Biochem Biotechnol 28–9:877–886

    Article  Google Scholar 

  • Neori A (2011) “Green water” microalgae: the leading sector in world aquaculture. J Appl Phycol 23:143–149

    Article  Google Scholar 

  • Nichols HW (1973) Growth media – freshwater. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 7–24

    Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of Photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46

    Article  CAS  PubMed  Google Scholar 

  • Nomsawai P, Tandeau de Marsac N, Thomas JC, Tanticharoen M, Cheevadhanarak S (1999) Light regulation of phycobilisome structure and gene expression in Spirulina platensis Cl (Arthrospira sp. PCC 9438). Plant Cell Physiol 40:1194–1202

    Article  CAS  Google Scholar 

  • O’Neill JS, Van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget F-Y, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:544–558

    Google Scholar 

  • Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 23:1121–1132

    Article  CAS  Google Scholar 

  • Ogawa T, Fujii T, Aiba S (1980) Effect of oxygen on the growth (yield) of Chlorella vulgaris. Arch Microbiol 127:25–31

    Article  CAS  Google Scholar 

  • Ogbonna JC, Tanaka H (1996) Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa. J Ferment Bioeng 82:558–564

    Article  CAS  Google Scholar 

  • Oh-hama T, Miyachi S (1988) Chlorella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 3–26

    Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    Article  CAS  Google Scholar 

  • Olofsson M, Lamela T, Nilsson E, Bergé J-P, del Pino V, Uronen P, Legrand C (2014) Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata. Mar Drugs 12:1891–1910

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsen LM, Öztürk M, Sakshaug E, Johnsen G (2006) Photosynthesis-induced phosphate precipitation in seawater: ecological implications for phytoplankton. Mar Ecol Prog Ser 319:103–110

    Article  CAS  Google Scholar 

  • Ono E, Cuello JL (2003) Selection of optimal microalgae species for CO2 sequestration. In: 2nd annual conference on carbon sequestration, Alexandria, VA, USA, pp 1–7

    Google Scholar 

  • Oren A (2007) Diversity of organic osmotic compounds and osmotic adaptation in cyanobacteria and algae. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments, vol 11, Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 639–655

    Chapter  Google Scholar 

  • Ort DR, Zhu X, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Østgaard K, Jensen A (1982) Diurnal and circadian rhythms in the turbidity of growing Skeletonema costatum cultures. Mar Biol 66:261–268

    Article  Google Scholar 

  • Oswald WJ (1988a) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 357–394

    Google Scholar 

  • Oswald WJ (1988b) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Owens TG, Falkowski PG, Whitledge TE (1980) Diel periodicity in cellular chlorophyll content in marine diatoms. Mar Biol 59:71–77

    Article  CAS  Google Scholar 

  • Pais BMC (2011) In-culture evolution in phytoplankton. M Eng Biol Thesis, Universitage de Algarve, Faro

    Google Scholar 

  • Pajuelo E, Pajuelo P, Clemente MT, Marquez AJ (1995) Regulation of the expression of ferredoxin-nitrite reductase in synchronous cultures of Chlamydomonas reinhardtii. Biochim Biophys Acta 1249:72–78

    Article  PubMed  Google Scholar 

  • Paleg LG, Douglas TJ, van Daal A, Keech DB (1981) Proline, betaine and other organic solutes protect enzymes against heat inactivation. Aust J Plant Physiol 8:107–114

    CAS  Google Scholar 

  • Palmer JD, Livingston L, Zusy FD (1964) A persistent diurnal rhythm in photosynthetic capacity. Nature 203:1087–1088

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou G, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem II complex. Photosynth Res 44:243–252

    Article  CAS  PubMed  Google Scholar 

  • Papazi A, Makridis P, Divanach P, Kotzabasis K (2008) Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production. Physiol Plant 132:338–349

    Article  CAS  PubMed  Google Scholar 

  • Park JBK, Craggs RJ (2011) Nutrient removal in wastewater treatment high rate algal ponds with carbon dioxide addition. Water Sci Technol 36:1758–1764

    Article  CAS  Google Scholar 

  • Parslow JS, Harrison PJ, Thompson PA (1984) Saturated uptake kinetics: transient response of the marine diatom Thalassiosira pseudonana to ammonium, nitrate silicate or phosphate starvation. Mar Biol 83:51–59

    Article  CAS  Google Scholar 

  • Payer HD, Chiemvichak Y, Hosakul K, Kongpanichkul C, Kraidej L, Nguitragul M, Reungmanipytoon S, Buri P (1980) Temperature as an important climatic factor during mass production of microscopic algae. In: Shelef G, Soeder CJ (eds) Algae biomass. Production and use. Elsevier/North Holland Biomedical Press, Amsterdam, pp 389–399

