Coping with High and Variable Salinity: Molecular Aspects of Compatible Solute Accumulation

  • Martin Hagemann
Part of the Developments in Applied Phycology book series (DAPH, volume 6)


Microalgae comprising cyanobacteria and small members of diverse lineages of eukaryotic algae are found in habitats of varying salinities. Therefore, the amount of external salt or the availability of water represents one of the main environmental factors for the distribution of these organisms on Earth. Microalgae use the so-called salt-out strategy when they are exposed to high or varying salinities. This acclimation strategy includes two main features: (i) keeping rather low and unchanged internal concentrations of inorganic ions via active transport mechanisms to avoid toxic effects on metabolic activities, and (ii) accumulating low molecular hydrophilic organic compounds (compatible solutes) in high intracellular amounts to make the cytoplasm hyperosmotic toward the external medium ensuring water uptake and positive turgor. Molecular mechanisms for high salt acclimation among microalgae are presented and discussed. Compared to cyanobacteria, the knowledge on these processes is rather limited among eukaryotic algae. However, the increasing amount of genome information will improve this situation soon, since it will allow directly searching and analysing candidate proteins known to act in the high salt acclimation of model organisms such as cyanobacteria, yeast or plants. Moreover, the current efforts to use mass culture of microalgae will boost the basic research on salt acclimation, because these cultures will be made in waters of high salinity due to the limitation of global freshwater resources.


Osmoregulation Compatible solutes Salt acclimation Halophilic Ionic regulation Iso-floridoside Proline Mannitol Glycerol Molecular mechanisms 



I would like to thank my former and present coworkers at Rostock University on this interesting project. The generous and long-term financial support of my work on cyanobacterial salt acclimation at Rostock University by grants of the DFG (Deutsche Forschungsgemeinschaft) is greatly acknowledged.


  1. Ahmad I, Hellebust JA (1984) Osmoregulation in the extremely euryhaline marine micro-alga Chlorella autotrophica. Plant Physiol 74:1010–1015PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alkayal F, Albion RL, Tillett RL, Hathwaik LT, Lemos MS, Cushman JC (2010) Expressed sequence tag (EST) profiling in hyper saline shocked Dunaliella salina reveals high expression of protein synthetic apparatus components. Plant Sci 179:437–449PubMedCrossRefGoogle Scholar
  3. Allen AE, Dupont CL, Oborník M, Horák A, Nunes-Nesi A, McCrow JP, Zheng H, Johnson DA, Hu H, Fernie AR, Bowler C (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473:203–207PubMedCrossRefGoogle Scholar
  4. Balnokin YV, Popova LG, Pagis LY, Andreev IM (2004) The Na+-translocating ATPase in the plasma membrane of the marine microalga Tetraselmis viridis catalyzes Na+/H+ exchange. Planta 219:332–337PubMedCrossRefGoogle Scholar
  5. Barrero-Gil J, Garciadeblás B, Benito B (2005) Sodium, potassium-ATPases in algae and oomycetes. J Bioenerg Biomembr 37:269–278PubMedCrossRefGoogle Scholar
  6. Belmans D, Van Laere A (1987) Glycerol cycle enzymes and intermediates during adaption of Dunaliella tertiolecta cells to hyperosmotic stress. Plant Cell Environ 10:185–190Google Scholar
  7. Ben-Amotz A, Avron M (1981) Glycerol and ß-carotene metabolism in the halotolerant alga Dunaliella: a model system for biosolar energy conversion. Trends Biochem Sci 6:297–299CrossRefGoogle Scholar
  8. Bental M, Degani H, Avron M (1988) Na-NMR studies of the intracellular sodium ion concentration in the halotolerant alga Dunaliella salina. Plant Physiol 87:813–817PubMedPubMedCentralCrossRefGoogle Scholar
