Biosynthesis of the Cell Walls of the Algae

  • David S. Domozych
Part of the Developments in Applied Phycology book series (DAPH, volume 6)


Algae constitute a large and diverse array of photosynthetic eukaryotes that are common to most of modern earth’s photic zones. Algae are critical to global primary production, CO2 sequestering and biomineralization as well as being of economic significance in the food, pharmaceutical and biofuel industries. The extracellular matrix of algal cells, most notably the cell wall, is of fundamental significance to survival and often serves as the major product of photosynthetic carbon fixation. The cell walls of most algae consist of a framework of fibrillar polysaccharides that are embedded in a matrix composed of neutral and charged polysaccharides along with various proteins, phenolics and complexed cations. The fibrillar components include mannans, xylans and most notably, cellulose, whose synthesis occurs in membrane-bound enzyme complexes. These load-bearing fibrillar components are inserted in complex networks of polysaccharides that include hemicelluloses and polyanionic polymers such as pectins, alginates, fucoidans and the sulfated galactans of red algae, agar and carageenan. These polymers are synthesized in the Golgi Apparatus, transported to cell surface sites via actin- and tubulin-based motors and deposited in the wall complex. Often, post-secretory crosslinking with cations alters the structural architecture of these polymers that, in turn, influences the strength and function of the cell wall. Proteins are also found in algal cell walls including highly glycosylated and hydroxyproline-rich forms, some of which have structural semblance to extensins and arabinogalactan proteins of land plants. Modern molecular and immunobinding studies are now probing the specific mechanisms in wall development including modulations that occur during morphogenesis and in response to environmental triggers.


Cell wall Cellulose Polysaccharide Pectin Golgi appraratus 



This work was supported by US National Science Foundation (NSF) grants NSF-MCB-0919925 and NSF-MRI-0922805.


  1. Abedin M, King N (2010) Diverse evolutionary paths to cell adhesion. Trends Cell Biol 20:734–742PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adair WS, Snell WJ (1990) The Chlamydomonas reinhardtii cell wall: structure, biochemistry and molecular biology. In: Mecham RP, Adair WS (eds) Organization and assembly of plant and animal extracellular matrix. Academic, Orlando, pp 15–84CrossRefGoogle Scholar
  3. Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–796PubMedPubMedCentralCrossRefGoogle Scholar
  4. Araki Y, Gonzalez EL (1998) V- and P-type Ca-stimulated ATPases in a calcifying strain of Pleurochrysis sp. (Haptophyceae). J Phycol 34:79–88CrossRefGoogle Scholar
  5. Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Ann Rev Plant Biol 64:747–779CrossRefGoogle Scholar
  6. Baroja-Fernández E, Muñoz FJ, Li J, Bahaji A, Almagroa G, Montero M, Etxeberri E, Hidalgo M, Sesma MT, Pozueta-Romero J (2012) Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci U S A 109:321–326PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bashline L, Li S, Anderson CT, Lei L, Gu Y (2013) The endocytosis of cellulose synthase in Arabidopsis is dependent on μ2, a clatrin-mediated endocytosis adaptin. Plant Physiol 163:150–160PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baylson FA, Stevens BW, Domozych DS (2001) Composition and synthesis of the pectin and protein components of the cell wall of Closterium acerosum (Chlorophyta). J Phycol 37:796–809CrossRefGoogle Scholar
  9. Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103:999–1004Google Scholar
  10. Becker B, Melkonian M (1992) N-linked glycoproteins associated with flagellar scales in a flagellate green alga: characterization of interactions. Eur J Cell Biol 57:109–116PubMedGoogle Scholar
  11. Becker B, Becker D, Kamerling J, Melkonian M (1991) 2-keto-sugar acids in green flagellates: a chemical marker for prasinophycean scales. J Phycol 27:498–504CrossRefGoogle Scholar
  12. Becker B, Marin B, Melkonian M (1994) Structure, composition, and biogenesis of prasinophyte scale coverings. Protoplasma 181:233–244CrossRefGoogle Scholar
  13. Becker B, Lommerse JPM, Melkonian M, Kamerling JP, Vliegenthart JFG (1995) The structure of an acidic trisaccharide component from a cell wall polysaccharide preparation of the green alga Tetraselmis striata Butcher. Carbohydr Res 267:313–321CrossRefGoogle Scholar
