Chemically-Mediated Interactions in Microalgae

Part of the Developments in Applied Phycology book series (DAPH, volume 6)

Abstract

Chemically mediated interactions between microalgae and between microalgae and other organisms, are widespread in nature. They are important in structuring algal communities, bloom formation, algal development, and they affect the productivity of algae. In recent years understanding of these types of interactions has greatly improved, but in many cases the exact mechanisms are still little understood, and the actual bioactive compounds are not known. Many instances of allelopathic interactions have been recorded, including the presence of autoinhibitors in some algae. Some of the allelopathic compounds identified include free fatty acids (e.g. in green algae), polyunsaturated aldehydes (in diatoms) and the alkaloid cylindrospermopsin (in cyanobacteria). Other chemically-mediated interactions include pheromones and hormones which affect algal reproduction and development. Finally, there is some evidence for microalgae affecting bacterial quorum sensing, and for quorum sensing in cyanobacteria.

Keywords

Allelopathy Pheromones Hormones Quorum sensing Autoinhibition Chemical interactions Ecology Physiology Toxins Photosynthesis Algae cultures 

References

  1. Abumrad N, Harmon C, Ibrahimi A (1998) Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res 39:2309–2318PubMedGoogle Scholar
  2. Adolph S, Bach S, Blondel M, Cueff A, Moreau M, Pohnert G, Poulet SA, Wichard T, Zuccaro A (2004) Cytotoxicity of diatom-derived oxylipins in organisms belonging to different phyla. J Exp Biol 207:2935–2946PubMedCrossRefGoogle Scholar
  3. Akehurst SC (1931) XII.—observations on pond life, with special reference to the possible causation of swarming of phytoplankton. J Roy Microsc Soc 51:237–265CrossRefGoogle Scholar
  4. Alamsjah MA, Ishibe K, Kim D, Yamaguchi K, Ishibashi F, Fujita Y, Oda T (2007) Selective toxic effects of polyunsaturated fatty acids derived from Ulva fasciata on red tide phyotoplankter species. Biosci Biotechnol Biochem 71:265–268PubMedCrossRefGoogle Scholar
  5. Alamsjah M, Hirao S, Ishibashi F, Oda T, Fujita Y (2008) Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae, Chlorophyta) on phytoplankton. J Appl Phycol 20:713–720CrossRefGoogle Scholar
  6. Allen MB (1956) Excretion of organic compounds by Chlamydomonas. Arch Mikrobiol 24:163–168PubMedCrossRefGoogle Scholar
  7. Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684PubMedPubMedCentralCrossRefGoogle Scholar
  8. Amon P, Haas E, Sumper M (1998) The sex-inducing pheromone and wounding trigger the same set of genes in the multicellular green alga Volvox. Plant Cell 10:781–789PubMedPubMedCentralCrossRefGoogle Scholar
  9. Antunes J, Leão P, Vasconcelos V (2012) Influence of biotic and abiotic factors on the allelopathic activity of the cyanobacterium Cylindrospermopsis raciborskii Strain LEGE 99043. Microb Ecol 64:584–592PubMedCrossRefGoogle Scholar
  10. Arzul G, Gentien P, Bodennec G, Toularastel F, Younenou A, Crassous MP (1995) Comparison of toxic effects in Gymnodinium cf. nagasakiense polyunsaturated fatty acids. In: Lassous P, Arzul G, Erard E, Gentien P, Marcaillou C (eds) Harmful marine algal blooms. Intercept, Andover, pp 257–287Google Scholar
  11. Arzul G, Seguel M, Guzman L, Erard-Le Denn E (1999) Comparison of allelopathic properties in three toxic Alexandrium species. J Exp Mar Biol Ecol 232:285–295CrossRefGoogle Scholar
  12. Babica P, Bláha L, Maršálek B (2006) Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J Phycol 42:9–20CrossRefGoogle Scholar
  13. Babica P, Hilscherová K, Bártová K, Bláha L, Maršálek B (2007) Effects of dissolved microcystins on growth of planktonic photoautotrophs. Phycologia 46:137–142CrossRefGoogle Scholar
  14. Bajguz A, Piotrowska-Niczyporuk A (2013) Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 71:290–297PubMedCrossRefGoogle Scholar
  15. Bajpai R, Sharma N, Rai A (2013) Physiological evidence indicates microcystin-LR to be a part of quantitative chemical defense system. J Appl Phycol 25:1575–1585CrossRefGoogle Scholar
  16. Baker JW, Grover JP, Brooks BW, Urena-Boeck F, Roelke DL, Errera R, Kiesling RL (2007) Growth and toxocity of Prymnesium parvum (Haptophyta) as a function of salinity, light and temperature. J Phycol 43:219–227CrossRefGoogle Scholar
  17. Barofsky A, Pohnert G (2007) Biosynthesis of polyunsaturated short chain aldehydes in the diatom Thalassiosira rotula. Org Lett 9:1017–1020PubMedCrossRefGoogle Scholar
  18. Barreiro A, Hairston NG (2013) The influence of resource limitation on the allelopathic effect of Chlamydomonas reinhardtii on other unicellular freshwater planktonic organisms. J Plankton Res 35:1339–1344CrossRefGoogle Scholar
  19. Barreiro A, Guisande C, Maneiro I, Lien TP, Legrand C, Tamminen T, Lehtinen S, Uronen P, Granéli E (2005) Relative importance of the different negative effects of the toxic haptophyte Prymnesium parvum on Rhodomonas salina and Brachionus plicatilis. Aquat Microb Ecol 38:259–267CrossRefGoogle Scholar
  20. Bártová K, Hilscherová K, Babica P, Maršálek B (2011) Extract of Microcystis water bloom affects cellular differentiation in filamentous cyanobacterium Trichormus variabilis (Nostocales, Cyanobacteria). J Appl Phycol 23:967–973CrossRefGoogle Scholar
  21. Bartual A, Ortega MJ (2013) Temperature differentially affects the persistence of polyunsaturated aldehydes in seawater. Environ Chem 10:403–408CrossRefGoogle Scholar
  22. Bar-Yosef Y, Sukenik A, Hadas O, Viner-Mozzini Y, Kaplan A (2010) Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons. Curr Biol 20:1557–1561PubMedCrossRefGoogle Scholar
  23. Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143:265–277CrossRefGoogle Scholar
  24. Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91PubMedCrossRefGoogle Scholar
  25. Bentley-Mowat JA (1967) Do plant growth substances affect development and ecology of unicellular algae? Wiss Z Univ Rostock Math Naturwiss Reihe 16:445–449Google Scholar
  26. Beresovsky D, Hadas O, Livne A, Sukenik A, Kaplan A, Carmeli S (2006) Toxins and biologically active secondary metabolites of Microcystis sp. isolated from Lake Kinneret. Isr J Chem 46:79–87CrossRefGoogle Scholar
  27. Bidle KD, Falkowski PG (2004) Cell death in planktonic, photosynthetic microorganisms. Nat Rev Microbiol 2:643–655PubMedCrossRefGoogle Scholar
  28. Billmire E, Aaronson S (1976) The secretion of lipids by the freshwater phytoflagellate Ochromonas danica. Limnol Oceanogr 21:138–140CrossRefGoogle Scholar
  29. Bittencourt-Oliveira MC, Chia MA, de Oliveira HSB, Cordeiro Araújo MK, Molica RJR, Dias CTS (2015) Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production. J Appl Phycol 27:275–284CrossRefGoogle Scholar
  30. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681Google Scholar
  31. Bosma R, Miazek K, Willemsen SM, Vermuë MH, Wijffels RH (2008) Growth inhibition of Monodus subterraneus by free fatty acids. Biotechnol Bioeng 101:1108–1114PubMedCrossRefGoogle Scholar
  32. Böttcher G, Chorus I, Ewald S, Hinze T, Walz N (2001) Light-limited growth and microcystin content of Microcystis aeruginosa and Planktothrix agardhii in turbidostats. In: Chorus I (ed) Cyanotoxins – occurrence, causes, consequences. Springer, Berlin, pp 115–133Google Scholar
  33. Brainerd KE, Gregg MC (1993) Diurnal restratification and turbulence in the oceanic surface mixed layer: 1. Observations. J Geophys Res Oceans 98:22645–22656CrossRefGoogle Scholar
  34. Brussaard CPD, Noordeloos AAM, Riegman R (1997) Autolysis kinetics of the marine diatom Ditylum brightwellii (Bacillariophyceae) under nitrogen and phosphorus limitation and starvation. J Phycol 33:980–987CrossRefGoogle Scholar
  35. Carey CC, Rengefors K (2010) The cyanobacterium Gloeotrichia echinulata stimulates the growth of other phytoplankton. J Plankton Res 32:1349–1354CrossRefGoogle Scholar
  36. Carey CC, Cottingham KL, Weathers KC, Brentrup JA, Ruppertsberger NM, Ewing HA, Hairston NG (2014) Experimental blooms of the cyanobacterium Gloeotrichia echinulata increase phytoplankton biomass, richness and diversity in an oligotrophic lake. J Plankton Res 36:364–377CrossRefGoogle Scholar
  37. Casotti R, Mazza S, Brunet C, Vantrepotte V, Ianora A, Miralto A (2005) Growth inhibition and toxicity of the diatom aldehyde 2-trans, 4-trans-decadienal on Thalassiosira weissflogii (Bacillariophyceae). J Phycol 41:7–20CrossRefGoogle Scholar
  38. Cembella AD (2003) Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 42:420–447CrossRefGoogle Scholar
  39. Chan AT, Andersen RJ, Blanc MJ, Harrison PJ (1980) Algal plating as a tool for investigating allelopathy among marine microalgae. Mar Biol 59:7–13CrossRefGoogle Scholar
  40. Chen JQ, Guo RX (2013) Inhibition effect of green alga on cyanobacteria by the interspecies interactions. Int J Environ Sci Technol. doi: 10.1007/s13762-013-0208-1:1-4 Google Scholar