    Google Scholar 

  • Perrine Z, Negi S, Sayre RT (2012) Optimization of photosynthetic light energy utilization by microalgae. Algal Res 1:134–142

    Article  Google Scholar 

  • Perrineau M-M, Zelzion E, Gross J, Price DC, Boyd J, Bhattacharya D (2014a) Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii. Environ Microbiol 16:1755–1766

    Article  CAS  PubMed  Google Scholar 

  • Perrineau M, Gross J, Zelzion E, Price DC, Levitan O, Boyd J, Bhattacharya D (2014b) Using natural selection to explore the adaptive potential of Chlamydomonas reinhardtii. PLoS ONE 9(3):e92533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pesheva I, Kodama M, Dionisio-Sese ML, Miyachi S (1994) Changes in photosynthetic characteristics induced by transferring air-grown cells of Chlorococcum littorale to high-CO2 Conditions. Plant Cell Physiol 35:379–387

    CAS  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41

    Article  CAS  PubMed  Google Scholar 

  • Phillips JN, Myers J (1954) Growth rate of Chlorella in flashing light. Plant Physiol 29:152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pick U, Karni L, Avron M (1986) Determination of ion content and ion fluxes in the halotolerant algae Dunaliella salina. Plant Physiol 81:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimolrat P, Direkbusarakom S, Chinajariawong C, Powtongsook S (2010) The effect of sodium bicarbonate concentrations on growth and biochemical composition of Chaetoceros gracilis Schutt. Kasetart Univ Fish Res Bull 34:40–47

    Google Scholar 

  • Polle JEW, Kanakagiri S, Jin ES, Masuda T, Melis A (2002) Truncated chlorophyll antenna size of the photosystems- a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrog Energy 27:1257–1264

    Article  CAS  Google Scholar 

  • Polle JEW, Kanakagiri S, Melis A (2003) tla1, a DNA insertional transformant of the antenna size. Planta 217:49–59

    CAS  PubMed  Google Scholar 

  • Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim Acta 62:69–77

    Article  CAS  Google Scholar 

  • Post FJ (1977) The microbial ecology of the Great Salt Lake. Microb Ecol 3:143–165

    Article  CAS  PubMed  Google Scholar 

  • Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T (1983) The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105:95–113

    Article  Google Scholar 

  • Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae – defining the polyphosphate dynamics. Water Res 43:4207–4213

    Article  CAS  PubMed  Google Scholar 

  • Powtongsook S, Kaewpintong K, Shotipruk A, Pavasant P (2006) Effect of superficial gas velocity on growth of the green microalga Haematococcus pluvialis in airlift photobioreactor. Stud Surf Sci Catal 159:481–484

    Article  CAS  Google Scholar 

  • Prathima Devi M, Venkata Mohan S (2012) CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Bioresour Technol 112:116–123

    Article  CAS  PubMed  Google Scholar 

  • Premkumar L, Bageshwar UK, Gokhman I, Zamir A, Sussman JL (2003) An unusual halotolerant α-type carbonic anhydrase from the alga Dunaliella salina functionally expressed in Escherichia coli. Protein Expr Purif 28:151–157

    Article  CAS  PubMed  Google Scholar 

  • Prézelin BB, Sweeney BM (1977) Characterization of photosynthetic rhythms in marine dinoflagellates. II. Photosynthesis irradiance curves and in vivo chlorophyll a fluorescence. Plant Physiol 60:388–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Prézelin BB, Meeson BW, Sweeney BM (1977) Characterization of photosynthetic rhythms in marine dinoflagellates: I. Pigmentation, photosynthetic capacity and respiration. Plant Physiol 60:384–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Price NM, Morel FMM (1991) Colimitation of phytoplankton growth by nickel and nitrogen. Limnol Oceanogr 36:1071–1077

    Article  CAS  Google Scholar 

  • Pronina N, Kodama M, Miyachi S (1993) Changes in intracellular pH values in various microalgae indiced by raising CO2 concentrations. In: Furuya M (ed) XV International Botanical Congress, Yokohama, p 419

    Google Scholar 

  • Prussi M, Buffi M, Casini D, Chiaramonti D, Martelli F, Carnevale M, Tredici MR, Rodolfi L (2014) Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. Biomass Bioenergy 67:390–400