  14. Becker B, Perasso L, Kammann A, Salzburg M, Melkonian M (1996) Scale-associated glycoproteins of Scherffelia dubia (Chlorophyta) for high-molecular-weight complexes between scale layers and the flagellar membrane. Planta 199:503–510CrossRefGoogle Scholar
  15. Berglin M, Delage I, Potin P, Vilter H, Elwing H (2004) Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus. Biomacromol 5:2376–2383CrossRefGoogle Scholar
  16. Bisgrove SR, Kropf DL (2001) Cell wall deposition during morphogenesis in fucoid algae. Planta 212:648–658PubMedCrossRefGoogle Scholar
  17. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681Google Scholar
  18. Brabham C, DeBolt S (2013) Chemical genetics to examine cellulose biosynthesis. Front Plant 3:309. doi: 10.3389/fpls.2012.00309 Google Scholar
  19. Braybrook SA, Hofte H, Peaucelle A (2012) Probing the mechanical contributions of the pectin matrix. Plant Signal Behav 7:1037–1041PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brosch-Salomon S, Hoftberger M, Holzinger A, Lutz-Meindl (1998) Ultrastructural localization of polysaccharides and N-acetylgalactosamine in the secretory pathway of green algae (Desmidiaceae). J Exp Bot 319:145–153Google Scholar
  21. Brownlee C, Taylor A (2004) Calcification in coccolithophores: a cellular perspective. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impacts. Springer, Berlin, pp 31–49CrossRefGoogle Scholar
  22. Burton RA, Fincher GB (2009) (1,3;1,4)-ß-D-glucans in cell walls of the Poaceae, lower plants, and fungi: a tale of two linkages. Mol Plant 2:873–882PubMedCrossRefGoogle Scholar
  23. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900PubMedCrossRefGoogle Scholar
  24. Cai G, Faleri C, Del Casino C, Emons AMC, Cresti M (2011) Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiol 155:1169–1190PubMedPubMedCentralCrossRefGoogle Scholar
  25. Callow ME, Coughlan SJ, Evans LV (1978) The role of golgi bodies in polysaccharide sulphation in Fucus zygotes. J Cell Sci 32:337–356PubMedGoogle Scholar
  26. Ciancia M, Alberghina J, Arata PX, Benavides H, Leliaert F, Verbruggen H, Estevez JM (2012) Charcterization of cell wall polysaccharides of the coenocytic green seaweed Bryopsis plumosa (Bryopsidaceae, Chlorophyta) from the Argentine coast. J Phycol 48:326–335CrossRefGoogle Scholar
  27. Cock JM et al (2009) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621CrossRefGoogle Scholar
  28. Coelho SM, Scornet D, Rousvoal S, Peters NT, Dartevelle L, Peters AF, Cock JM (2012) Ectocarpus: a model organism for the brown algae. Cold Spring Harb Protoc 2012:193–198PubMedGoogle Scholar
  29. Corstjens PLM, González EL (2004) Effects of nitrogen and phosphorus availability on the expression of the coccolith-vesicle V-ATPase proton pump: cloning and immunolocalization. J Phycol 40:82–87CrossRefGoogle Scholar
  30. Corstjens PLAM, Araki Y, González EL (2001) A coccolithophorid calcifying vesicle with a vacuolar–type ATPase proton pump: cloning and immunolocalization of the Vo subunit. J Phycol 37:31–38CrossRefGoogle Scholar
  31. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861PubMedCrossRefGoogle Scholar
  32. Cosgrove DJ (2014) Re-constructing our models of cellulose and primary wall assembly. Curr Opin Plant Biol 22:122–131PubMedPubMedCentralCrossRefGoogle Scholar
  33. Craigie JS (1990) Cell walls. In: Cole KM, Sheath RG (eds) Biology of red algae. Cambridge University Press, Cambridge, pp 221–257Google Scholar
  34. Crawford RM, Schmid AM (1986) Ultrastructure of silica deposition in diatoms. In: Leadbeater BS, Riding R (eds) Biomineralization in lower plants and animals. The Systematics Society, London, pp 291–314Google Scholar
  35. Crowell EF, Timpano H, Desprez T, Franssen-Verheijen T, Emons A-E, Hofte H, Vernhettes S (2011) Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl. Plant Cell 23:2592–2605PubMedPubMedCentralCrossRefGoogle Scholar
  36. Davies JM (2014) Annexin-mediated calcium signaling in plants. Plants 3:128–140CrossRefGoogle Scholar
  37. Domozych DS (1991) The golgi apparatus and membrane trafficking in green algae. Int Rev Cytol 131:213–253PubMedCrossRefGoogle Scholar
  38. Domozych DS, Dairman M (1993) Synthesis of the inner cell wall of the chlamydomonad flagellate, Gloeomonas kupfferi. Protoplasma 176:1–13CrossRefGoogle Scholar