  41. Chepurnov VA, Mann DG, Sabbe K, Vyverman W (2004) Experimental studies on sexual reproduction in diatoms. Int Rev Cytol 237:91–154PubMedCrossRefGoogle Scholar
  42. Chiang IZ, Huang WY, Wu JT (2004) Allelochemicals of Botryococcus braunii (Chlorophyceae). J Phycol 40:474–480CrossRefGoogle Scholar
  43. Chorus I (2001) Cyanotoxin occurence in freshwaters – a summary of survey from different countries. In: Chorus I (ed) Cyanotoxins – occurrence, causes, consequences. Springer, Berlin, pp 75–82Google Scholar
  44. Chrétiennot-Dinet MJ, Courties C, Vaquer A, Neveux J, Claustre H, Lautier J, Machado MC (1995) A new marine picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae). Phycologia 34:285–292CrossRefGoogle Scholar
  45. Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic, New YorkGoogle Scholar
  46. Coleman AW, Pröschold T (2005) Control of sexual reproduction in algae in culture. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 389–397Google Scholar
  47. Coleman AW, Jaenicke L, Starr RC (2001) Genetics and sexual behavior of the pheromone producer Chlamydomonas allensworthii (Chlorophyceae). J Phycol 37:345–349CrossRefGoogle Scholar
  48. Cordeiro-Araújo MK, Bittencourt-Oliveira MC (2013) Active release of microcystins controlled by an endogenous rhythm in the cyanobacterium Microcystis aeruginosa. Phycol Res 61:1–6CrossRefGoogle Scholar
  49. Czerpak R, Bajguz A (1993) Effect of auxin and cytokinin on protein and saccharides extracellular excretion in Chlorella pyrenoidosa. Pol Arch Hydrobiol 40:249–254Google Scholar
  50. Czerpak R, Krotke A, Mikal A (1999) Comparison of stimulatory effect of auxins and cytokinins on protein, saccharides, and chlorophylls content in Chlorella pyrenoidosa Chick. Pol Arch Hydrobiol 46:71–82Google Scholar
  51. d’Ippolito G, Tucci S, Cutignano A, Romano G, Cimino G, Miralto A, Fontana A (2004) The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. Biochim Biophys Acta Mol Cell Biol Lipids 1686:100–107CrossRefGoogle Scholar
  52. d’Ippolito G, Tucci S, Cutignano A, Romano G, Cimino G, Miralto A, Fontana A (2005) Corrigendum to “The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum”. [Biochim Biophys Acta 1686 (2004):100–107]. Biochim Biophys Acta – Mol Cell Biol Lipids 1734:214Google Scholar
  53. Dawson RM (1998) The toxicology of microcystins. Toxicon 36:953–962PubMedCrossRefGoogle Scholar
  54. de los Reyes C, Ávila-Román J, Ortega MJ, de la Jara A, García-Mauriño S, Motilva V, Zubía E (2014) Oxylipins from the microalgae Chlamydomonas debaryana and Nannochloropsis gaditana and their activity as TNF-α inhibitors. Phytochemistry 102:152–161CrossRefGoogle Scholar
  55. DellaGreca M, Zarrelli A, Fergola P, Cerasuolo M, Pollio A, Pinto G (2010) Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: experiments and modelling. J Chem Ecol 36:339–349PubMedCrossRefGoogle Scholar
  56. Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642PubMedCrossRefGoogle Scholar
  57. Dibb-Fuller JE, Morris DA (1992) Studies on the evolution of auxin carriers and phytotropin receptors: transmembrane auxin transport in unicellular and multicellular Chlorophyta. Planta 186:219–226PubMedCrossRefGoogle Scholar
  58. Dittmann E, Fewer DP, Neilan BA (2013) Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 37:23–43PubMedCrossRefGoogle Scholar
  59. Doan NT, Rickards RW, Rothschild JM, Smith GD (2000) Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix. J Appl Phycol 12:409–416CrossRefGoogle Scholar
  60. Doan NT, Stewart PR, Smith GD (2001) Inhibition of bacterial RNA polymerase by the cyanobacterial metabolites 12-epi-hapalindole E isonitrile and calothrixin A. FEMS Microbiol Lett 196:135–139PubMedCrossRefGoogle Scholar
  61. Dobretsov S, Teplitski M, Alagely A, Gunasekera SP, Paul VJ (2010) Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry. Environ Microbiol Rep 2:739–744PubMedCrossRefGoogle Scholar
  62. Dunker S, Jakob T, Wilhelm C (2013) Contrasting effects of the cyanobacterium Microcystis aeruginosa on the growth and physiology of two green algae, Oocystis marsonii and Scenedesmus obliquus, revealed by flow cytometry. Freshw Biol 58:1573–1587CrossRefGoogle Scholar
  63. Durham WM, Stocker R (2012) Thin phytoplankton layers: characteristics, mechanisms, and consequences. Ann Rev Mar Sci 4:177–207PubMedCrossRefGoogle Scholar
  64. Duval E, Coffinet S, Bernard C, Briand J (2005) Effects of two cyanotoxins, microcystin-LR and cylindrospermopsin, on Euglena gracilis. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry. Springer, Berlin, pp 659–671CrossRefGoogle Scholar
  65. Edvardsen B, Paasche E (1998) Bloom dynamics and physiology of Prymnesium and Chrysochromulina. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms, vol G42, NATO ASI series. Springer, Berlin, pp 193–208Google Scholar
  66. Ender F, Hallmann A, Amon P, Sumper M (1999) Response to the sexual pheromone and wounding in the green alga Volvox: induction of an extracellular glycoprotein consisting almost exclusively of hydroxyproline. J Biol Chem 274:35023–35028PubMedCrossRefGoogle Scholar
  67. Engelke CJ, Lawton LA, Jaspars M (2003) Elevated microcystin and nodularin levels in cyanobacteria growing in spent medium of Planktothrix agardhii. Arch Hydrobiol 158:541–550CrossRefGoogle Scholar
  68. Etchegaray A, Rabello E, Dieckmann R, Moon D, Fiore M, von Döhren H, Tsai S, Neilan B (2004) Algicide production by the filamentous cyanobacterium Fischerella sp. CENA 19. J Appl Phycol 16:237–243CrossRefGoogle Scholar
  69. Fergola P, Cerasuolo M, Pollio A, Pinto G, DellaGreca M (2007) Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: experiments and mathematical model. Ecol Model 208:205–214CrossRefGoogle Scholar
  70. Ferris PJ, Waffenschmidt S, Umen JG, Lin H, Lee J-H, Ishida K, Kubo T, Lau J, Goodenough UW (2005) Plus and minus sexual agglutinins from Chlamydomonas reinhardtii. Plant Cell 17:597–615PubMedPubMedCentralCrossRefGoogle Scholar
  71. Figueredo CC, Giani A, Bird DF (2007) Does allelopathy contribute to Cylindrospermopsis raciborskii (cyanobacteria) bloom occurrence and geographic expansion? J Phycol 43:256–265CrossRefGoogle Scholar
  72. Fistarol GO, Legrand C, Granéli E (2003) Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar Ecol Prog Ser 255:115–125CrossRefGoogle Scholar
  73. Fistarol GO, Legrand C, Rengefors K, Granéli E (2004a) Temporary cyst formation in phytoplankton: a response to allelopathic competitors? Environ Microbiol 6:791–798PubMedCrossRefGoogle Scholar
  74. Fistarol GO, Legrand C, Selander E, Hummert C, Stolte W, Granéli E (2004b) Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat Microb Ecol 35:45–56CrossRefGoogle Scholar
  75. Fistarol GO, Legrand C, Granéli E (2005) Allelopathic effect on a nutrient-limited phytoplankton species. Aquat Microb Ecol 41:153–161CrossRefGoogle Scholar
  76. Flores E, Wolk CP (1986) Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains. Arch Microbiol 145:215–219PubMedCrossRefGoogle Scholar
  77. Fontana A, d’Ippolito G, Cutignano A, Miralto A, Ianora A, Romano G, Cimino G (2007) Chemistry of oxylipin pathways in marine diatoms. Pure Appl Chem 79:481–490CrossRefGoogle Scholar
  78. Frenkel J, Vyverman W, Pohnert G (2014) Pheromone signaling during sexual reproduction in algae. Plant J 79:632–644PubMedCrossRefGoogle Scholar
  79. Fukumoto R-h, Dohmae N, Takio K, Satoh S, Fujii T, Sekimoto H (2002) Purification and characterization of a pheromone that induces sexual cell division in the unicellular green alga Closterium ehrenbergii. Plant Physiol Biochem 40:183–188CrossRefGoogle Scholar
  80. Gallina AA, Brunet C, Palumbo A, Casotti R (2014) The effect of polyunsaturated aldehydes on Skeletonema marinoi (Bacillariophyceae): the involvement of reactive oxygen species and nitric oxide. Mar Drugs 12:4165–4187PubMedPubMedCentralCrossRefGoogle Scholar
  81. Garcıa Camacho F, Contreras Gómez A, Mazzuca Sobczuk T, Molina Grima E (2000) Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum. Process Biochem 35:1045–1050CrossRefGoogle Scholar
  82. Gillard J, Frenkel J, Devos V, Sabbe K, Paul C, Rempt M, Inzé D, Pohnert G, Vuylsteke M, Vyverman W (2013) Metabolomics enables the structure elucidation of a diatom sex pheromone. Angew Chem Int Ed 52:854–857CrossRefGoogle Scholar
  83. Gladyshev MI, Sushchik NN, Kalacheva GS (1996) Extra-cellular free fatty acids in batch culture of Spirulina platensis at increased and decreased temperature. Dokl Akad Nauk 347:834–836Google Scholar
  84. Gleason FK (1990) The natural herbicide, cyanobacterin, specifically disrupts thylakoid membrane structure in Euglena gracilis strain Z. FEMS Microbiol Lett 68:77–81CrossRefGoogle Scholar
  85. Gleason FK, Baxa CA (1986) Activity of the natural algicide, cyanobacterin, on eukaryotic microorganisms. FEMS Microbiol Lett 33:85–88CrossRefGoogle Scholar