  9. Berry S, Esper B, Karandashova I, Teuber M, Elanskaya I, Rögner M, Hagemann M (2003) Potassium uptake in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 mainly depends on a Ktr-like system encoded by slr1509 (ntpJ). FEBS Lett 548:53–58PubMedCrossRefGoogle Scholar
  10. Bisson MA, Kirst GO (1979) Osmotic adaptation in the marine alga Griffithsia monilis (Rhodophyceae): the role of ions and organic compounds. Aust J Plant Physiol 6:523–538Google Scholar
  11. Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–333CrossRefGoogle Scholar
  12. Blackwell JR, Gilmour DJ (1989) Determination of volume of Dunaliella cells by lithium dilution measurements and derivation of internal solute concentrations. J Exp Bot 40:795–802CrossRefGoogle Scholar
  13. Blackwell JR, Gilmour DJ (1991a) Physiological response of the unicellular green alga Chlorococcum submarinum to rapid changes in salinity. Arch Microbiol 157:86–91Google Scholar
  14. Blackwell JR, Gilmour DJ (1991b) Determination of intracellular volume and internal solute concentrations of the green alga Chlorococcum submarinum. Arch Microbiol 157:80–85Google Scholar
  15. Blank CE (2013) Phylogenetic distribution of compatible solute synthesis genes supports a freshwater origin for cyanobacteria. J Phycol 49:880–895CrossRefGoogle Scholar
  16. Bondu S, Cerantola S, Kervarec N, Deslandes E (2009) Impact of the salt stress on the photosynthetic carbon flux and 13C-label distribution within floridoside and digeneaside in Solieria chordalis. Phytochemistry 70:173–184Google Scholar
  17. Borges N, Ramos A, Raven ND, Sharp RJ, Santos H (2002) Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6:209–216PubMedCrossRefGoogle Scholar
  18. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681Google Scholar
  19. Borowitzka LJ, Brown AD (1974) The salt relations of marine and halophilic species of the unicellular green alga Dunaliella the role of glycerol as a compatible solute. Arch Microbiol 96:37–52CrossRefGoogle Scholar
  20. Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Chang 18:13–25CrossRefGoogle Scholar
  21. Borowitzka LJ, Kessly DS, Brown AD (1977) The salt relations in Dunaliella: further observations on glycerol production and its regulation. Arch Microbiol 113:131–138PubMedCrossRefGoogle Scholar
  22. Brill J, Hoffmann T, Bleisteiner M, Bremer E (2011) Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. J Bacteriol 193:5335–5346PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bromke MA, Giavalisco P, Willmitzer L, Hesse H (2013) Metabolic analysis of adaptation to short-term changes in culture conditions of the marine diatom Thalassiosira pseudonana. PLoS One 8:e67340PubMedPubMedCentralCrossRefGoogle Scholar
  24. Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846PubMedPubMedCentralGoogle Scholar
  25. Brunner G, Kauss H (1988) Deaggregation and proteolytic modification of a galactosyltransferase of Poterioochromonas malhamensis. Physiol Plant 74:708–714CrossRefGoogle Scholar
  26. Cai M, He LH, Yu TY (2013) Molecular clone and expression of a NAD+-dependent glycerol-3-phosphate dehydrogenase isozyme gene from the halotolerant alga Dunaliella salina. PLoS One 8:e62287PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chanroj S, Wang G, Venema K, Zhang MW, Delwiche CF, Sze H (2012) Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Front Plant Sci 3:25PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chavez FP, Messié M, Pennington JT (2011) Marine primary production in relation to climate variability and change. Annu Rev Mar Sci 3:227–260CrossRefGoogle Scholar
  29. Chen H, Jiang JG, Wu GH (2009) Effects of salinity changes on the growth of Dunaliella salina and its isozyme activities of glycerol-3-phosphate dehydrogenase. J Agric Food Chem 57:6178–6182PubMedCrossRefGoogle Scholar
  30. Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214PubMedCrossRefGoogle Scholar