    Article  CAS  Google Scholar 

  • Qiu B, Li Y (2006) Photosynthetic acclimation and photoprotective mechanism of Haematococcus pluvialis (Chlorophyceae) during the accumulation of secondary carotenoids at elevated irradiation. Phycologia 45:117–126

    Article  Google Scholar 

  • Quigg A (2016) Micronutrients. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 211–231

    Google Scholar 

  • Raateoja MP, Seppälä J (2001) Light utilization and photosynthetic efficiency of Nannochloris sp. (Chlorophyceae) approached by spectral absortption characteristics and Fast Repetition Rate Fluorometry (FRRF). Boreal Environ Res 6:205–220

    Google Scholar 

  • Rabbani S, Beyer P, Lintig JV, Hugeney P, Kleinig H (1998) Induced b-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragni M, d’Alcalà MR (2007) Circadian variability in the photobiology of Phaeodactylum tricornutum: pigment content. J Plankton Res 29:141–156

    Article  CAS  Google Scholar 

  • Ralph PJ, Wilhelm C, Lavaud J, Petrou K, Kranz SA (2011) Fluorescence as a tool to understand changes in photosynthetic electron flow regulation. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences. Methods and applications. Spinger, Dordrecht, pp 75–89

    Google Scholar 

  • Ramalho CB, Hastings JW, Colepicolo P (1995) Circadian oscillation of nitrate reductase activity in Gonyaulax polyedra is due to changes in cellular protein levels. Plant Physiol 107:225–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raso S, Genugten B, Vermuë M, Wijffels R (2012) Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. J Appl Phycol 24:863–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven JA (1981) Respiration and photorespiration. In: Platt T (ed) Physiological bases of phytoplankton ecology. Department of Fisheries and Oceans, Ottawa, pp 55–82

    Google Scholar 

  • Raven JA (1998) The twelfth Tansley lecture. Small is beautiful: the picophytoplankton. Funct Ecol 12:503–513

    Article  Google Scholar 

  • Raven JA (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth Res 106:123–134

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Beardall J (2016) Dark respiration and organic carbon loss. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 129–140

    Google Scholar 

  • Raven JA, Geider RJ (2003) Adaptation, acclimation and regulation in algal photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 385–412

    Chapter  Google Scholar 

  • Raven JA, Giodano M (2016) Combined nitrogen. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 143–154

    Google Scholar 

  • Raven JA, Ralph PJ (2015) Enhanced biofuel production using optimality, pathway modification and waste minimization. J Appl Phycol 27:1–31

    Article  CAS  Google Scholar 

  • Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149

    Article  CAS  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res 109:281–296

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Phil Trans R Soc B 367:493–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebolloso Fuentes MM, Garcia Sánchez JL, Fernández Sevilla JM, Acién Fernandez FG, Sánchez Pérez JA, Molina Grima E (1999) Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantitative analysis of the daily cyclic variation of culture parameters. J Biotechnol 70:271–288

    Article  CAS  Google Scholar 

  • Reboud X, Bell G (1997) Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time. Heredity 78:507–514

    Article  Google Scholar 

  • Recht L, Zarka A, Boussiba S (2012) Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl Microbiol Biotechnol 94:1495–1503

    Article  CAS  PubMed  Google Scholar 

  • Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC, Moore DJ, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Lett 39:51–56

    Article  CAS  Google Scholar 

  • Reichardt TA, Collins AM, Garcia OF, Ruffing AM, Jones HDT, Timlin JA (2012) Spectroradiometric monitoring of Nannochloropsis salina growth. Algal Res 1:22–31

    Article  CAS  Google Scholar 

  • Reichardt TA, Collins AM, McBride RC, Behnke CA, Timlin JA (2014) Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria. Appl Opt 53:F31–F45

    Article  PubMed  Google Scholar 

  • Reize IB, Melkonian M (1987) Flagellar regeneration in the scaly green flagellateTetraselmis striata (Prasinophyceae): regeneration kinetics and effect of inhibitors. Helgoländer Meeresun 41:149–164

    Article  Google Scholar 

  • Renstrøm B, Borch G, Skulberg OM, Liaaen-Jensen S (1981) Optical purity of (3S,3′S)-astaxanthin from Haematococcus pluvialis. Phytochemistry 20:2561–2564

    Article  Google Scholar 

  • Řezanka T, Lukavský J, Nedbalová L, Sigler K (2011) Effect of nitrogen and phosphorus starvation on the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga Trachydiscus minutus. Phytochemistry 72:2342–2351

    Article  PubMed  CAS  Google Scholar 

  • Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93:157–191

    Article  Google Scholar 

  • Richmond A (1988) Spirulina. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 85–121