  86. Gleason FK, Case DE (1986) Activity of the natural algicide, cyanobacterin, on angiosperms. Plant Physiol 80:834–837PubMedPubMedCentralCrossRefGoogle Scholar
  87. Gleason FK, Paulson JL (1984) Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp. Arch Microbiol 138:273–277CrossRefGoogle Scholar
  88. Gleason FK, Case DE, Siprell KD, Magnuson TS (1986) Effect of the natural algicide, cyanobacterin, on a herbicide-resistant mutant of Anacystis nidulans R2. Plant Sci 46:5–10CrossRefGoogle Scholar
  89. Godl K, Hallmann A, Rappel A, Sumper M (1995) Pherophorins: a family of extracellular matrix glycoproteins from Volvox structurally related to the sex-inducing pheromone. Planta 196:781–787PubMedCrossRefGoogle Scholar
  90. Granéli E, Flynn K (2006) Chemical and physical factors affecting toxin content. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Spinger, Heidelberg, pp 189–201CrossRefGoogle Scholar
  91. Granéli E, Johansson N (2003) Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2:135–145CrossRefGoogle Scholar
  92. Granéli E, Salomon PS (2010) Factors influencing allelopathy and toxicity in Prymnesium parvum. J Am Water Res Assoc 46:108–120CrossRefGoogle Scholar
  93. Granéli E, Salomon PS, Fistarol GO (2008) The role of allelopathy for harmful algae bloom formation. In: Evangelista V, Barsanti L, Frassanito A, Passarelli V, Gualtieri P (eds) Algal toxins: nature, occurrence, effect and detection. Springer, Dordrecht, pp 159–178CrossRefGoogle Scholar
  94. Gromov BV, Vepritskiy AA, Titova NN, Mamkayeva KA, Alexandrova OV (1991) Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU 892 (cyanobacterium). J Appl Phycol 3:55–59CrossRefGoogle Scholar
  95. Gross EM, Wolk CP, Jüttner F (1991) Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella muscicola. J Phycol 27:686–692CrossRefGoogle Scholar
  96. Guasto JS, Rusconi R, Stocker R (2012) Fluid mechanics of planktonic organisms. Annu Rev Fluid Mech 44:373–400CrossRefGoogle Scholar
  97. Guo M, Harrison PJ, Taylor FJR (1996) Fish kills related to Prymnesium parvum N. Carter (Haptophyta) in the People’s Republic of China. J Appl Phycol 8:111–117CrossRefGoogle Scholar
  98. Hagmann L, Jüttner F (1996) Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Lett 37:6539–6542CrossRefGoogle Scholar
  99. Hakanen P, Suikkanen S, Kremp A (2014) Allelopathic activity of the toxic dinoflagellate Alexandrium ostenfeldii: intra-population variability and response of co-occurring dinoflagellates. Harmful Algae 39:287–294CrossRefGoogle Scholar
  100. Hallmann A (2011) Evolution of reproductive development in the volvocine algae. Sex Plant Reprod 24:97–112PubMedPubMedCentralCrossRefGoogle Scholar
  101. Hallmann A, Godl K, Wenzl S, Sumper M (1998) The highly efficient sex-inducing pheromone system of Volvox. Trends Microbiol 6:185–189PubMedCrossRefGoogle Scholar
  102. Hansen E, Eilertsen HC (2007) Do the polyunsaturated aldehydes produced by Phaeocystis pouchetii (Hariot) Lagerheim influence diatom growth during the spring bloom in Northern Norway? J Plankton Res 29:87–96CrossRefGoogle Scholar
  103. Harder R (1917) Ernährungsphysiologische Untersuchungen an Cyanophyceen, hauptsächlich dem endophytischen Nostoc punctiforme. Z Bot 9:145–242Google Scholar
  104. Harel M, Weiss G, Lieman-Hurwitz J, Gun J, Lev O, Lebendiker M, Temper V, Block C, Sukenik A, Zohary T, Braun S, Carmeli S, Kaplan A (2013) Interactions between Scenedesmus and Microcystis may be used to clarify the role of secondary metabolites. Environ Microbiol Rep 5:97–104PubMedCrossRefGoogle Scholar
  105. Harris DO (1970) An autoinhibitory substance produced by Platydorina caudata Kofoid. Plant Physiol 45:210–214PubMedPubMedCentralCrossRefGoogle Scholar
  106. Harris DO (1971) Growth inhibitors produced by the green algae (Volvocaceae). Arch Mikrobiol 76:47–50PubMedCrossRefGoogle Scholar
  107. Harz H, Hegemann P (1991) Rhodopsin-regulated calcium currents in Chlamydomonas. Nature 351:489–491CrossRefGoogle Scholar
  108. Hashtroudi MS, Ghassempour A, Riahi H, Shariatmadari Z, Khanjir M (2013) Endogenous auxins in plant growth-promoting Cyanobacteria – Anabaena vaginicola and Nostoc calcicola. J Appl Phycol 25:379–386CrossRefGoogle Scholar
  109. Hattenrath-Lehmann TK, Gobler CJ (2011) Allelopathic inhibition of competing phytoplankton by North American strains of the toxic dinoflagellate, Alexandrium fundyense: evidence from field experiments, laboratory experiments, and bloom events. Harmful Algae 11:106–116CrossRefGoogle Scholar
  110. Hiltunen T, Barreiro A, Hairston NG (2012) Mixotrophy and the toxicity of Ochromonas in pelagic food webs. Freshw Biol 57:2262–2271CrossRefGoogle Scholar
  111. Hombeck M, Boland W (1998) Biosynthesis of the algal pheromone fucoserratene by the freshwater diatom Asterionella formosa (Bacillariophyceae). Tetrahedron 54:11033–11042CrossRefGoogle Scholar
  112. Hong Y, Xu K (2013) Co-existing growth relationships of a lipid-producing alga with three microalgae. Allelopath J 32:301–314Google Scholar
  113. Hu Z-Q, Liu Y-D, Li D-H, Dauta A (2005) Growth and antioxidant system of the cyanobacterium Synechococcus elongatus in response to microcystin-RR. Hydrobiologia 534:23–29CrossRefGoogle Scholar
  114. Huang H, Xiao X, Shi J, Chen Y (2014) Structure – activity analysis of harmful algae inhibition by congeneric compounds: case studies of fatty acids and thiazolidinediones. Environ Sci Pollut Res. 21:7154–7164CrossRefGoogle Scholar
  115. Ianora A, Bentley MG, Caldwell GS, Casotti R, Cembella AD, Engström-Öst J, Halsband C, Sonnenschein E, Legrand C, Llewellyn CA, Paldavičienë A, Plilkaiityte R, Pohnert G, Razonkovas A, Romano G, Tillmann U, Vaiciunte D (2011) The relevance of marine chemical ecology to plankton and ecosystem function: an emerging field. Mar Drugs 9:1625–1648PubMedPubMedCentralCrossRefGoogle Scholar
  116. Igarashi T, Aritake S, Yasumoto T (1998) Biological activities of prymnesin-2 isolated from a red tide alga Prymnesium parvum. Nat Toxins 6:35–41PubMedCrossRefGoogle Scholar
  117. Igarashi T, Satake M, Yasumoto T (1999) Structures and partial stereochemical assignments for Prymnesin-1 and Prymnesin-2: potent hemolytic and ichthyotoxic glycosides isolated from the red tide alga Prymnesium parvum. J Am Chem Soc 121:8499–8511CrossRefGoogle Scholar
  118. Ikawa M (2004) Algal polyunsaturated fatty acids and effects on plankton ecology and other organisms. UNH Cent Freshw Biol Res 6:17–44Google Scholar
  119. Ikawa M, Sasner JJ, Haney JF (1997) Inhibition of Chlorella growth by degradation and related products of linoleic and linolenic acids and the possible significance of polyunsaturated fatty acids in phytoplankton ecology. Hydrobiologia 356:143–148CrossRefGoogle Scholar
  120. Imada N, Kobayashi K, Tahara K, Oshima Y (1991) Production of an autoinhibitor by Skeletonema costatum and its effect on the growth of other phytoplankton. Nippon Suisan Gakkaishi 57:2285–2290CrossRefGoogle Scholar
  121. Imada N, Kobayashi K, Isomura K, Saito H, Kimura S, Tahara K, Oshima Y (1992) Isolation and identification of an autoinhibitor produced by Skeletonema costatum. Nippon Suisan Gakkaishi 58:1687–1692CrossRefGoogle Scholar
  122. Jaenicke L, Marner F-J (1995) Lurlene, the sexual pheromone of the green flagellate Chlamydomonas allensworthii. Liebigs Ann 1995:1343–1345CrossRefGoogle Scholar
  123. Jaenicke L, Starr RC (1996) The Lurlenes, a new class of plastoquinone-related mating pheromones from Chlamydomonas allensworthii (Chlorophyceae). Eur J Biochem 241:581–585PubMedCrossRefGoogle Scholar
  124. Jasti S, Sieracki ME, Poulton NJ, Giewat MW, Rooney-Varga JN (2005) Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Appl Environ Microbiol 71:3483–3494PubMedPubMedCentralCrossRefGoogle Scholar
  125. Javanmardian M, Palsson BO (1991) High-density photoautotrophic algal cultures – design, construction, and operation of a novel photobioreactor system. Biotechnol Bioeng 38:1182–1189PubMedCrossRefGoogle Scholar
  126. Jha B, Kavita K, Westphal J, Hartmann A, Schmitt-Kopplin P (2013) Quorum sensing inhibition by Asparagopsis taxiformis, a marine macro alga: separation of the compound that interrupts bacterial communication. Mar Drugs 11:253–265PubMedPubMedCentralCrossRefGoogle Scholar
  127. Jøgensen EG (1956) Growth inhibiting substances formed by algae. Physiol Plant 9:712–726CrossRefGoogle Scholar
  128. Johansson N, Granéli E (1999) Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures. J Exp Mar Biol Ecol 239:243–258CrossRefGoogle Scholar
  129. Johnsen TM, Eikrem W, Olseng CD, Tollefsen KE, Bjerknes V (2010) Prymnesium parvum: the Norwegian experience. J Am Water Res Assoc 46:6–13CrossRefGoogle Scholar
  130. Joint I, Callow ME, Callow JA, Clarke KR (2000) The attachment of Enteromorpha zoospores to a bacterial biofilm assemblage. Biofouling 16:151–158CrossRefGoogle Scholar
  131. Joint I, Tait K, Wheeler G (2007) Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos Trans R Soc B 362:1223–1233CrossRefGoogle Scholar