  39. Domozych DS, Stewart KD, Mattox KR (1981) Development of the cell wall in Tetraselmis: role of the golgi apparatus and extracellular wall assembly. J Cell Sci 52:351–371PubMedGoogle Scholar
  40. Domozych DS, Wells B, Shaw P (1991) Basket scales of the green alga, Mesostigma viride: chemistry and ultrastructure. J Cell Sci 100:397–407Google Scholar
  41. Domozych DS, Serfis A, Kiemle SN, Gretz MR (2007a) The structure and biochemistry of charophycean cell walls. I. Pectins of Penium margaritaceum. Protoplasma 230:99–115PubMedCrossRefGoogle Scholar
  42. Domozych DS, Elliott L, Kiemle SN, Gretz MR (2007b) Pleurotaenium trabecula, a desmid of wetland biofilms: the extracellular matrix and adhesion mechanisms. J Phycol 43:1022–1038CrossRefGoogle Scholar
  43. Domozych DS, Lambiasse L, Kiemle S, Gretz MR (2009a) Cell-wall development and bipolar growth in the desmid Penium margaritaceum (Zygnematophyceae, Streptophyta). Asymmetry in a symmetric world. J Phycol 45:879–893CrossRefGoogle Scholar
  44. Domozych DS, Sørensen I, Willats WGT (2009b) The distribution of cell wall polymers during antheridium development and spermatogenesis in the charophycean green alga, Chara corallina. Ann Bot 104:1045–1056PubMedPubMedCentralCrossRefGoogle Scholar
  45. Domozych DS, Brechka H, Britton A, Toso M (2011) Cell wall growth and modulation dynamics in a model unicellular green alga - Penium margaritaceum: live cell labeling with monoclonal antibodies. J Bot 2011:632165. doi: 10.1155/2011/632165 Google Scholar
  46. Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:82. doi: 10.3389/fpls.2012.00082 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Domozych DS, Sørensen I, Popper Z, Ochs J, Andreas A, Fangel JU, Pielach A, Sacks C, Brechka H, Willats WGT, Rose JKC (2014a) Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol 165:105–118PubMedPubMedCentralCrossRefGoogle Scholar
  48. Domozych DS, Sørensen I, Sacks C, Brechka H, Andreas A, Fangel JU, Rose JKC, Willats WGT, Popper ZA (2014b) Disruption of the microtubule network alters cellulose deposition and causes major changes in pectin distribution in the cell wall of the green alga, Penium margaritaceum. J Exp Bot 65:465–479PubMedPubMedCentralCrossRefGoogle Scholar
  49. Drescher B, Dillaman RN, Taylor AR (2012) Coccolithogenesis in Scyphosphaera apsteinii (Prymnesiophyceae). J Phycol 48:1343–1361CrossRefGoogle Scholar
  50. Driouich A, Follet-Gueye M-L, Bernard S, Kousar S, Chevalier L, Vicre’-Gibouin M, Lerouxel O (2012) Golgi-mediated synthesis and secretion of matrix polysaccharide of the primary cell wall of higher plants. Front Plant Sci 3:79. doi: 10.3339/fpls.2012.00079 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Eder M, Lutz-Meindl U (2008) Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM. J Microsc 231:210–214CrossRefGoogle Scholar
  52. Eder M, Lutz-Meindl U (2010) Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus. Protoplasma 243:25–38PubMedPubMedCentralCrossRefGoogle Scholar
  53. Eder M, Tenhaken R, Driouich A, Lutz-Meindl U (2008) Occurrence and characterization of arabinogalactan-like proteins and hemicelluloses in Micrasterias (Streptophyta). J Phycol 44:1221–1234CrossRefGoogle Scholar
  54. Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan proteins: key regulators at the cell surface. Plant Physiol 153:403–419PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ertl H, Hallmann A, Wenzl S, Sumper M (1992) A novel extensin that may organize extracellular matrix biogenesis in Volvox carteri. EMBO J 11:2055–2062PubMedPubMedCentralGoogle Scholar
  56. Estevez JM, Kieliszewski MJ, Khitrov N, Somerville C (2006) Charcterization of synthetic hydroxyproline-rich proteoglycans with arabinogalactan protein and extensin motifs in Arabidopsis. Plant Physiol 142:458–470PubMedPubMedCentralCrossRefGoogle Scholar
  57. Estevez JM, Leonardi PL, Alberghina JS (2008) Cell wall carbohydrate epitopes in the green alga Oedogonium bharuchae f. minor (Oedogoniales, Chlorophyta). J Phycol 44:1257–1268CrossRefGoogle Scholar
  58. Estevez JM, Kasuli L, Fernandez PV, Dupree P, Ciancia M (2009) Chemical in situ characterization of macromolecular components of the complex cell walls from the coenocytic green alga Codium fragile. Glycobiology 18:250–259Google Scholar
  59. Etienne-Manneville S, Hall A (2002) Rho-GTPases in cell biology. Nature 420:629–635PubMedCrossRefGoogle Scholar