  31. Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collén J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, Gachon CM, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Küpper FC, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR, Nyvall-Collén P, Peters AF, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing SA, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder DC, Ségurens B, Strittmatter M, Tonon T, Tregear JW, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621PubMedCrossRefGoogle Scholar
  32. Dibrova DV, Galperin MY, Mulkidjanian AY (2010) Characterization of the N-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial F-type membrane ATPase. Bioinformatics 26:1473–1476PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dickson DMJ, Kirst GO (1986) The role of β-dimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis. Planta 167:536–543PubMedCrossRefGoogle Scholar
  34. Dittami SM, Aas HTN, Paulsen BS, Boyen C, Edvardsen B, Tonon T (2011a) Mannitol in six autotrophic stramenopiles and Micromonas. Plant Signal Behav 6:1237–1239PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dittami SM, Gravot A, Renault D, Goulitquer S, Eggert A, Bouchereau A, Boyen C, Tonon T (2011b) Integrative analysis of metabolite and transcript abundance during the short-term response to saline and oxidative stress in the brown alga Ectocarpus siliculosus. Plant Cell Environ 34:629–642PubMedCrossRefGoogle Scholar
  36. Dittami SM, Gravot A, Goulitquer S, Rousvoal S, Peters AF, Bouchereau A, Boyen C, Tonon T (2012) Towards deciphering dynamic changes and evolutionary mechanisms involved in the adaptation to low salinities in Ectocarpus (brown algae). Plant J 71:366–377PubMedGoogle Scholar
  37. Edwards DM, Reed RH, Chudeek JA, Foster R, Stewart WDP (1987) Organic solute accumulation in osmotically-stressed Enteromorpha intestinalis. Mar Biol 95:583–592CrossRefGoogle Scholar
  38. Elanskaya IV, Karandashova IV, Bogachev AV, Hagemann M (2002) Functional analysis of the Na+/H+ antiporter encoding genes of the cyanobacterium Synechocystis PCC 6803. Biochemistry (Moscow) 67:432–440CrossRefGoogle Scholar
  39. Empadinhas N, da Costa MS (2008) To be or not to be a compatible solute: bioversatility of mannosylglycerate and glucosylglycerate. Syst Appl Microbiol 31:159–168PubMedCrossRefGoogle Scholar
  40. Erdmann N, Hagemann M (2001) Salt acclimation of algae and cyanobacteria. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses. Springer, Berlin, pp 323–362CrossRefGoogle Scholar
  41. Escassi L, Aguilera J, Figueroa FL, Fernández JA (2002) Potassium drives daily reversible thallus enlargement in the marine red alga Porphyra leucosticta (Rhodophyta). Planta 214:759–766PubMedCrossRefGoogle Scholar
  42. Fujii S, Nishimoto N, Notoya A, Hellebust JA (1995) Growth and osmoregulation of Chaetoceros muelleri in relation to salinity. Plant Cell Physiol 36:759–764Google Scholar
  43. Gee R, Goyal A, Byerrum RU, Tolbert NE (1989) Two isozymes of dihydroxyacetone phosphate reductase in Dunaliella. Plant Physiol 91:345–351PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gimmler H (2000) Primary sodium plasma membrane ATPases in salt-tolerant algae: facts and fictions. J Exp Bot 51:1171–1178PubMedCrossRefGoogle Scholar
  45. Gimmler H, Hartung W (1988) Low permeability of the plasma membrane of Dunaliella parva for solutes. J Plant Physiol 133:165–172CrossRefGoogle Scholar
  46. Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123PubMedCrossRefGoogle Scholar
  47. Hagemann M (2013) Genomics of salt acclimation: synthesis of compatible solutes among cyanobacteria. In: Chauvat F, Cassier Chauvat C (eds) Book series: advances in botanical research, vol 65. Elsevier, San Diego, pp 27–55Google Scholar
  48. Haimovich-Dayan M, Garfinkel N, Ewe D, Marcus Y, Gruber A, Wagner H, Kroth PG, Kaplan A (2013) The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. New Phytol 197:177–185Google Scholar
  49. Hara Y, Mikami Y, Shono M, Wada M (2003) Na+, K+-ATPase in the marine alga Heterosigma akashiwo. Ann N Y Acad Sci 986:628–629PubMedCrossRefGoogle Scholar