    Google Scholar 

  • Richmond A (1996) Efficient utilization of high irradiance for production of photoautotrophic cell mass: a survey. J Appl Phycol 8:381–387

    Article  CAS  Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millenium: a personal view. J Appl Phycol 12:441–451

    Article  Google Scholar 

  • Richmond A (2013) Biological principles of mass cultivation of photoautotrophic microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, Chichester, pp 171–204

    Chapter  Google Scholar 

  • Richmond A, Grobbelaar JU (1986) Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10:253–264

    Article  Google Scholar 

  • Richmond A, Vonshak A (1978) Spirulina culture in Israel. Arch Hydrobiol 11:274–280

    Google Scholar 

  • Richmond A, Zou N (1999) Efficient utilisation of high photon irradiance for mass production of photoautotrophic micro-organisms. J Appl Phycol 11:123–127

    Article  Google Scholar 

  • Richmond A, Vonshak A, Arad S (1980) Environmental limitations in outdoor production of algal biomass. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 65–72

    Google Scholar 

  • Richmond A, Zhang C, Zarmi Y (2003) Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20:229–236

    Article  CAS  PubMed  Google Scholar 

  • Riebesell U, Wolfgladrow DA, Smetacek V (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361:249–251

    Article  CAS  Google Scholar 

  • Robinson DH, Kolber Z, Sullivan CW (1997) Photophysiology and photoacclimation in surface sea ice algae from McMurdo Sound, Antarctica. Mar Ecol Prog Ser 147:243–256

    Article  Google Scholar 

  • Rodolfi L, Zittelli GC, Barsanti L, Rosati C, Tredeci MR (2003) Growth medium recycling in Nannochloropsis sp. mass culture. Biomol Eng 20:243–248

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez JJG, Mirón AS, Camacho FG, García MCC, Belarbi EH, Chisti Y, Grima EM (2009) Causes of shear sensitivity of the toxic dinoflagellate Protoceratium reticulatum. Biotechnol Prog 25:792–800

    Article  Google Scholar 

  • Roessler PG (1988) Effects of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella cryptica. J Phycol 24:394–400

    Article  CAS  Google Scholar 

  • Rwehumbiza VM, Harrison R, Thomsen L (2012) Alum-induced flocculation of preconcentrated Nannochloropsis salina: residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chem Eng J 200–202:168–175

    Article  CAS  Google Scholar 

  • Ryther JH, Kramer DD (1961) Relative iron requirement of some coastal and offshore plankton algae. Ecology 42:444–446

    Article  CAS  Google Scholar 

  • Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43:290–297

    Article  CAS  PubMed  Google Scholar 

  • Salguero A, León R, Mariotti A, de la Morena B, Vega JM, Vilchez C (2005) UV-A mediated induction of carotenoid accumulation in Dunaliella bardawil with retention of cell viability. Appl Microbiol Biotechnol 66:506–511

    Article  CAS  PubMed  Google Scholar 

  • Samson R, Leduy A (1985) Multistage continuous cultivation of blue-green alga Spirulina maxima in the flat tank photobioreactors with recycle. Can J Chem Eng 65:105–112

    Article  Google Scholar 

  • Samuelsson G, Sweeney BM, Matlick HA, Prézelin BB (1983) Changes in Photosystem II account for the circadian rhythm in photosynthesis in Gonyaulax polyedra. Plant Physiol 73:329–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez Mirón A, Cerón García MC, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Article  CAS  Google Scholar 

  • Sarrafzadeh MH, La H-J, Lee J-Y, Cho D-H, Shin S-Y, Kim W-J, Oh H-M (2015) Microalgae biomass quantification by digital image processing and RGB color analysis. J Appl Phycol. 27:205–209

    Article  CAS  Google Scholar 

  • Sasaki T, Pronina NA, Maeshima M, Iwasaki I, Kurano N, Miyachi S (1999) Development of vacuoles and vacuolar H+-ATPase activity under extremely high CO2 conditions in Chlorococcum littorale cells. Plant Biol 1:68–75

    Article  CAS  Google Scholar 

  • Satoh A, Kurano N, Miyachi S (2001) Inhibition of photosynthesis by intracellular carbonic anhydrase in microalgae under excess concentrations of CO2. Photosynth Res 68:215–224

    Article  CAS  PubMed  Google Scholar 

  • Sayed OH, El-Shahed AM (2000) Growth, photosynthesis and circadian patterns in Chlorella vulgaris (Chlorophyta) in response to growth temperature. Cryptogam Algol 21:283–290

    Article