  60. Fangel JU, Ulvskov P, Knox JP, Mikkelsen MD, Harholt J, Popper ZA, Willats WG (2012) Cell wall evolution and diversity. Front Plant Sci 3:152. doi:193389/fpls.2012.00152Google Scholar
  61. Fernandez PV, Ciancia M, Miravalles AB, Estevez JM (2010) Cell-wall polymer mapping in the coenocytic macroalga Codium vermilaria (Bryopsidales, Chlorophyta). J Phycol 46:456–465CrossRefGoogle Scholar
  62. Fowler JE, Vejlupkova Z, Goodner BW, Lu G, Quatrano RS (2004) Localization to the rhizoid tip implicates a Fucus distichus Rho family GTPase in a conserved cell polarity pathway. Planta 219:856–866PubMedCrossRefGoogle Scholar
  63. Franková L, Fry SC (2013) Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides. (Darwin review). J Exp Bot 64:3519–3550PubMedCrossRefGoogle Scholar
  64. Fry SC (2000) The growing plant cell wall: chemical and metabolic analysis. Blackwell Press, Caldwell, 320 ppGoogle Scholar
  65. Giddings TH Jr, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84:327–339PubMedCrossRefGoogle Scholar
  66. Goodenough UW, Heuser JE (1985) Molecular organization of cell-wall crystals from Chlamydomonas reinhardtii and Volvox carteri. J Cell Sci 90:717–733Google Scholar
  67. Graham LE (1993) Origin of land plants. Wiley, New YorkGoogle Scholar
  68. Graham LE, Graham J, Wilcox L (2009) Algae, 2nd edn. Benjamin Cummings, San FranciscoGoogle Scholar
  69. Guerriero G, Fugelstad J, Bulone V (2010) What do we really know about cellulose biosynthesis in higher plants? J Integ Plant Biol 52:61–175CrossRefGoogle Scholar
  70. Gutierrez R, Lindeboom J, Paradez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nature Cell Biol 11:797–806PubMedCrossRefGoogle Scholar
  71. Harholt J, Suttangkakul A, Scheller V (2010) Biosynthesis of pectin. Plant Physiol 153:384–395PubMedPubMedCentralCrossRefGoogle Scholar
  72. Harris D, Bulone V, Ding S-Y, DeBolt S (2010) Tools for cellulose analysis in plant cell walls. Plant Physiol 153:420–426PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hirokawa Y, Fujiwara S, Ysuzuki M (2005) Three types of acidic polysaccharides associated with coccolith of Pleurochrysis haptonemofera: comparison with Pleurochrysis carterae and analysis using fluorescein-isothyocyanate-labeled lectins. Mar Biotechnol 7:634–644PubMedCrossRefGoogle Scholar
  74. Höhfeld I, Melkonian M (1992) Amphiesmal ultrastructure of dinoflagellates: a reevaluation of pellicle formation. J Phycol 28:82–89CrossRefGoogle Scholar
  75. Holzinger A (2000) Aspects of cell development in Micrasterias muricata (Desmidiaceae) revealed by cryofixation and freeze substitution. Nova Hedwigia 70:275–288Google Scholar
  76. Imam SH, Buchanan MJ, Shin H-C, Snell WJ (1985) The Chlamydomonas cell wall characterization of the wall framework. J Cell Biol 101:1599–1607PubMedCrossRefGoogle Scholar
  77. Katsaros C, Karyphyllis D, Galatis B (2003) F-actin cytoskeleton and cell wall morphogenesis in brown algae. Cell Biol Int 27:209–210PubMedCrossRefGoogle Scholar
  78. Katsaros C, Karyphyllis D, Galatis B (2006) Cytoskeleton and morphogenesis in brown algae. Ann Bot 97:679–693PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kayano K, Saruwatari K, Kogure T, Shiraiwa Y (2010) Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in in vitro CaCO3 crystallization. Mar Biotechnol 13:83–92PubMedCrossRefGoogle Scholar
  80. Keskiaho K, Hieta R, Sornumen R, Myllyharju J (2007) Chlamydomonas reinhardtii has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly. Plant Cell 19:256–269PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kirk DL, Birchem R, King N (1986) The extracellular matrix of Volvox: a comparative study and proposed system of nomenclature. J Cell Sci 80:207–231PubMedGoogle Scholar
  82. Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Ann Rev 26:259–315Google Scholar
  83. Kröger N (2007) Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. Curr Opin Chem Biol 11:662–669PubMedCrossRefGoogle Scholar
  84. Kröger N, Poulsen N (2008) Diatoms—from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107PubMedCrossRefGoogle Scholar
  85. Kwok ACM, Wong JTY (2003) Cellulose synthesis is coupled to cell cycle progression at G1 in the dinoflagellate Crypthecodinium cohnii. Plant Physiol 131:1681–1691PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kwok ACM, Wong JTY (2010) The activity of a wall-bound cellulase is required for and is coupled to cell cycle progression in the dinoflagellate Crypthecodinium cohnii. Plant Cell 22:1281–1298PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lahaye M, Robic A (2010) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774CrossRefGoogle Scholar