  132. Jonsson PR, Pavia H, Toth G (2009) Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proc Natl Acad Sci. 106:11177–11182PubMedPubMedCentralCrossRefGoogle Scholar
  133. Jüttner F (1997) Nostocyclamide, a toxic decoupling agent of Nostoc. In: Abstracts. IX International Symposium on Photosynthetic Prokaryotes, Vienna, Austria, 6–13 September 1997, p 40Google Scholar
  134. Jüttner F (2001) Liberation of 5, 8,11,14,17‐eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. J Phycol 37:744–755CrossRefGoogle Scholar
  135. Jüttner F (2005) Evidence that polyunsaturated aldehydes of diatoms are repellents for pelagic crustacean grazers. Aquat Ecol 39:271–282CrossRefGoogle Scholar
  136. Jüttner F, Müller H (1979) Excretion of octadiene and octatrienes by a freshwater diatom. Naturwissenschaften 66:363–364CrossRefGoogle Scholar
  137. Karlson P, Lüscher M (1959) ‘Pheromones’: a new term for a class of biologically active substances. Nature 183:55–56PubMedCrossRefGoogle Scholar
  138. Karp-Boss L, Boss E, Jumars PA (1996) Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr Mar Biol 34:71–107Google Scholar
  139. Kayser H (1979) Growth interactions between marine dinoflagellates in multispecies culture experiments. Mar Biol 52:357–369CrossRefGoogle Scholar
  140. Kearns KD, Hunter MD (2000) Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environ Microbiol 2:291–297PubMedCrossRefGoogle Scholar
  141. Kearns KD, Hunter MD (2001) Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb Ecol 42:80–86PubMedGoogle Scholar
  142. Keating KI (1977) Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196:885–887PubMedCrossRefGoogle Scholar
  143. Keating KI (1978) Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199:971–973PubMedCrossRefGoogle Scholar
  144. Kirk DL, Kirk MM (1986) Heat shock elicits production of sexual inducer in Volvox. Science 231:51–54PubMedCrossRefGoogle Scholar
  145. Koehl MAR, Jumars PA, Karp-Boss L (2003) Algal biophysics. In: Norton TA (ed) Out of the past. British Phycological Association, Belfast, pp 115–130Google Scholar
  146. Kroes HW (1971) Growth interactions between Chlamydomonas globosa snow and Chlorococcum ellipsoideum deason and bold under different experimental conditions with special attention to the role of pH. Limnol Oceanogr 16:869–879CrossRefGoogle Scholar
  147. Kubanek J, Hicks MK, Naar J, Villareal TA (2005) Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnol Oceanogr 50:883–895CrossRefGoogle Scholar
  148. Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, BerlinCrossRefGoogle Scholar
  149. Lampert W, Sommer U (1997) Limnoecology: the ecology of lakes and streams. Oxford University Press, New YorkGoogle Scholar
  150. Larsen A, Bryant S (1998) Growth rate and toxicity of Prymnesium parvum and Prymnesium patelliferum (Haptophyta) in response to changes in salinity, light and temperature. Sarsia 85:409–418Google Scholar
  151. Lau S, Shao N, Bock R, Jürgens G, De Smet I (2009) Auxin signaling in algal lineages: fact or myth? Trends Plant Sci 14:182–188PubMedCrossRefGoogle Scholar
  152. Lazier JRN, Mann KH (1989) Turbulence and the diffusive layers around small organisms. Deep Sea Res Part A 36:1721–1733CrossRefGoogle Scholar
  153. Leão PN, Vasconcelos MTSD, Vasconcelos VM (2009a) Allelopathic activity of cyanobacteria on green microalgae at low cell densities. Eur J Phycol 44:347–355CrossRefGoogle Scholar
  154. Leão PN, Vasconcelos MTSD, Vasconcelos VM (2009b) Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 35:271–282PubMedCrossRefGoogle Scholar
  155. Leão PN, Pereira AR, Liu W-T, Ng J, Pevzner PA, Dorrestein PC, König GM, Vasconcelos VM, Gerwick WH (2010) Synergistic allelochemicals from a freshwater cyanobacterium. Proc Natl Acad Sci 107:11183–11188PubMedPubMedCentralCrossRefGoogle Scholar
  156. Leão PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V (2012a) The chemical ecology of cyanobacteria. Nat Prod Rep 29:372–391PubMedPubMedCentralCrossRefGoogle Scholar
  157. Leão PN, Ramos V, Vale M, Machado JP, Vasconcelos VM (2012b) Microbial community changes elicited by exposure to cyanobacterial allelochemicals. Microb Ecol 63:85–95PubMedCrossRefGoogle Scholar
  158. Leflaive J, Ten-Hage L (2011) Impairment of benthic diatom adhesion and photosynthetic activity by 2E,4E-decadienal. Res Microbiol 162:982–989PubMedCrossRefGoogle Scholar
  159. Leflaive J, Lacroix G, Nicaise Y, Ten-Hage L (2008) Colony induction and growth inhibition in Desmodesmus quadrispina (Chlorococcales) by allelochemicals released from the filamentous alga Uronema confervicolum (Ulotrichales). Environ Microbiol 10:1536–1546PubMedCrossRefGoogle Scholar
  160. Lelong A, Haberkorn H, Goïc N, Hégaret H, Soudant P (2011) A new insight into allelopathic effects of Alexandrium minutum on photosynthesis and respiration of the diatom Chaetoceros neogracile revealed by photosynthetic-performance analysis and flow cytometry. Microb Ecol 62:919–930PubMedCrossRefGoogle Scholar
  161. Lèon R, Galván F (1994) Halotolerance studies on Chlamydomonas reinhardtii – glycerol excretion by free and immobilized cells. J Appl Phycol 6:13–20CrossRefGoogle Scholar
  162. Li T, Wang C, Miao J (2007) Identification and quantification of indole-3-acetic acid in the kelp Laminaria japonica Areschoug and its effect on growth of marine microalgae. J Appl Phycol 19:479–484CrossRefGoogle Scholar
  163. Li D, Zhang H, Fu L, An X, Zhang B, Li Y, Chen Z, Zheng W, Yi L, Zheng T (2014) A novel algicide: evidence of the effect of a fatty acid compound from the marine bacterium, Vibrio sp. BS02 on the harmful dinoflagellate, Alexandrium tamarense. PLoS One 9:e91201PubMedPubMedCentralCrossRefGoogle Scholar
  164. Lien T, Pettersen R, Knutsen G (1971) Effects of Indole-3-acetic acid and gibberellin on synchronous cultures of Chlorella fusca. Physiol Plant 24:185–190CrossRefGoogle Scholar
  165. Liu J (2014) Optimisation of biomass and lipid production by adjusting the interspecific competition mode of Dunaliella salina and Nannochloropsis gaditana in mixed culture. J Appl Phycol 26:163–171CrossRefGoogle Scholar
  166. Lu Y, Tarkowská D, Turečková V, Luo T, Xin Y, Li J, Wang Q, Jiao N, Strnad M, Xu J (2014) Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function. Plant J 80:52–68PubMedCrossRefGoogle Scholar
  167. Lyczkowski ER, Karp-Boss L (2014) Allelopathic effects of Alexandrium fundyense (Dinophyceae) on Thalassiosira cf. gravida (Bacillariophyceae): a matter of size. J Phycol 50:376–387PubMedCrossRefGoogle Scholar
  168. Ma H, Krock B, Tillmann U, Cembella A (2009) Preliminary characterization of extracellular allelochemicals of the toxic marine dinoflagellate Alexandrium tamarense using a Rhodomonas salina bioassay. Mar Drugs 7:497–522PubMedPubMedCentralCrossRefGoogle Scholar
  169. Ma H, Krock B, Tillmann U, Bickmeyer U, Graeve M, Cembella A (2011a) Mode of action of membrane-disruptive lytic compounds from the marine dinoflagellate Alexandrium tamarense. Toxicon 58:247–258PubMedCrossRefGoogle Scholar
  170. Ma H, Krock B, Tillmann U, Muck A, Wielsch N, Svatoš A, Cembella A (2011b) Isolation of activity and partial characterization of large non-proteinaceous lytic allelochemicals produced by the marine dinoflagellate Alexandrium tamarense. Harmful Algae 11:65–72CrossRefGoogle Scholar
  171. Ma H, Wu Y, Gan N, Zheng L, Li T, Song L (2015) Growth inhibitory effect of Microcystis on Aphanizomenon flos-aquae isolated from cyanobacteria bloom in Lake Dianchi, China. Harmful Algae 42:43–51CrossRefGoogle Scholar
  172. MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192PubMedCrossRefGoogle Scholar
  173. Mallipudi LR, Gleason FK (1989) Characterization of a mutant of Anacystis nidulans R2 resistant to the natural herbicide, cyanobacterin. Plant Sci 60:149–154CrossRefGoogle Scholar
  174. Manefield M, de Nys R, Naresh K, Roger R, Givskov M, Peter S, Kjelleberg S (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291PubMedCrossRefGoogle Scholar
  175. Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127PubMedCrossRefGoogle Scholar
  176. Manning SR, La Claire JWI (2010) Prymnesins: toxic metabolites of the golden alga, Prymnesium parvum Carter (Haptophyta). Mar Drugs 8:678–704PubMedPubMedCentralCrossRefGoogle Scholar
  177. Mason CP, Edwards KR, Carlson RE, Pignatello J, Gleason FK, Wood JM (1982) Isolation of a chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hoffmanni. Science 215:400–402PubMedCrossRefGoogle Scholar
  178. Mazur H, Konop A, Synak R (2001) Indole-3-acetic acid in the culture medium of two axenic green microalgae. J Appl Phycol 13:35–42CrossRefGoogle Scholar
  179. McCracken MD, Middaugh RE, Middaugh RS (1980) A chemical characterization of an algal inhibitor obtained from Chlamydomonas. Hydrobiologia 70:271–276CrossRefGoogle Scholar
  180. McFarlane HE, Shin JJH, Bird DA, Samuels AL (2010) Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. Plant Cell 22:3066–3075PubMedPubMedCentralCrossRefGoogle Scholar