  50. He Y, Meng X, Fan Q, Sun X, Xu Z, Song R (2009) Cloning and characterization of two novel chloroplastic glycerol-3-phosphate dehydrogenases from Dunaliella viridis. Plant Mol Biol 71:193–205PubMedCrossRefGoogle Scholar
  51. Higo A, Katoh H, Ohmori K, Ikeuchi M, Ohmori M (2006) The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 152:979–987PubMedCrossRefGoogle Scholar
  52. Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hirsch R, Carandang J, Treffny B, Gimmler H (1992) Cl fluxes and Cl content of Dunaliella acidophila—an alga with a positive membrane potential. J Exp Bot 43:887–896CrossRefGoogle Scholar
  54. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583:4025–4029PubMedCrossRefGoogle Scholar
  56. Ikawa T, Watanabe T, Nisizawa K (1972) Enzymes involved in the last steps of the biosynthesis of mannitol in brown algae. Plant Cell Physiol 13:1017–1023Google Scholar
  57. Imamura S, Kanesaki Y, Ohnuma M, Inouye T, Sekine Y, Fujiwara T, Kuroiwa T, Tanaka K (2009) R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Natl Acad Sci U S A 106:12548–12553PubMedPubMedCentralCrossRefGoogle Scholar
  58. Inaba M, Sakamoto A, Murata N (2001) Functional expression in Escherichia coli of low-affinity and high-affinity Na+(Li+)/H+ antiporters of Synechocystis. J Bacteriol 183:1376–1384PubMedPubMedCentralCrossRefGoogle Scholar
  59. Iwamoto K, Shiraiwa Y (2005) Salt-regulated mannitol metabolism in algae. Mar Biotechnol (NY) 7:407–415CrossRefGoogle Scholar
  60. Jacob A, Kirst GO, Wiencke C, Lehmann H (1991) Physiological responses of the antarctic green alga Prasiola crispa ssp. antarctica to salinity stress. J Plant Physiol 139:57–62CrossRefGoogle Scholar
  61. Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23:346–351PubMedCrossRefGoogle Scholar
  62. Karsten U (1999) Seasonal variation in heteroside concentrations of field-collected Porphyra species (Rhodophyta) from different biogeographic regions. New Phytol 143:561–571CrossRefGoogle Scholar
  63. Karsten U (2012) Seaweed acclimation to salinity and desiccation stress. In: Wiencke C, Bischof K (eds) Seaweed biology, vol 219, Ecological Studies. Springer, Berlin, pp 87–107CrossRefGoogle Scholar
  64. Karsten U, Barrow KD, King RJ (1993) Floridoside, L-isofloridoside and D-isofloridoside in the red alga Porphyra columbina (seasonal and osmotic effects). Plant Physiol 103:485–491PubMedPubMedCentralGoogle Scholar
  65. Karsten U, Barrow KD, Nixdorf O, King RJ (1996) The compatibility with enzyme activity of unusual organic osmolytes from mangrove red algae. Aust J Plant Physiol 23:577–582CrossRefGoogle Scholar
  66. Karsten U, Barrow KD, Nixdorf O, West JA, King RJ (1997) Characterization of the mannitol metabolism in the mangrove red alga Caloglossa leprieurii (Montagne). J Agardh Planta 201:173–178CrossRefGoogle Scholar
  67. Katz A, Pick U (2001) Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga Dunaliella. Biochim Biophys Acta 1504:423–431PubMedCrossRefGoogle Scholar
  68. Katz A, Bental M, Degani H, Avron M (1991) In vivo pH regulation by a Na+/H+ antiporter in the halotolerant alga Dunaliella salina. Plant Physiol 96:110–115PubMedPubMedCentralCrossRefGoogle Scholar
  69. Katz A, Pick U, Avron M (1992) Modulation of Na+/H+ antiporter activity by extreme pH and salt in the halotolerant alga Dunaliella salina. Plant Physiol 100:1224–1229PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kauss H (1977) Biochemistry of osmotic regulation. Int Rev Biochem 13:119–140Google Scholar
  71. Kauss H (1979) Biochemie der osmotischen Regulation bei Poterioochromonas malhamensis. Ber Dtsch Bot Ges 92:11–22Google Scholar
  72. Kauss H, Thomson KS, Thomson M, Jeblick W (1979) Osmotic regulation: physiological significance of proteolytic and nonproteolytic activation of isofloridoside-phosphate synthase. Plant Physiol 63:455–459PubMedPubMedCentralCrossRefGoogle Scholar