  88. Lamport DTA, Kieliszewski MJ, Chen Y, Cannon MC (2011) Role of extensin super family in primary cell wall architecture. Plant Physiol 156:11–19PubMedPubMedCentralCrossRefGoogle Scholar
  89. Langer G, de Nooijer LJ, Oetjen K (2010) On the role of the cytoskeleton in coccolith morphogenesis: the effect of cytoskeleton inhibitors. J Phycol 46:1252–1256CrossRefGoogle Scholar
  90. Le Bail A, Billoud B, Le Panse S, Chenivesse S, Charrier B (2011) ETOILE regulates developmental patterning in the filamentous brown alga Ectocarpus siliculosus. Plant Cell 23:1666–1678PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lee KJD, Sakata Y, Mau S-L, Pettolino F, Bacic A, Quatrano RS, Knight CD, Knox JP (2005) Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens. Plant Cell 17:3051–3065PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lee J-H, Waffenschmidt S, Small GU (2007) Between-species analysis of short-repeat modules in cell wall and sex-related hydroxyproline-rich glycoproteins of Chlamydomonas. Plant Physiol 144:1813–1826PubMedPubMedCentralCrossRefGoogle Scholar
  93. Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46CrossRefGoogle Scholar
  94. Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell walls- a complex process. Curr Op Plant Biol 9:621–630CrossRefGoogle Scholar
  95. Li L, Saga N, Mikami K (2008) Effects of cell wall synthesis on cell polarity in the red alga Porphyra yezoensis. Plant Sig Behav 3:1126–1128CrossRefGoogle Scholar
  96. Li L, Saga N, Mikami K (2009) Ca2+ influx and phosphoinositide signalling are essential for the establishment and maintenance of cell polarity in monospores from the red alga Porphyra yezoensis. J Exp Bot 60:3477–3489PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lutz-Meindl U, Brosch-Salomon S (1999) Cell wall secretion in the green alga Micrasterias. J Microsc 198:208–217CrossRefGoogle Scholar
  98. Mackinder L, Wheeler G, Schroeder D, Riebesell U, Brownlee C (2010) Molecular mechanisms underlying calcification in coccolithophores. Geomicrobiol J 27:585–595CrossRefGoogle Scholar
  99. Manton I, Parke M (1965) Observations on the fine structure of two species of Platymonas with special reference to flagellar scales and the mode of origin of the theca. J Mar Biol Assoc UK 45:743–754CrossRefGoogle Scholar
  100. Marsh M (1999) Biomineralization in coccolithophores. Gravit Space Biol Bull 12:5–14PubMedGoogle Scholar
  101. Martone PT, Navarro DA, Stortz CA, Estevez JM (2010) Differences in polysaccharide structure between calcified and uncalcified segments in the coralline Calliarthron cheilosporiodes (Corallinales, Rhodophyta). J Phycol 46:507–515CrossRefGoogle Scholar
  102. McCarthy TW, Der JP, Honaas LA, dePamphilis CW, Anderson CT (2014) Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls. BMC Plant Biol 14:79PubMedPubMedCentralCrossRefGoogle Scholar
  103. McFadden GI, Melkonian M (1986) Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellate Scherffelia dubia (Prasinophyceae). II. Cell wall secretion and assembly. Protoplasma 131:174–184CrossRefGoogle Scholar
  104. McFarlane HE, Doring A, Persons S (2014) The cell biology of cellulose synthesis. Annu Rev Plant Biol 65:69–94PubMedCrossRefGoogle Scholar
  105. Meindl U (1993) Micrasterias cells as a model system for research on morphogenesis. Microbiol Rev 57:415–433PubMedPubMedCentralGoogle Scholar
  106. Mertens K, Lynn M, Aycard M, Lin H-L, Louwye S (2009) Coccolithophores as palaeological indicator for shifts of the ITCZ in the Cariaco Basin during the late Quaternary. J Quat Sci 24:159–174CrossRefGoogle Scholar
  107. Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol 188:82–97PubMedCrossRefGoogle Scholar
  108. Mizuta S, Brown RM Jr (1992) High resolution analysis of the formation of cellulose-synthesizing complexes in Vaucheria hamata. Protoplasma 166:187CrossRefGoogle Scholar
  109. Moestrup O, Walne PL (1979) Studies on scale morphogenesis in the golgi apparatus of Pyramimonas tetrarhynchus (Prasinophyceae). J Cell Sci 36:437–459PubMedGoogle Scholar
  110. Morrill LC, Loeblich AR (1983) Ultrastructure of the dinoflagellate amphiesma. Int Rev Cytol 82:151–180PubMedCrossRefGoogle Scholar