  181. McGrattan CJ, Sullivan JD, Ikawa M (1976) Inhibition of Chlorella (Chlorophyceae) growth by fatty acids, using the paper disc method. J Phycol 12:129–131Google Scholar
  182. Mello MM, Soares MCS, Roland F, Lürling M (2012) Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii. J Plankton Res 34:987–994CrossRefGoogle Scholar
  183. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496PubMedCrossRefGoogle Scholar
  184. Mieszkin S, Callow ME, Callow JA (2013) Interactions between microbial biofilms and marine fouling algae: a mini review. Biofouling 29:1097–1113PubMedCrossRefGoogle Scholar
  185. Mohamed ZA (2013a) Allelopathic activity of the norharmane-producing cyanobacterium Synechocystis aquatilis against cyanobacteria and microalgae. Ocean Hydrol 42:1–7CrossRefGoogle Scholar
  186. Mohamed ZA (2013b) Toxic effect of norharmane on a freshwater plankton community. Ecohydrol Hydrobiol 13:226–232CrossRefGoogle Scholar
  187. Moheimani NR, Isdepsky A, Lisec J, Raes E, Borowitzka MA (2011) Coccolithophorid algae culture in closed photobioreactors. Biotechnol Bioeng 108:2078–2087PubMedCrossRefGoogle Scholar
  188. Molisch H (1937) Der Einfluss einer Pflanze auf die andere: Allelopathie. Fischer Verlag, JenaGoogle Scholar
  189. Moore JK, Villareal TA (1996) Size-ascent relationships in positively buoyant diatoms. Limnol Oceanogr 41:1514–1520CrossRefGoogle Scholar
  190. Moore RE, Cheuk C, Patterson GML (1984) Hapalindoles: new alkaloids from the blue-green alga Hapalosiphon fontinalis. J Am Chem Soc 106:6456–6457CrossRefGoogle Scholar
  191. Musielak MM, Karp-Boss L, Jumars PA, Fauci LJ (2009) Nutrient transport and acquisition by diatom chains in a moving fluid. J Fluid Mech 638:401–421CrossRefGoogle Scholar
  192. Naito K, Suzuki M, Mito S, Hasegawa H, Matsui M, Imai I (2006) Effects of the substances secreted from Closterium aciculare (Charophyceae, Chlorophyta) on the growth of freshwater phytoplankton under iron-deficient conditions. Plankon Benthos Res 1:191–199CrossRefGoogle Scholar
  193. Napier RM, Venis MA (1995) Tansley review No. 79. Auxin action and auxin-binding proteins. New Phytol 129:167–201CrossRefGoogle Scholar
  194. Natrah FMI, Kenmegne MM, Wiyoto W, Sorgeloos P, Bossier P, Defoirdt T (2011) Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture 317:53–57CrossRefGoogle Scholar
  195. Nedelcu AM (2005) Sex as a response to oxidative stress: stress genes co-opted for sex. Proc R Soc B 272:1935–1940PubMedPubMedCentralCrossRefGoogle Scholar
  196. Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E (2013) Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol 15:1239–1253PubMedCrossRefGoogle Scholar
  197. Oertel A, Aichinger N, Hochreiter R, Thalhamer J, Lütz-Meindl U (2004) Analysis of mucilage secretion and excretion in Micrasterias (Chlorophyta) by means of immunoelectron microscopy and digital time lapse video microscopy. J Phycol 40:711–720CrossRefGoogle Scholar
  198. Olli K, Trunov K (2007) Self-toxicity of Prymnesium parvum (Prymnesiophyceae). Phycologia 46:109–112CrossRefGoogle Scholar
  199. Orr PT, Jones GJ (1998) Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr 43:1604–1614CrossRefGoogle Scholar
  200. Pahlow M, Riebesell U, Wolf-Gladrow DA (1997) Impact of cell shape and chain formation on nutrient acquisition by marine diatoms. Limnol Oceanogr 42:1660–1672CrossRefGoogle Scholar
  201. Papke U, Gross EM, Francke W (1997) Isolation, identification and determination of the absolute configuration of Fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella muscicola (Thuret). Tetrahedron Lett 38:379–382CrossRefGoogle Scholar
  202. Park H-D, Iwami C, Watanabe MF, Harada K-I, Okino T, Hayashi H (1998) Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ Toxicol Water Qual 13:61–72CrossRefGoogle Scholar
  203. Parrish CC, Bodennec G, Sebedio JL, Gentien P (1993) Intracellular and extracellular lipids in cultures of the toxic dinoflagellate, Gyrodinium aureolum. Phytochemistry 32:291–295CrossRefGoogle Scholar
  204. Parrish CC, Bodennec G, Gentien P (1994) Time courses of intracellular and extracellular lipid classes in batch cultures of the toxic dinoflagellate, Gymnodinium cf. nagasakiense. Mar Chem 48:71–82CrossRefGoogle Scholar
  205. Parsons JB, Yao J, Frank MW, Jackson P, Rock CO (2012) Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus. J Bacteriol 194:5294–5304PubMedPubMedCentralCrossRefGoogle Scholar
  206. Patel P, Callow ME, Joint I, Callow JA (2003) Specificity in the settlement – modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ Microbiol 5:338–349PubMedCrossRefGoogle Scholar
  207. Paul C, Pohnert G (2013) Induction of protease release of the resistant diatom Chaetoceros didymus in response to lytic enzymes from an algicidal bacterium. PLoS One 8:e57577PubMedPubMedCentralCrossRefGoogle Scholar
  208. Paul C, Barofsky A, Vidoudez C, Pohnert G (2009) Diatom exudates influence metabolism and cell growth of co-cultured diatom species. Mar Ecol Prog Ser 389:61–70CrossRefGoogle Scholar
  209. Paul C, Mausz MA, Pohnert G (2013) A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 9:349–359CrossRefGoogle Scholar
  210. Pearson LA, Hisbergues M, Börner T, Dittmann E, Neilan BA (2004) Inactivation of an ABC transporter gene, mcyH, results in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 70:6370–6378PubMedPubMedCentralCrossRefGoogle Scholar
  211. Peperzak L, Duin RNM, Colijn F, Gieskes WWC (2000) Growth and mortality of flagellates and non-flagellate cells of Phaeocystis globosa (Prymnesiophyceae). J Plankton Res 22:107–120CrossRefGoogle Scholar
  212. Pereira DA, Giani A (2014) Cell density-dependent oligopeptide production in cyanobacterial strains. FEMS Microbiol Ecol 88:175–183PubMedCrossRefGoogle Scholar
  213. Pérez E, Martin DF (2001) Critical micelle concentrations of allelopathic substances produced by Nannochloris oculata which affect a red tide organism, Gymnodinium breve. Cytobios 106:163–170PubMedGoogle Scholar
  214. Perez E, Sawyers WG, Martin DF (1997) Identification of allelopathic substances produced by Nannochloris oculata that affect a red tide organism, Gymnodinium breve. Biomed Lett 56:7–14Google Scholar
  215. Pérez E, Sawyers WG, Martin DF (2001) Lysis of Gymnodinium breve by cultures of the green alga Nannochloris eucaryotum. Cytobios 104:23–31Google Scholar
  216. Perreault F, Seleme Matias M, Pedroso Melegari S, de Carvalho Pinto CRS, Ekué Creppy E, Popovic R, Gerson Matias W (2011) Investigation of animal and algal bioassays for reliable saxitoxin ecotoxicity and cytotoxicity risk evaluation. Ecotoxicol Environ Saf 74:1021–1026PubMedCrossRefGoogle Scholar
  217. Pignatello JJ, Porwoll J, Carlson RE, Xavier A, Gleason FK, Wood JM (1983) Structure of the antibiotic cyanobacterin, a chlorine-containing γ-lactone from the freshwater cyanobacterium Scytonema hofmanni. J Org Chem 48:4035–4038CrossRefGoogle Scholar
  218. Pinheiro C, Azevedo J, Campos A, Loureiro S, Vasconcelos V (2013) Absence of negative allelopathic effects of cylindrospermopsin and microcystin-LR on selected marine and freshwater phytoplankton species. Hydrobiologia 705:27–42CrossRefGoogle Scholar
  219. Piotrowska-Niczyporuk A, Bajguz A (2014) The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul 73:66–73CrossRefGoogle Scholar
  220. Plumley FG (1997) Marine algal toxins: biochemistry, genetics, and molecular biology. Limnol Oceanogr 42:1252–1264CrossRefGoogle Scholar
  221. Pohnert G (2000) Wound-activated chemical defence in unicellular marine algae. Angew Chem Int Ed 39:4352–4354CrossRefGoogle Scholar
  222. Pohnert G (2002) Phospholipase A2 activity triggers the wound-activated chemical defense in the diatom Thalassiosira rotula. Plant Physiol 129:103–111PubMedPubMedCentralCrossRefGoogle Scholar
  223. Pohnert G (2010) Chemical noise in the silent ocean. J Plankton Res 32:141–144CrossRefGoogle Scholar
  224. Pohnert G, Boland W (1996) Biosynthesis of the algal pheromone hormosirene by the fresh-water diatom Gomphonema parvulum (Bacillariophyceae). Tetrahedron 52:10073–10082CrossRefGoogle Scholar
  225. Pohnert G, Boland W (2001) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19:108–122Google Scholar
  226. Pohnert G, Steinke M, Tollrian R (2007) Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol Evol 22:198–204PubMedCrossRefGoogle Scholar
  227. Poulson KL, Sieg RD, Prince EK, Kubanek J (2010) Allelopathic compounds of a red tide dinoflagellate have species-specific and context-dependent impacts on phytoplankton. Mar Ecol Prog Ser 416:69–78CrossRefGoogle Scholar
  228. Poulson-Ellestad K, Mcmillan E, Montoya JP, Kubanek J (2014a) Are offshore phytoplankton susceptible to Karenia brevis allelopathy? J Plankton Res 36:1344–1356CrossRefGoogle Scholar