  73. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330PubMedCrossRefGoogle Scholar
  75. Kirst GO (1977) Coordination of ionic relations and mannitol concentrations in the euryhaline unicellular alga, Platymonas subcordiformis (Hazen) after osmotic shocks. Planta 135:69–75PubMedCrossRefGoogle Scholar
  76. Kirst GO (1980) Low mw carbohydrates and ions in Rhodophyceae: quantitative measurement of floridoside and digeneaside. Phytochemistry 19:1107–1110CrossRefGoogle Scholar
  77. Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 40:21–53CrossRefGoogle Scholar
  78. Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438Google Scholar
  79. Klähn S, Steglich C, Hess WR, Hagemann M (2010a) Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments. Environ Microbiol 12:83–94PubMedCrossRefGoogle Scholar
  80. Klähn S, Höhne A, Simon E, Hagemann M (2010b) The gene ssl3076 encodes a protein mediating the salt-induced expression of ggpS for the biosynthesis of the compatible solute glucosylglycerol in Synechocystis sp. strain PCC 6803. J Bacteriol 192:4403–4412PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kolman MA, Torres LL, Martin ML, Salerno GL (2012) Sucrose synthase in unicellular cyanobacteria and its relationship with salt and hypoxic stress. Planta 235:955–964PubMedCrossRefGoogle Scholar
  82. Krell A, Funck D, Plettner I, John U, Dieckmann G (2007) Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). J Phycol 43:753–762CrossRefGoogle Scholar
  83. Kremer BP, Vogl R (1975) Zur Chemotaxonomischen Bedeutung des 14C-Markierungsmusters bei Rhodophyceen. Phytochemistry 14:1309–1314Google Scholar
  84. Kremer BP, Schmaljohann R, Rottger R (1980) Features and nutritional significance of photosynthates produced by unicellular algae symbiotic with larger Foraminifera. Mar Ecol Prog Ser 2:225–228CrossRefGoogle Scholar
  85. Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, Maheswari U, Armbrust EV, Bowler C (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426PubMedPubMedCentralCrossRefGoogle Scholar
  86. Laliberté G, Hellebust JA (1989) Pyrroline-5-carboxylate reductase in Chlorella autotrophica and Chlorella saccharophila in relation to osmoregulation. Plant Physiol 91:917–923PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lin H, Fang L, Low CS, Chow Y, Lee YK (2013) Occurrence of glycerol uptake in Dunaliella tertiolecta under hyperosmotic stress. FEBS J 280:1064–1072PubMedCrossRefGoogle Scholar
  88. Lunn JE, MacRae E (2003) New complexities in the synthesis of sucrose. Curr Opin Plant Biol 6:208–214PubMedCrossRefGoogle Scholar
  89. Matsuda N, Uozumi N (2006) Ktr-mediated potassium transport, a major pathway for potassium uptake, is coupled to a proton gradient across the membrane in Synechocystis sp. PCC 6803. Biosci Biotechnol Biochem 70:273–275PubMedCrossRefGoogle Scholar
  90. Meng J, Srivastava L (1991) Partial purification and characterization of floridoside phosphate synthase from Porphyra perforata. Phytochemistry 30:1763–1766CrossRefGoogle Scholar
  91. Meng J, Srivastava L (1993) Variations in floridoside content and floridoside phosphate synthase activity in Porpyra perforata (Rhodophyta). J Phycol 29:82–84CrossRefGoogle Scholar
  92. Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in Eukaryotes. New Phytol 188:67–81PubMedCrossRefGoogle Scholar
  93. Mock T, Junge K (2007) Psychrophilic diatoms. Mechanisms for survival in freeze-thaw cycles. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 345–364Google Scholar
  94. Möke F, Wasmund N, Bauwe H, Hagemann M (2013) Salt acclimation of Nodularia spumigena CCY9414 – a cyanobacterium adapted to brackish water. Aquat Microb Ecol 70:207–214CrossRefGoogle Scholar
  95. Nitschmann WH, Packer L (1992) NMR studies on Na+ transport in Synechococcus PCC 6311. Arch Biochem Biophys 294:347–352PubMedCrossRefGoogle Scholar