  111. Mravec JJ, Kračun SK, Rydahl MG, Westereng B, Miart F, Clausen MH, Fangel JU, Daugaard M, Van Cutsem P, De Fine Licht HH, Höfte H, Malinovsky FG, Domozych DS, Willats WGT (2014) Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes. Development 141:4841–4850PubMedCrossRefGoogle Scholar
  112. Nagasato C, Motomura T (2009) Effect of latrunculin B and brefeldin A on cytokinesis in the brown alga Scytosiphon lomentaria zygotes (Scytosiphonales, Phaeophyceae). J Phycol 45:404–412CrossRefGoogle Scholar
  113. Nagasato C, Inoue A, Mizuno M, Kanazawa K, Ojima T, Okuda K, Motomura T (2010) Membrane fusion process and assembly of cell wall during cytokinesis in the brown alga, Silvetia babingtonii (Fucales, Phaeophyceae). Planta 232:287–298PubMedCrossRefGoogle Scholar
  114. Nakashima J, Heathman A, Brown RM Jr (2006) Antibodies against a Gossypium hirsutum recombinant cellulose synthase (Ces A) specifically label cellulose synthase in Micrasterias denticulata. Cellulose 13:181–190CrossRefGoogle Scholar
  115. Nguema-Ona E, Coimbra S, Vicré-Gibouin M, Mollet J-C, Driouich A (2012) Arabinogalactan proteins in root and pollen tube cells: distribution and functional aspects. Ann Bot 110:383–404PubMedPubMedCentralCrossRefGoogle Scholar
  116. Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, ChicagoGoogle Scholar
  117. Niklas KJ (2004) The cell walls that bind the tree of life. Bioscience 54:831–841CrossRefGoogle Scholar
  118. Ochs J, LaRue T, Tinaz B, Yongue C, Domozych DS (2014) The cortical cytoskeletal network and cell-wall dynamics in the unicellular charophycean green alga Penium margaritaceum. Ann Bot 114:1237–1249PubMedPubMedCentralCrossRefGoogle Scholar
  119. Painter TJ (1983) Algal polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic, New York, pp 195–285Google Scholar
  120. Palin R, Geitmann A (2012) The role of pectin in plant morphogenesis. Biosyst 109:397–402CrossRefGoogle Scholar
  121. Paradez A, Somerville CR, Ehrhardt DW (2006) Dynamic visualisation of cellulose synthase demonstrates functional association with cortical microtubules. Science 312:1491–1495CrossRefGoogle Scholar
  122. Percival E (1979) The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br Phycol J 14:103–117CrossRefGoogle Scholar
  123. Pflugl-Haill M, Vidali L, Vos JW, Hepler PK, Lutz-Meindl U (2000) Changes of the actin filament system in the green alga Micrasterias denticulata induced by different cytoskeleton inhibitors. Protoplasma 212:206–216CrossRefGoogle Scholar
  124. Popper ZA (2008) Evolution and diversity of plant cell walls. Cur Op Plant Biol 11:286–292CrossRefGoogle Scholar
  125. Popper ZA, Michel G, Herve C, Domozych DS, Willats WGT, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:8.1–8.24CrossRefGoogle Scholar
  126. Pozdnyakov I, Skarlato S (2012) Dinoflagellate amphiesma at different stages of the life cycle. Protistology 7:108–115Google Scholar
  127. Proseus TE, Boyer JS (2007) Tension required for pectate chemistry to control growth in Chara corallina. J Exp Bot 58:4283–4292PubMedCrossRefGoogle Scholar
  128. Proseus TE, Boyer JS (2008) Calcium pectate chemistry causes growth to be stored in Chara corallina: a test of the pectate cycle. Plant Cell Environ 31:1147–1155PubMedCrossRefGoogle Scholar
  129. Proseus TE, Boyer JS (2012) Calcium deprivation disrupts enlargement of Chara corallina cells: further evidence for the calcium pectate cycle. J Exp Bot 63:3953–3958PubMedPubMedCentralCrossRefGoogle Scholar
  130. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Euk Cell 9:486–501CrossRefGoogle Scholar
  131. Ramus J (1972) The production of extracellular polysaccharide by the unicellular red alga Porphyridium aerugineum. J Phycol 8:97–111Google Scholar
  132. Ray B, Lahaye M (1995) Cell-wall polysaccharides from the marine green alga Ulva ‘rigida” (Ulvales, Chlorophyta). Chemical structure of ulvan. Carbohydr Res 274:313–318CrossRefGoogle Scholar
  133. Rinaudo M (2007) Seaweed polysaccharides. In: Kamerling JP (ed) Comprehensive glycoscience. From chemistry to systems biology, vol 2. Elsevier, New York, pp 691–735CrossRefGoogle Scholar
  134. Roberts K (1974) Crystalline glycoprotein cell walls of algae: their structure, composition and assembly. Phil Trans R Soc Lond Ser B Biol Sci 268:129–146CrossRefGoogle Scholar
  135. Roberts AW, Roberts E (2007) Evolution of the cellulose synthase (CesA) gene family: insights from green algae and seedless plants. In: Brown RM Jr, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, Dordrecht, pp 17–34CrossRefGoogle Scholar
  136. Roberts E, Roberts AW (2009) A cellulose synthase (CesA) gene from the red alga Porphyra yezoensis (Rhodophyta). J Phycol 45:203–212CrossRefGoogle Scholar
  137. Roberts K, Grief C, Hills GJ, Shaw PJ (1985) Cell wall glycoproteins: structure and function. J Cell Sci Suppl 2:105–127PubMedCrossRefGoogle Scholar
  138. Roberts AW, Roberts EM, Delmer DP (2002) Cellulase synthase (CesA) genes in the green alga Mesotaenium caldariorum. Euk Cell 1:847–855CrossRefGoogle Scholar
  139. Saade A, Bowler C (2009) Molecular tools for discovering the secrets of diatoms. BioScience 59:757–769CrossRefGoogle Scholar
  140. Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lideboom J, Emons AM, Samuels L, Ketelaar T, Ehrhardt DW, Persson S (2013) Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162:675–688PubMedPubMedCentralCrossRefGoogle Scholar
  141. Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60:3615–3635PubMedCrossRefGoogle Scholar
  142. Saxena IM, Brown RM Jr (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21PubMedPubMedCentralCrossRefGoogle Scholar
  143. Senechal F, Wattier C, Rusterucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structures, expression, and roles in plants. J Exp Bot 65:5125–5160PubMedPubMedCentralCrossRefGoogle Scholar
  144. Shoenwaelder MEA, Wiencke C (2000) Phenolic compounds in the embryo development of several northern hemisphere fucoids. Plant Biol 2:24–33CrossRefGoogle Scholar
  145. Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417PubMedCrossRefGoogle Scholar
  146. Shroeder DC, Biggi GF, Hall M, Davy J, Martinez JM, Richardson AJ, Malin G, Wilson WH (2005) A genetic marker to separate Emiliania huxleyi (Prymnesiophyceae) morphotypes. J Phycol 41:874–879CrossRefGoogle Scholar
  147. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78PubMedCrossRefGoogle Scholar
  148. Sørensen I, Domozych DS, Willats WGT (2010) How have plant cells evolved? Plant Physiol 153:366–372PubMedPubMedCentralCrossRefGoogle Scholar
  149. Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O’Neill MA, Fei Z, Rose JKC, Domozych DS, Willats WGT (2011) The charophycean green algae provide insights into the early origins of plant cell walls. Plant J 68:201–211PubMedCrossRefGoogle Scholar
  150. Sørensen I, Fei Z, Andreas A, Willats WGT, Domozych DS, Rose JKC (2013) Stable transformation and reverse genetic analysis of Penium margaritaceum: a platform for studies of charophycean green algae, the immediate ancestors of land plants. Plant J 77:339–351PubMedCrossRefGoogle Scholar
  151. Sugimoto K, Williamson RE, Wastenys GO (2000) New techniques enable comparative analysis of microtubule orientation, wall texture and growth rate in intact roots of Arabidopsis. Plant Phys 124:1493–1506CrossRefGoogle Scholar
  152. Sumper M, Hallmann A (1998) Biochemistry of the extracellular matrix of Volvox. Int Rev Cytol 180:51–85PubMedCrossRefGoogle Scholar
  153. Tan L, Eberhard S, Pattahil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS, Baldwin D, Pham C, Orlando R, Darvill A, Hahn MG, Kieliszewski MJ, Mohnen D (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–287PubMedPubMedCentralCrossRefGoogle Scholar
  154. Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178:239–252PubMedCrossRefGoogle Scholar
  155. Taylor AR, Russell MA, Harper GM, Collins TFT, Brownlee C (2007) Dynamics of formation and secretion of heterococcoliths by Coccolithus pelagicus ssp. brarudii. Eur J Phycol 42:125–136CrossRefGoogle Scholar
  156. Terauchi M, Nagasat C, Kajimura N, Mineyuki Y, Okuda K, Katsaros C, Motomura T (2012) Ultrastructural study of plasmodesmata in the brown alga Dictyota dichotoma (Dictyotales, Phaeophyceae). Planta 236:1013–1026PubMedCrossRefGoogle Scholar
  157. Tesson B, Hildebrand M (2010) Extensive and intimate association of the cytoskeleton with forming silica in diatoms: control over patterning on the meso- and micro-scale. PLoS One 5(12):e14300. doi: 10.1371/journal.pone.0014300 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Tesson B, Hildebrand M (2013) Characterization and localization of insoluble organic matrices associated with diatom cell walls: insight into their roles during cell wall formation. PLoS One 8(4):e61675. doi: 10.1371/journal.pone.0061675 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Timme RE, Bachvaroff TR, Delwiche CF (2012) Broad phylogenomic sampling and the sister lineage of land plants. PLoS One 7:e29696. doi: 10.1371/journal.pone.0029696 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Tsekos I (1981) Growth and differentiation of the golgi apparatus and wall germination during carposporogenesis in the red alga, Gigartina teedii (Roth) Lamour. J Cell Sci 52:71–84PubMedGoogle Scholar