  229. Poulson-Ellestad KL, Jones CM, Roy J, Viant MR, Fernández FM, Kubanek J, Nunn BL (2014b) Metabolomics and proteomics reveal impacts of chemically mediated competition on marine plankton. Proc Natl Acad Sci 111:9009–9014PubMedPubMedCentralCrossRefGoogle Scholar
  230. Pouvreau J-B, Housson E, Tallec LL, Morançais M, Rincé Y, Fleurence J, Pondaven P (2007) Growth inhibition of several marine diatom species induced by the shading effect and allelopathic activity of marennine, a blue-green polyphenolic pigment of the diatom Haslea ostrearia (Gaillon/Bory) Simonsen. J Exp Mar Biol Ecol 352:212–225CrossRefGoogle Scholar
  231. Prasad PVD (1982) Effect of some growth substances on the growth of green algae. Cryptogam Algol 4:315–321Google Scholar
  232. Pratt R (1938) Influence of auxins on the growth of Chlorella vulgaris. Am J Bot 25:498–501CrossRefGoogle Scholar
  233. Pratt R, Fong J (1940) Studies on Chlorella vulgaris. II. Further evidence that Chlorella cells form a growth-inhibiting substance. Am J Bot 27:431–436CrossRefGoogle Scholar
  234. Pratt R, Daniels TC, Eiler JJ, Gunnison JB, Kumler WD, Oneto JF, Strait LA, Spoehr HA, Hardin GJ, Milner HW, Smith JHC, Strain HH (1944) Chlorellin, an antibacterial substance from Chlorella. Science 99:351–352PubMedCrossRefGoogle Scholar
  235. Prieto CRE, Cordoba CNM, Montenegro JAM, González-Mariño GE (2011) Production of indole-3-acetic acid in the culture medium of microalga Scenedesmus obliquus (UTEX 393). J Braz Chem Soc 22:2355–2361CrossRefGoogle Scholar
  236. Prince EK, Myers TL, Kubanek J (2008) Effects of harmful algal blooms on competitors: allelopathic mechanisms of the red tide dinoflagellate Karenia brevis. Limnol Oceanogr 53:531–541CrossRefGoogle Scholar
  237. Prince EK, Poulson KL, Myers TL, Sieg RD, Kubanek J (2010) Characterization of allelopathic compounds from the red tide dinoflagellate Karenia brevis. Harmful Algae 10:39–48CrossRefGoogle Scholar
  238. Proctor VW (1957) Studies of algal antibiosis using Haematococcus and Chlamydomonas. Limnol Oceanogr 2:125–139CrossRefGoogle Scholar
  239. Qiu X, Yamasaki Y, Shimasaki Y, Gunjikake H, Matsubara T, Nagasoe S, Etoh T, Matsui S, Honjo T, Oshima Y (2012) Allelopathy of the raphidophyte Heterosigma akashiwo against the dinoflagellate Akashiwo sanguinea is mediated via allelochemicals and cell contact. Mar Ecol Prog Ser 446:107–118CrossRefGoogle Scholar
  240. Rajamani S, Teplitski M, Kumar A, Krediet CJ, Sayre RT, Bauer WD (2011) N-acyl homoserine lactone lactonase, AiiA, inactivation of quorum-sensing agonists produced by Chlamydomonas reinhardtii (Chlorophyta) and characterization of AiiA transgenic algae. J Phycol 47:1219–1227CrossRefGoogle Scholar
  241. Rapala J, Sivonen K, Luukkainen R, Niemelä SI (1993) Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena-strains – a laboratory study. J Appl Phycol 5:581–591CrossRefGoogle Scholar
  242. Rapala J, Sivonen K, Lyra C, Niemelä SI (1997) Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 63:2206–2212PubMedPubMedCentralGoogle Scholar
  243. Rengefors K, Legrand C (2007) Broad allelopathic activity in Peridinium aciculiferum (Dinophyceae). Eur J Phycol 42:341–349CrossRefGoogle Scholar
  244. Ribalet F, Berges JA, Ianora A, Casotti R (2007a) Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes. Aquat Toxicol 85:219–227PubMedCrossRefGoogle Scholar
  245. Ribalet F, Wichard T, Pohnert G, Ianora A, Miralto A, Casotti R (2007b) Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry 68:2059–2067PubMedCrossRefGoogle Scholar
  246. Rice EL (1984) Allelopathy. Academic, New YorkGoogle Scholar
  247. Richmond A, Zou N (1999) Efficient utilisation of high photon irradiance for mass production of photoautotrophic micro-organisms. J Appl Phycol 11:123–127CrossRefGoogle Scholar
  248. Rizvi SJH, Rizvi V (1992) Allelopathy: basic and applied aspects. Chapman & Hall, LondonCrossRefGoogle Scholar
  249. Rodolfi L, Zittelli GC, Barsanti L, Rosati C, Tredeci MR (2003) Growth medium recycling in Nannochloropsis sp. mass culture. Biomol Eng 20:243–248PubMedCrossRefGoogle Scholar
  250. Rohrlack T, Hyenstrand P (2007) Fate of intracellular microcystins in the cyanobacterium Microcystis aeruginosa (Chroococcales, Cyanophyceae). Phycologia 46:277–283CrossRefGoogle Scholar
  251. Romera-Castillo C, Sarmento H, Álvarez-Salgado XA, Gasol JM, Marraséa C (2010) Production of chromophoric dissolved organic matter by marine phytoplankton. Limnol Oceanogr 55:446–454CrossRefGoogle Scholar
  252. Romero M, Diggle SP, Heeb S, Cámara M, Otero A (2008) Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 280:73–80PubMedCrossRefGoogle Scholar
  253. Romero M, Muro-Pastor AM, Otero A (2011) Quorum sensing N-acylhomoserine lactone signals affect nitrogen fixation in the cyanobacterium Anabaena sp. PCC7120. FEMS Microbiol Lett 315:101–108PubMedCrossRefGoogle Scholar
  254. Roy JS, Poulson-Ellestad KL, Drew Sieg R, Poulin RX, Kubanek J (2013) Chemical ecology of the marine plankton. Nat Prod Rep 30:1364–1379PubMedCrossRefGoogle Scholar
  255. Royce LA, Liu P, Stebbins MJ, Hanson BC, Jarboe LR (2013) The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Microbiol Biotechnol 97:8317–8327PubMedPubMedCentralCrossRefGoogle Scholar
  256. Ruffing AM (2013) Borrowing genes from Chlamydomonas reinhardtii for free fatty acid production in engineered cyanobacteria. J Appl Phycol 25:1495–1507CrossRefGoogle Scholar
  257. Ruffing AM (2014) Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host. Front Bioeng Biotechnol 2:17. doi: 10.3389/fbioe.2014.00017 PubMedPubMedCentralCrossRefGoogle Scholar
  258. Ruffing AM, Jones HDT (2012) Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng 109:2190–2199PubMedPubMedCentralCrossRefGoogle Scholar
  259. Ruge Holte H, Eriksen S, Skulberg O, Aas P (1998) The effect of water soluble cyanotoxin(s) produced by two species of Anabaena on the release of acetylcholine from the peripheral cholinergic nervous system of the rat airway. Environ Toxicol Pharmacol 5:51–59PubMedCrossRefGoogle Scholar
  260. Rzymski P, Poniedziałek B (2014) In search of environmental role of cylindrospermopsin: a review on global distribution and ecology of its producers. Water Res 66:320–337PubMedCrossRefGoogle Scholar
  261. Rzymski P, Poniedziałek B, Kokociński M, Jurczak T, Lipski D, Wiktorowicz K (2014) Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae 35:1–8CrossRefGoogle Scholar
  262. Safonova E, Reisser W (2005) Growth promoting and inhibiting effects of extracellular substances of soil microalgae and cyanobacteria on Escherichia coll and Micrococcus luteus. Phycol Res 53:189–193Google Scholar
  263. Salama E-S, Kabra AN, Ji M-K, Kim JR, Min B, Jeon B-H (2014) Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour Technol 172:97–103CrossRefGoogle Scholar
  264. Sapp M, Schwaderer AS, Wiltshire KH, Hoppe H-G, Gerdts G, Wichels A (2007) Species-specific bacterial communities in the phycosphere of microalgae? Microb Ecol 53:683–699PubMedCrossRefGoogle Scholar
  265. Sato S, Beakes G, Idei M, Nagumo T, Mann DG (2011) Novel sex cells and evidence for sex pheromones in diatoms. PLoS One 6:e26923PubMedPubMedCentralCrossRefGoogle Scholar
  266. Savchenko TV, Zastrijnaja OM, Klimov VV (2014) Oxylipins and plant abiotic stress resistance. Biochemistry (Mosc) 79:362–375CrossRefGoogle Scholar
  267. Schagerl M, Unterrieder I, Angeler DG (2002) Allelopathy among cyanoprokaryota and other algae originating from Lake Neusiedlersee (Austria). Int Rev Hydrobiol 87:365–374CrossRefGoogle Scholar
  268. Schlegel I, Doan N, de Chazal N, Smith G (1998) Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J Appl Phycol 10:471–479CrossRefGoogle Scholar
  269. Schmidt LE, Hansen PJ (2001) Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and pH. Mar Ecol Prog Ser 216:67–81CrossRefGoogle Scholar
  270. Schwartz RE, Hirsch CF, Springer JP, Pettibone DJ, Zink DL (1987) Unusual cyclopropane-containing hapalindolinones from a cultured cyanobacterium. J Org Chem 52:3704–3706CrossRefGoogle Scholar
  271. Sekimoto H, Abe J, Tsuchikane Y (2012) New insights into the regulation of sexual reproduction in Closterium. Int Rev Cell Mol Biol 297:309–338PubMedCrossRefGoogle Scholar
  272. Shao J, Peng L, Luo S, Yu G, J-d G, Lin S, Li R (2013) First report on the allelopathic effect of Tychonema bourrellyi (Cyanobacteria) against Microcystis aeruginosa (Cyanobacteria). J Appl Phycol 25:1567–1573CrossRefGoogle Scholar
  273. Sharif DI, Gallon J, Smith CJ, Dudley E (2008) Quorum sensing in Cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. ISME J 2:1171–1182PubMedCrossRefGoogle Scholar
  274. Sharp JH, Underhill PA, Hughes DJ (1979) Interaction (allelopathy) between marine diatoms: Thalassiosira pseudonana and Phaeodactylum tricornutum. J Phycol 15:353–362CrossRefGoogle Scholar
  275. Shilo M (1967) Formation and mode of action of algal toxins. Bacteriol Rev 31:180–193PubMedPubMedCentralGoogle Scholar