  96. Nobre A, Empadinhas N, Nobre MF, Lourenço EC, Maycock C, Ventura MR, Mingote A, da Costa MS (2013) The plant Selaginella moellendorffii possesses enzymes for synthesis and hydrolysis of the compatible solutes mannosylglycerate and glucosylglycerate. Planta 237:891–901PubMedCrossRefGoogle Scholar
  97. Novak JF, Stirnberg M, Roenneke B, Marin K (2011) A novel mechanism of osmosensing, a salt-dependent protein-nucleic acid interaction in the cyanobacterium Synechocystis species PCC 6803. J Biol Chem 286:3235–3241PubMedPubMedCentralCrossRefGoogle Scholar
  98. Oren A (2007) Diversity of organic osmotic compounds and osmotic adaptation in cyanobacteria and algae. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 641–655Google Scholar
  99. Pade N, Linka N, Ruth W, Weber APM, Hagemann M (2015) Floridoside and isofloridoside are synthesized by trehalose 6-phosphate synthase-like enzymes in the red alga Galdieria sulphuraria. New Phytol 205:1227–1238PubMedCrossRefGoogle Scholar
  100. Paul JS (1979) Osmoregulation in the marine diatom Cylindrotheca fusiformis. J Phycol 15:280–284CrossRefGoogle Scholar
  101. Pick U, Karni L, Avron M (1986) Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina. Plant Physiol 81:92–96PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pomin VH (2010) Structural and functional insights into sulfated galactans: a systematic review. Glycoconj J 27:1–12PubMedCrossRefGoogle Scholar
  103. Popova L, Balnokin Y, Dietz KJ, Gimmler H (1998) Na+-ATPase from the plasma membrane of the marine alga Tetraselmis (Platymonas) viridis forms a phosphorylated intermediate. FEBS Lett 426:161–164PubMedCrossRefGoogle Scholar
  104. Porchia AC, Salerno GL (1996) Sucrose biosynthesis in a prokaryotic organism: presence of two sucrose-phosphate synthases in Anabaena with remarkable differences compared with the plant enzymes. Proc Natl Acad Sci U S A 93:13600–13604PubMedPubMedCentralCrossRefGoogle Scholar
  105. Rausch U, Ahmad H, Maier G, Kauss H (1991) Proteinase nature of an enzyme capable of activating the galactosyltransferase involved in volume regulation of Poterioochromonas malhamensis. Physiol Plant 82:93–98CrossRefGoogle Scholar
  106. Reed RH (1983) Taxonomic implications of osmoacclimation in Cyanidium caldarium (Tilden) Geitler. Phycologia 22:351–354CrossRefGoogle Scholar
  107. Reed RH (1990) Solute accumulation and osmotic adjustment. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 147–170Google Scholar
  108. Reed RH, Chudek JA, Foster R, Stewart WDP (1984) Osmotic adjustment in cyanobacteria from hypersaline environments. Arch Microbiol 138:333–337CrossRefGoogle Scholar
  109. Reed RH, Warr SRC, Richardson DL, Moore DJ, Stewart WDP (1985a) Multiphasic osmotic adjustment in a euryhaline cyanobacterium. FEMS Microbiol Lett 28:225–229CrossRefGoogle Scholar
  110. Reed RH, Davison LR, Chudek JA, Foster R (1985b) The osmotic role of mannitol in the Phaeophyta; an appraisal. Phycologia 24:35–47CrossRefGoogle Scholar
  111. Richter DFE, Kirst GO (1987) D-Mannitol dehydrogenase and D-mannitol-1-phosphate dehydrogenase in Platymonas subcordiformis: some characteristics and their role in osmotic adaptation. Planta 170:528–534PubMedCrossRefGoogle Scholar
  112. Ritchie RJ (1991) Membrane potential and pH control in the cyanobacterium Synechococcus R-2 (Anacystis nidulans) PCC 7942. J Plant Physiol 137:409–418CrossRefGoogle Scholar
  113. Rousvoal S, Groisillier A, Dittami SM, Michel G, Boyen C, Tonon T (2011) Mannitol-1-phosphate dehydrogenase activity in Ectocarpus siliculosus, a key role for mannitol synthesis in brown algae. Planta 233:261–273PubMedCrossRefGoogle Scholar
  114. Saha BC, Racine FM (2011) Biotechnological production of mannitol and its applications. Appl Microbiol Biotechnol 89:879–891PubMedCrossRefGoogle Scholar
  115. Schönknecht G, Chen WH, Ternes CM, Barbier GG, Shrestha RP, Stanke M, Bräutigam A, Baker BJ, Banfield JF, Garavito RM, Carr K, Wilkerson C, Rensing SA, Gagneul D, Dickenson NE, Oesterhelt C, Lercher MJ, Weber APM (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210PubMedCrossRefGoogle Scholar