  161. Tsekos I (1999) The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655CrossRefGoogle Scholar
  162. Ulvskov P, Paiva DS, Domozych D, Harholt J (2013) Classification, naming and evolutionary history of glycosyltransferases from sequenced green and red algal genomes. PLoS One. 8(10):e76511 doi: 10.1371/journal.pone.0076511
  163. Vannerum K, Abe J, Sekimoto H, Inzé D, Vyverman W (2010) Intracellular localization of an endogenous cellulose synthase of Micrasterias denticulata (Desmidiales, Chlorophyta) by means of transient genetic transformation. J Phycol 46:839–845CrossRefGoogle Scholar
  164. Vannerum K, Hiysman MJJ, De Rycke R, Vuylsteke M, Leliaert F, Pollier J, Lutz-Meindl U, Gillard J, De Veylder L, Goossens A, Inze D, Vyverman W (2011) Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias (Streptophyta), with emphasis on the role of expansin. BMC Plant Biol 11:128. doi:1471-2229/11/128Google Scholar
  165. Vannerum K, De Rycke R, Pollier J, Goosens A, Inze D, Vyverman W (2012) Characterization of a RABE (RAS gene from rat brain E) GTPase expressed during morphogenesis in the unicellular green alga Micrasterias denticulata (Zygnematophyceae, Streptophyta). J Phycol 48:682–692CrossRefGoogle Scholar
  166. Verhaeghe EF, Fraysse A, Guerquin-Kern JL, Wu TD, Deves G, Mioskowski C, Leblanc C, Ortega R, Ambroise Y, Potin P (2008) Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. J Biol Inorg Chem 13:257–269PubMedCrossRefGoogle Scholar
  167. Vierkotten L, Simon A, Becker B (2004) Preparation and characterization of protoplasts obtained from the prasinophyte Scherffelia dubia (Chlorophyta). J Phycol 40:1106–1111CrossRefGoogle Scholar
  168. Voight J, Frank R (2003) 14-3-3 proteins are constituent of the insoluble glycoprotein framework of the Chlamydomonas cell wall. Plant Cell 15:1399–1413CrossRefGoogle Scholar
  169. Wallace IS, Anderson CT (2012) Small molecule probes for plant polysaccharide imaging. Front Plant Sci 3:89. doi: 10.3389/fpls.2012.00089 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Goodenough U (2012) Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell 11:1424–1440PubMedPubMedCentralCrossRefGoogle Scholar
  171. Willats WGT, Knox JP (1996) A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of ß-glucosyl Yariv reagent with seedlings of Arabidopsis. Plant J 9:919–925PubMedCrossRefGoogle Scholar
  172. Woessner JP, Goodenough UW (1994) Volvocine cell walls and their constituent glycoproteins: an evolutionary perspective. Protoplasma 181:245–258CrossRefGoogle Scholar
  173. Wolf S, Greiner S (2012) Growth control by cell wall pectins. Protoplasma 249:S169–S175PubMedCrossRefGoogle Scholar
  174. Wolf S, Hématy K, Höfte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407PubMedCrossRefGoogle Scholar
  175. Worden N, Esteva Esteve V, Domozych DS, Drakakaki G (2015) Using chemical genetics to study cell wall formation and cell growth in Arabidopsis thaliana and Penium margaritaceum. In: Estevez JM (ed) Plant cell expansion: methods and protocols. Humana Press, New York, pp 23–39Google Scholar
  176. Xia X, Lei L, Brabham C, Stork J, Strickland J, Ladak A, Gu Y, Wallace I, DeBolt S (2014) Acetobixan, an inhibitor of cellulose synthesis identified by microbial bioprospecting. PLoS One 9(4):e95245. doi: 10.1371/journal.pone.0095245 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Yapo BM (2011) Pectic substances: from simple pectic polysaccharides to complex pectins- a new hypothetical model. Carbohydr Polym 86:373–385CrossRefGoogle Scholar
  178. Yin Y, Huang J, Xu Y (2009) The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol 9:99 doi: 10.1186/1471-2229-9-99
  179. Zabotina O, Malm E, Drakakaki G, Bulone V, Raikhel N (2008) Identification and preliminary characterization of new chemical affecting glucosyltransferase activities involved in plant cell wall biosynthesis. Mol Plant 1:977–989PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biology and Skidmore Microscopy Imaging CenterSkidmore CollegeSaratoga SpringsUSA

Personalised recommendations