  276. Shively JM, van Keulen G, Meijer WG (1998) Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol 52:191–230PubMedCrossRefGoogle Scholar
  277. Skindersoe ME, Ettinger-Epstein P, Rasmussen TB, Bjarnsholt T, de Nys R, Givskov M (2008) Quorum sensing antagonism from marine organisms. Mar Biotechnol 10:56–63PubMedCrossRefGoogle Scholar
  278. Skovgaard A, Hansen PJ (2003) Food uptake in the harmful alga Prymnesium parvum mediated by excreted toxins. Limnol Oceanogr 48:1161–1166CrossRefGoogle Scholar
  279. Śliwińska S, Latala A (2012) Allelopathic effects of cyanobacterial filtrates on Baltic diatom. Contemp Trends Geosci 1:103–107CrossRefGoogle Scholar
  280. Smith GD, Doan NT (1999) Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J Appl Phycol 11:337–344CrossRefGoogle Scholar
  281. Song L, Qin J, Clarke S, Li Y (2013) Competition and succession between the oily alga Botryococcus braunii and two green algae Chlorella vulgaris and Chlamydomonas reinhardtii. J Appl Phycol 25:847–853CrossRefGoogle Scholar
  282. Spoehr HA, Smith JHC, Strain HH, Milner HW, Hardin GJ (1949) Fatty acid bacterials from plants, Publication 586. Carnegie Institution of Washington, WashingtonGoogle Scholar
  283. Srivastava A, Jüttner F, Strasser RJ (1998) Action of the allelochemical, fischerellin A, on photosystem II. Biochim Biophys Acta Bioenerg 1364:326–336CrossRefGoogle Scholar
  284. Starr RC, Jaenicke L (1974) Purification and characterization of the hormone initiating sexual morphogenesis in Volvox carteri f. nagariensis Iyengar. Proc Natl Acad Sci U S A 71:1050–1054PubMedPubMedCentralCrossRefGoogle Scholar
  285. Starr RC, Marner FJ, Jaenicke L (1995) Chemoattraction of male gametes by a pheromone produced by female gametes of Chlamydomonas. Proc Natl Acad Sci U S A 92:641–645PubMedPubMedCentralCrossRefGoogle Scholar
  286. Stirk WA, Ördög V, Novák O, Rolčík J, Strnad M, Bálint P, van Staden J (2013) Auxin and cytokinin relationships in 24 microalgal strains. J Phycol 49:459–467CrossRefGoogle Scholar
  287. Stirk WA, Bálint P, Tarkowská D, Novák O, Maróti G, Ljung K, Turečková V, Strnad M, Ördög V, van Staden J (2014) Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiol Biochem 79:66–76PubMedCrossRefGoogle Scholar
  288. Sugg LM, VanDolah FM (1999) No evidence for an allelopathic role of okadaic acid among ciguatera-associated dinoflagellates. J Phycol 35:93–103CrossRefGoogle Scholar
  289. Suikkanen S, Fistarol GO, Granéli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101CrossRefGoogle Scholar
  290. Suikkanen S, Fistarol GO, Granéli E (2005) Effects of cyanobacterial allelochemicals on a natural plankton community. Mar Ecol Prog Ser 287:1–9CrossRefGoogle Scholar
  291. Suikkanen S, Hakanen P, Spilling K, Kremp A (2011) Allelopathic effects of Baltic Sea spring bloom dinoflagellates on co-occurring phytoplankton. Mar Ecol Prog Ser 439:45–55CrossRefGoogle Scholar
  292. Sukenik A, Eshkol R, Livne A, Hadas O, Rom M, Tchernov D, Kaplan A (2002) Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–1663CrossRefGoogle Scholar
  293. Sumper M, Berg E, Wenzl S, Godl K (1993) How a sex pheromone might act at a concentration below 10−16 M. EMBO J 12:831–836PubMedPubMedCentralGoogle Scholar
  294. Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25:1331–1346CrossRefGoogle Scholar
  295. Sun YN, Yin MY, Liu JG (2001) Auto-signals in Haematococcus pluvialis. Trans Oceanol Limnol 3:22–28Google Scholar
  296. Sun Y, Xu S, Li W, Zhang J, Wang C (2012) Antialgal substances from Isochrysis galbana and its effects on the growth of Isochrysis galbana and six species of feed microalgae. In: Zhu E, Sambath S (eds) Information technology and agricultural engineering. Springer, Berlin, pp 211–223CrossRefGoogle Scholar
  297. Sushchik NN, Kalacheva GS, Gladyshev MI (2001) Secretion of free fatty acids by prokaryotic and eukaryotic algae at optimal, supraoptimal, and suboptimal growth temperatures. Microbiology 70:542–547CrossRefGoogle Scholar
  298. Sushchik NN, Kalacheva GS, Zhila NO, Gladyshev MI, Volova TG (2003) A temperature dependence of the intra- and extracellular fatty-acid composition of green algae and a cyanobacterium. Russ J Plant Physiol 50:374–380CrossRefGoogle Scholar
  299. Syrpas M, Ruysbergh E, Blommaert L, Vanelslander B, Sabbe K, Vyverman W, De Kimpe N, Mangelinckx S (2014) Haloperoxidase mediated quorum quenching by Nitzschia cf pellucida: study of the metabolization of N-acyl homoserine lactones by a benthic diatom. Mar Drugs 12:352–367PubMedPubMedCentralCrossRefGoogle Scholar
  300. Tait K, Joint I, Daykin M, Milton DL, Williams P, Cámara M (2005) Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ Microbiol 7:229–240PubMedCrossRefGoogle Scholar
  301. Tam D, Hosoi AE (2011) Optimal feeding and swimming gaits of biflagellated organisms. Proc Natl Acad Sci 108:1001–1006PubMedPubMedCentralCrossRefGoogle Scholar
  302. Tameishi M, Yamasaki Y, Nagasoe S, Shimasaki Y, Oshima Y, Honjo T (2009) Allelopathic effects of the dinophyte Prorocentrum minimum on the growth of the bacillariophyte Skeletonema costatum. Harmful Algae 8:421–429CrossRefGoogle Scholar
  303. Tamoko K, Igarashi S, Mikami H, Hino S (2003) Causation of reversal simultaneity for diatom biomass and density of Phormidium tenue during the warm season in eutrophic Lake Barato, Japan. Limnology 4:73–78CrossRefGoogle Scholar
  304. Tang YZ, Gobler CJ (2010) Allelopathic effects of Cochlodinium polykrikoides isolates and blooms from the estuaries of Long Island, New York, on co-occurring phytoplankton. Mar Ecol Prog Ser 406:19–31CrossRefGoogle Scholar
  305. Tarakhovskaya ER, Maslova YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170CrossRefGoogle Scholar
  306. Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137–146PubMedPubMedCentralCrossRefGoogle Scholar
  307. Thomas RWSP, Allsopp D (1983) The effects of certain periphytic marine bacteria upon the settlement and growth of Enteromorpha, a fouling alga. Biodeterioration 5:348–357Google Scholar
  308. Thomas WH, Gibson CH (1990) Effects of small-scale turbulence on microalgae. J Appl Phycol 2:71–77CrossRefGoogle Scholar
  309. Tillmann U (1998) Phagotrophy by a plastidic haptophyte, Prymnesium patelliferum. Aquat Microb Ecol 14:155–160CrossRefGoogle Scholar
  310. Tillmann U (2003) Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum. Aquat Microb Ecol 32:73–84CrossRefGoogle Scholar
  311. Tillmann U (2004) Interactions between planktonic microalgae and protozoan grazers. J Eukaryot Microbiol 51:156–168PubMedCrossRefGoogle Scholar
  312. Tillmann U, John U (2002) Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar Ecol Prog Ser 230:47–58CrossRefGoogle Scholar
  313. Tillmann U, John U, Cembella A (2007) On the allelochemical potency of the marine dinoflagellate Alexandrium ostenfeldii against heterotrophic and autotrophic protists. J Plankton Res 29:527–543CrossRefGoogle Scholar
  314. Tillmann U, Alpermann TL, da Purificação RC, Krock B, Cembella A (2009) Intra-population clonal variability in allelochemical potency of the toxigenic dinoflagellate Alexandrium tamarense. Harmful Algae 8:759–769CrossRefGoogle Scholar
  315. Timmermans KR, Veldhuis MJW, Brussaard CPD (2007) Cell death in three marine diatom species in response to different irradiance levels, silicate, or iron concentrations. Aquat Microb Ecol 46:253–261CrossRefGoogle Scholar
  316. Todorova AK, Jüttner F (1995) Nostocyclamide – a new macrocyclic, thiazole-containing allelochemical from Nostoc sp 31 (cyanobacteria). J Org Chem 60:7891–7895CrossRefGoogle Scholar
  317. Todorova A, Jüttner F (1996) Ecotoxicological analysis of nostocyclamide, a modified cyclic hexapeptide from Nostoc. J Phycol 35:183–188CrossRefGoogle Scholar
  318. Tsuchikane Y, Fujii T, Ito M, Sekimoto H (2005) A sex pheromone, protoplast release-inducing protein (PR-IP) inducer, induces sexual cell division and production of PR-IP in Closterium. Plant Cell Physiol 46:1472–1476PubMedCrossRefGoogle Scholar
  319. Twigg MS, Tait K, Williams P, Atkinson S, Cámara M (2014) Interference with the germination and growth of Ulva zoospores by quorum-sensing molecules from Ulva-associated epiphytic bacteria. Environ Microbiol 16:445–453PubMedPubMedCentralCrossRefGoogle Scholar
  320. Uchida T (1977) Excretion of a diatom-inhibitory substance by Prorocentrum micans Ehrenberg. Jpn J Ecol 27:1–4Google Scholar
  321. Uchida T, Toda S, Matsuyama Y, Yamaguchi M, Kotani Y, Honjo T (1999) Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. J Exp Mar Biol Ecol 241:285–299CrossRefGoogle Scholar
  322. Uronen P, Lehtinen S, Legrand C, Kuuppo P, Tamminen T (2005) Haemolytic activity and allelopathy of the haptophyte Prymnesium parvum in nutrient-limited and balanced growth conditions. Mar Ecol Prog Ser 299:137–148CrossRefGoogle Scholar
  323. Uronen P, Kuuppo P, Legrand C, Tamminen T (2007) Allelopathic effects of toxic haptophyte Prymnesium parvum lead to release of dissolved organic carbon and increase in bacterial biomass. Microb Ecol 54:183–193PubMedCrossRefGoogle Scholar