  116. Scott GT, Hayward HR (1953) The influence of iodoacetate on the sodium and potassium content of Ulva lactuca and the prevention of its influence by light. Science 117:719–721PubMedCrossRefGoogle Scholar
  117. Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R, Montesinos C (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036CrossRefGoogle Scholar
  118. Setter TL, Greenway H (1983) Changes in the proportion of endogenous osmotic solutes accumulated by Chlorella emersonii in the light and dark. Plant Cell Environ 6:227–234Google Scholar
  119. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci U S A 110:1053–1058PubMedPubMedCentralCrossRefGoogle Scholar
  120. Shono M, Wada M, Fujii T (1995) Partial purification of a Na+-ATPase from the plasma membrane of the marine alga Heterosigma akashiwo. Plant Physiol 108:1615–1621PubMedPubMedCentralGoogle Scholar
  121. Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–869PubMedCrossRefGoogle Scholar
  122. Smahel M, Hamann A, Gradmann D (1990) The prime plasmalemma ATPase of the halophilic alga Dunaliella bioculata: purification and characterization. Planta 181:496–504PubMedCrossRefGoogle Scholar
  123. Soontharapirakkul K, Promden W, Yamada N, Kageyama H, Incharoensakdi A, Iwamoto-Kihara A, Takabe T (2011) Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0-ATP synthase with a potential role in salt-stress tolerance. J Biol Chem 286:10169–10176PubMedPubMedCentralCrossRefGoogle Scholar
  124. Strizh IG, Popova LG, Balnokin YV (2004) Physiological aspects of adaptation of the marine microalgae Tetraselmis (Platymonas) viridis to various medium salinity. Russ J Plant Physiol 51:176–182CrossRefGoogle Scholar
  125. Tonon T, Eveillard D, Prigent S, Bourdon J, Potin P, Boyen C, Siegel A (2011) Toward systems biology in brown algae to explore acclimation and adaptation to the shore environment. OMICS 15:883–892PubMedCrossRefGoogle Scholar
  126. Trüper HG, Galinski EA (1990) Biosynthesis and fate of compatible solutes in extremely halophilic phototrophic eubacteria. FEMS Microbiol Lett 75:247–254CrossRefGoogle Scholar
  127. Uji T, Hirata R, Mikami K, Mizuta H, Saga N (2012) Molecular characterization and expression analysis of sodium pump genes in the marine red alga Porphyra yezoensis. Mol Biol Rep 39:7973–7980PubMedCrossRefGoogle Scholar
  128. Vazquez-Duhalt R, Arredondo-Vega BO (1991) Haloadaptation of the green alga Botryococcus braunii (race A). Phytochemistry 30:2919–2925CrossRefGoogle Scholar
  129. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–739PubMedCrossRefGoogle Scholar
  130. Wang HL, Postier BL, Burnap RL (2002) Polymerase chain reaction-based mutageneses identify key transporters belonging to multigene families involved in Na+ and pH homeostasis of Synechocystis sp. PCC 6803. Mol Microbiol 44:1493–1506PubMedCrossRefGoogle Scholar
  131. Weiss M, Pick U (1990) Transient Na+ flux following hyperosmotic shock in the halotolerant alga Dunaliella salina: a response to intracellular pH changes. J Plant Physiol 136:429–438CrossRefGoogle Scholar
  132. Wiencke C, Läuchli A (1981) Inorganic ions and floridoside as osmotic solutes in Porphyra umbilicalis. Z Pflanzenphysiol 103:247–258CrossRefGoogle Scholar
  133. Wolf AH, Slayman CW, Gradmann D (1995) Primary structure of the plasma membrane H+-ATPase from the halotolerant alga Dunaliella bioculata. Plant Mol Biol 28:657–666PubMedCrossRefGoogle Scholar
  134. Wright DG, Pawlowicz R, McDougall TJ, Feistel R, Marion GM (2010) Absolute salinity, “density salinity” and the reference-composition salinity scale: present and future use in the seawater standard TEOS-10. Ocean Sci Discuss 7:1559–1625CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Biosciences, Plant PhysiologyUniversity RostockRostockGermany

Personalised recommendations