  324. Van Mooy BAS, Hmelo LR, Sofen LE, Campagna SR, May AL, Dyhrman ST, Heithoff A, Webb EA, Momper L, Mincer TJ (2012) Quorum sensing control of phosphorus acquisition in Trichodesmium consortia. ISME J 6:422–429PubMedPubMedCentralCrossRefGoogle Scholar
  325. Vance BD (1987) Phytohormone effects on cell division in Chlorella pyrenoidosa Chick (TX-7-11-05) (Chlorellaceae). J Plant Growth Regul 5:169–173CrossRefGoogle Scholar
  326. Vanelslander B, Paul C, Grueneberg J, Prince EK, Gillard J, Sabbe K, Pohnert G, Vyverman W (2012) Daily bursts of biogenic cyanogen bromide (BrCN) control biofilm formation around a marine benthic diatom. Proc Natl Acad Sci 109:2412–2417PubMedPubMedCentralCrossRefGoogle Scholar
  327. Vardi A, Berman-Frank I, Rozenberg T, Hadas O, Kaplan A, Levine A (1999) Programmed cell death of the dinoflagellate Peridinium gatuense is mediated by CO2 limitation and oxidative stress. Curr Biol 9:1061–1064PubMedCrossRefGoogle Scholar
  328. Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Levine A, Kaplan A (2002) Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 12:1767–1772PubMedCrossRefGoogle Scholar
  329. Vepritskiĭ AA, Gromov BV, Titova NN, Mamkaeva KA (1991) Production of the antibiotic-algicide cyanobacterin LU-2 by a filamentous cyanobacterium Nostoc sp. Mikrobiologiya 60:21–25Google Scholar
  330. Vidoudez C, Pohnert G (2008) Growth phase-specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. J Plankton Res 30:1305–1313CrossRefGoogle Scholar
  331. von Denffer D (1948) Über einen Wachstumshemmstoff in alternden Diatomeenkulturen. Biol Zentralbl 67:7–13Google Scholar
  332. Von Elert E, Jüttner F (1996) Factors influencing the allelopathic activity of the planktonic cyanobacterium Trichormus doliolum. Phycologia 35:68–73CrossRefGoogle Scholar
  333. Von Elert E, Jüttner F (1997) Phosphorus limitation and not light controls the extracellular release of allelopathic compounds by Trichormus doliolum (Cyanobacteria). Limnol Oceanogr 42:1796–1802CrossRefGoogle Scholar
  334. Wang Y, Tang X (2008) Interactions between Prorocentrum donghaiense Lu and Scrippsiella trochoidea (Stein) Loeblich III under laboratory culture. Harmful Algae 7:65–75CrossRefGoogle Scholar
  335. Wang Y, Yu Z, Song X, Zhang S (2006) Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. J Sea Res 56:17–26CrossRefGoogle Scholar
  336. Wang R, Wang Y, Tang X (2012) Identification of the toxic compounds produced by Sargassum thunbergii to red tide microalgae. Chin J Oceanol Limnol 30:778–785CrossRefGoogle Scholar
  337. Wang J, Zhang Y, Li H, Cao J (2013) Competitive interaction between diatom Skeletonema costatum and dinoflagellate Prorocentrum donghaiense in laboratory culture. J Plankton Res 35:367–378CrossRefGoogle Scholar
  338. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  339. Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Rusch J, Holzenburg A, Devarenne TP, Goodenough U (2012) Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell 11:1424–1440PubMedPubMedCentralCrossRefGoogle Scholar
  340. Weissbach A, Tillmann U, Legrand C (2010) Allelopathic potential of the dinoflagellate Alexandrium tamarense on marine microbial communities. Harmful Algae 10:9–18CrossRefGoogle Scholar
  341. Welker M, Von Döhren H (2006) Cyanobacterial peptides – nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563PubMedCrossRefGoogle Scholar
  342. Wenzl S, Sumper M (1986) Early event of sexual induction in Volvox: chemical modification of the extracellular matrix. Dev Biol 115:119–128CrossRefGoogle Scholar
  343. Wheeler GL, Tait K, Taylor A, Brownlee C, Joint IAN (2006) Acyl-homoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant Cell Environ 29:608–618PubMedCrossRefGoogle Scholar
  344. Wichard T, Pohnert G (2006) Formation of halogenated medium chain hydrocarbons by a lipoxygenase/hydroperoxide halolyase-mediated transformation in planktonic microalgae. J Am Chem Soc 128:7114–7115PubMedCrossRefGoogle Scholar
  345. Williams P, Winzer K, Chan WC, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc B 362:1119–1134CrossRefGoogle Scholar
  346. Willis RJ (1985) The historical bases of the concept of allelopathy. J Hist Biol 18:71–102CrossRefGoogle Scholar
  347. Willis RJ (2007) The history of alleopathy. Springer, DordrechtGoogle Scholar
  348. Windust AJ, Wright JLC, McLachlan JL (1996) The effects of the diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin-1, on the growth of microalgae. Mar Biol 126:19–25CrossRefGoogle Scholar
  349. Windust AJ, Quilliam MA, Wright JLC, McLachlan JL (1997) Comparative toxicity of the diarrhetic shellfish poisons, okadaic acid, okadaic acid diol-ester and dinophysistoxin-4, to the diatom Thalassiosira weissflogii. Toxicon 35:1591–1603PubMedCrossRefGoogle Scholar
  350. Wolfe G (2000) The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. Biol Bull 198:225–244PubMedCrossRefGoogle Scholar
  351. Wood NL, Berliner MD (1979) Effects of indoleacetic acid on the desmid Micrasterias thomasiana. Plant Sci Lett 16:285–289CrossRefGoogle Scholar
  352. Wu J-T, Chiang Y-R, Huang W-Y, Jane W-N (2006) Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquat Toxicol 80:338–345PubMedCrossRefGoogle Scholar
  353. Xu N, Tang YZ, Qin J, Duan S, Gobler CJ (2015) Ability of the marine diatoms Pseudo-nitzschia multiseries and P. pungens to inhibit the growth of co-occurring phytoplankton via allelopathy. Aquat Microb Ecol 74:29–41CrossRefGoogle Scholar
  354. Yamasaki Y, Hikida T (2013) Improving the growth of Pavlova lutheri using the filtrate of a diatom Chaetoceros neogracile. Nippon Suisan Gakkaishi 70:875–877CrossRefGoogle Scholar
  355. Yamasaki Y, Nagasoe S, Matsubara T, Shikata T, Shimasaki Y, Oshima Y, Honjo T (2007) Allelopathic interactions between the bacillariophyte Skeletonema costatum and the raphidophyte Heterosigma akashiwo. Mar Ecol Prog Ser 339:83–92CrossRefGoogle Scholar
  356. Yamasaki Y, Shikata T, Nukata A, Ichiki S, Nagasoe S, Matsubara T, Shimasaki Y, Nakao M, Yamaguchi K, Oshima Y, Oda T, Ito M, Jenkinson IR, Asakawa M, Honjo T (2009) Extracellular polysaccharide-protein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community. ISME J 3:808–817PubMedCrossRefGoogle Scholar
  357. Yamasaki Y, Ohmichi Y, Shikata T, Hirose M, Shimasaki Y, Oshima Y, Homjo T (2010) Species-specific allelopathic effects of the diatom Skeletonema costatum. Thalassas 27:21–32Google Scholar
  358. Yamasaki Y, Zou Y, Go J, Shikata T, Matsuyama Y, Nagai K, Shimasaki Y, Yamaguchi K, Oshima Y, Oda T, Honjo T (2011) Cell contact-dependent lethal effect of the dinoflagellate Heterocapsa circularisquama on phytoplankton–phytoplankton interactions. J Sea Res 65:76–83CrossRefGoogle Scholar
  359. Yamasaki Y, Ohmichi Y, Hirose M, Shikata T, Shimasaki Y, Oshima Y, Honjo T (2012) Low molecular weight allelochemicals produced by the diatom, Skeletonema costatum. Thalassas 28:9–17Google Scholar
  360. Yang P, Fox L, Colbran RJ, Sale WS (2000) Protein phosphatases PP1 and PP2A are located in distinct positions in the Chlamydomonas flagellar axoneme. J Cell Sci 113:91–102PubMedGoogle Scholar
  361. Yang W-D, Xie J, van Rijssel M, Li H-Y, Liu J-S (2010) Allelopathic effects of Alexandrium spp. on Prorocentrum donghaiense. Harmful Algae 10:116–120CrossRefGoogle Scholar
  362. Yang J, Deng X, Xian Q, Qian X, Li A (2014) Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: microcystin-LR as a potential allelochemical. Hydrobiologia 727:65–73CrossRefGoogle Scholar
  363. Yariv J, Hestrin S (1961) Toxicity of the extracellular phase of Prymnesium parvum cultures. J Gen Microbiol 24:165–175PubMedCrossRefGoogle Scholar
  364. Yin H (1937) Effect of auxin on Chlorella vulgaris. Proc Natl Acad Sci U S A 23:174–176PubMedPubMedCentralCrossRefGoogle Scholar
  365. Yoshimura K, Shingyoji C, Takahashi K (1997) Conversion of beating mode in Chlamydomonas flagella induced by electric stimulation. Cell Motil Cytoskeleton 36:236–245PubMedCrossRefGoogle Scholar
  366. Żak A, Kosakowska A (2014) Allelopathic influence of cyanobacteria Microcystis aeruginosa on green algae Chlorella vulgaris. In: Zielinski T, Pazdro K, Dragan-Górska A, Weydmann A (eds) Insights on environmental changes. Springer, Cham, pp 141–150CrossRefGoogle Scholar
  367. Zhai C, Zhang P, Shen F, Zhou C, Liu C (2012) Does Microcystis aeruginosa have quorum sensing? FEMS Microbiol Lett 336:38–44PubMedCrossRefGoogle Scholar
  368. Zhang P, Zhai C, Wang X, Liu C, Jiang J, Xue Y (2013) Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions. J Appl Phycol 25:555–565CrossRefGoogle Scholar
  369. Zou N, Zhang C, Cohen Z, Richmond A (2000) Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Eur J Phycol 35:127–133CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Algae R&D Centre, School of Veterinary and Life SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations