Calcification

Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 6)

Abstract

Several groups of algae form calcium carbonate (CaCO3) by a range of mechanisms that can involve intracellular or extracellular processes. Although calcification mechanisms evolved independently in different algal groups, there are a number of common physiological features that promote the production of calcite. These include modification of the chemistry at the site of calcification, association of organic material to initiate and control crystal formation, and homeostasis mechanisms to regulate internal pH and Ca2+ levels. Microalgal calcification is predominantly marine and cyanobacteria were likely the first life forms to mediate the biological production of calcite at the cell surface. Of the eukaryotes, coccolithophores represent the most significant group of calcifying microalgae, playing a critical role in the marine carbonate system. Production of calcium carbonate in coccolithophores occurs in a Golgi-derived intracellular compartment. This requires a specialized membrane physiology to accomodate the necessary transport of subtrates for calcification while maintaining cellular homeostasis. Here we review the most recent literature on microalgal calcification, before focussing on mechanisms, roles, ecophysiological implications and geochemical consequences of coccolithophore calcification.

Keywords

Calcification Coccolithophore Cyanobacteria Dinoflagellate Emiliania huxleyi Microbialites Ocean Acidification Paleoproxy Scrippsiella minima Thoracosphaeraceae 

Notes

Acknowledgements

The authors’ work is supported by an NSF grant IOS 094944 (ART) and the NERC, BBSRC and EU FP7 European Project on Ocean Acidification (CB). ART gratefully acknowledges a visiting fellowship of the Marine Biological Association U.K.

References

  1. Altermann W, Kazmierczak J, Oren A, Wright DT (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology 4:147–166CrossRefGoogle Scholar
  2. Anning T, Nimer N, Merrett MJ, Brownlee C (1996) Costs and benefits of calcification in coccolithophorids. J Mar Syst 9:45–56CrossRefGoogle Scholar
  3. Arnold HE, Kerrison P, Steinke M (2013) Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi. Global Chang Biol 19:1007–1016CrossRefGoogle Scholar
  4. Bach LT, Mackinder LCM, Schulz KG, Wheeler G, Schroeder DC, Brownlee C, Riebesell U (2013) Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytol 199:121–134PubMedCrossRefGoogle Scholar
  5. Baurain D, Brinkmann H, Petersen J, Rodriguez-Ezpeleta N, Stechmann A, Demoulin V, Roger AJ, Burger G, Lang BF, Philippe H (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709PubMedCrossRefGoogle Scholar
  6. Benner I, Diner RE, Lefebvre SC, Li D, Komada T, Carpenter EJ, Stillman JH (2013) Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Phil Trans R Soc B 368:20130049PubMedPubMedCentralCrossRefGoogle Scholar
  7. Berry L, Taylor AR, Lucken U, Ryan KP, Brownlee C (2002) Calcification and inorganic carbon acquisition in coccolithophores. Funct Plant Biol 29:289–299CrossRefGoogle Scholar
  8. Borman AH, Dejong EW, Huizinga M, Kok DJ, Westbroek P, Bosch L (1982) The role in CaCO3 crystallization of an acid Ca2+-binding polysaccharide associated with coccoliths of Emiliania huxleyi. Eur J Biochem 129:179–183PubMedCrossRefGoogle Scholar
  9. Borman AH, Dejong EW, Thierry R, Westbroek P, Bosch L, Gruter M, Kamerling JP (1987) Coccolith-associated polysaccharides from cells of Emiliania huxleyi (Haptophyceae). J Phycol 23:118–123CrossRefGoogle Scholar
  10. Borowitzka MA (1982) Morphological and cytological aspects of algal calcification. Int Rev Cytol 74:127–162CrossRefGoogle Scholar
  11. Borowitzka MA (1984) Calcification in aquatic plants. Plant Cell Environ 7:457–466CrossRefGoogle Scholar
  12. Borowitzka MA (1987) Calcification in algae – mechanisms and the role of metabolism. Crit Rev Plant Sci 6:1–45CrossRefGoogle Scholar
  13. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681Google Scholar
  14. Broecker W, Clark E (2009) Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments. Paleoceanography 24:PA3205. doi: 10.1029/2009PA001731 CrossRefGoogle Scholar
  15. Broecker WS, Sanyal A, Takahashi T (2000) The origin of Bahamian whitings revisited. Geophys Res Lett 27:3759–3760CrossRefGoogle Scholar
  16. Brownlee C, Taylor AR (2004) Calcification in coccolithophores: a cellular perspective. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impact. Springer, Berlin, pp 31–49CrossRefGoogle Scholar
  17. Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 2:e790PubMedPubMedCentralCrossRefGoogle Scholar
  18. Burki F, Okamoto N, Pombert JF, Keeling PJ (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc R Soc B 279:2246–2254PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bustos-Serrano H, Morse JW, Millero FJ (2009) The formation of whitings on the Little Bahama Bank. Mar Chem 113:1–8CrossRefGoogle Scholar
  20. Cermeno P, Dutkiewicz S, Harris RP, Follows M, Schofield O, Falkowski PG (2008) The role of nutricline depth in regulating the ocean carbon cycle. Proc Natl Acad Sci U S A 105:20344–20349PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chambouvet A, Alves-de-Souza C, Cueff V, Marie D, Karpov S, Guillou L (2011) Interplay between the parasite Amoebophrya sp. (Alveolata) and the cyst formation of the red tide dinoflagellate Scrippsiella trochoidea. Protist 162:637–649PubMedCrossRefGoogle Scholar
  22. Collins S, Rost B, Rynearson TA (2014) Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl 7:140–155PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cook SS, Jones RC, Vaillancourt RE, Hallegraeff GM (2013) Genetic differentiation among Australian and Southern Ocean populations of the ubiquitous coccolithophore Emiliania huxleyi (Haptophyta). Phycologia 52:368–374CrossRefGoogle Scholar
  24. Corstjens P, van der Kooij A, Linschooten C, Brouwers GJ, Westbroek P, de Vrind-de Jong EW (1998) GPA, a calcium-binding protein in the coccolithophorid Emiliania huxleyi (Prymnesiophyceae). J Phycol 34:622–630CrossRefGoogle Scholar
  25. Couradeau E, Benzerara K, Gerard E, Moreira D, Bernard S, Brown GE Jr, Lopez-Garcia P (2012) An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336:459–462PubMedCrossRefGoogle Scholar
  26. Cros L, Estrada M (2013) Holo-heterococcolithophore life cycles: ecological implications. Mar Ecol Prog Ser 492:57–68CrossRefGoogle Scholar
  27. Cros L, Kleijne A, Zeltner A, Billard C, Young JR (2000) New examples of holococcolith-heterococcolith combination coccospheres and their implications for coccolithophorid biology. Mar Micropaleont 39:1–34CrossRefGoogle Scholar
  28. de Nooijer LJ, Toyofuku T, Kitazato H (2009) Foraminifera promote calcification by elevating their intracellular pH. Proc Natl Acad Sci U S A 106:15374–15378PubMedPubMedCentralCrossRefGoogle Scholar
  29. de Vargas C, Aubry M-P, Probert I, Young JR (2007) Origin and evolution of coccolithophores: from coastal hunters to oceanic farmers. In: Falkowski PG, Knoll AH (eds) The evolution of aquatic photoautotrophs. Academic, New York, p 456Google Scholar
  30. de Vrind-de Jong EW, Van Emburg PR, de Vrind JPM (1994) Mechanisms of calcification: Emiliania huxleyi as a model system. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. The Systematics Association, Clarendon, pp 149–166Google Scholar
  31. Dejong EW, Bosch L, Westbroek P (1976) Isolation and Characterization of a Ca2+-binding polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. Eur J Biochem 70:611–621CrossRefGoogle Scholar
  32. Delille B, Harlay J, Zondervan I, Jacquet S, Chou L, Wollast R, Bellerby RGJ, Frankignoulle M, Borges AV, Riebesell U, Gattuso JP (2005) Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochem Cycles 19:GB2023. doi: 10.1029/2004GB002318 CrossRefGoogle Scholar
  33. Dorrell RG, Smith AG (2011) Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryote Cell 10:856–868CrossRefGoogle Scholar
  34. Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88CrossRefGoogle Scholar
  35. Drescher B, Dillaman RM, Taylor AR (2012) Calcification in the coccolithophore Schyphosphera apsteinii (Prymnesiophycae). J Phycol 48:1343–1361CrossRefGoogle Scholar
  36. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438PubMedCrossRefGoogle Scholar
  37. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162CrossRefGoogle Scholar
  38. Edvardsen B, Eikrem W, Green JC, Andersen RA, Moon-van der Staay SY, Medlin LK (2000) Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia 39:19–35CrossRefGoogle Scholar
  39. Elbrachter M, Gottschling M, Hildebrand-Habel T, Keupp H, Kohring R, Lewis J, Meier KJS, Montresor M, Streng M, Versteegh GJM, Willems H, Zonneveld K (2008) Establishing an agenda for calcareous dinoflagellate research (Thoracosphaeraceae, Dinophyceae) including a nomenclatural synopsis of generic names. Taxon 57:1289–1303Google Scholar
  40. Engel A, Zondervan I, Aerts K, Beaufort L, Benthien A, Chou L, Delille B, Gattuso JP, Harlay J, Heemann C, Hoffmann L, Jacquet S, Nejstgaard J, Pizay MD, Rochelle-Newall E, Schneider U, Terbrueggen A, Riebesell U (2005) Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol Oceanogr 50:493–507CrossRefGoogle Scholar
  41. Faber WW Jr, Preisig HR (1994) Calcified structures and calcification in protists. Protoplasma 181:78–105CrossRefGoogle Scholar
  42. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360PubMedCrossRefGoogle Scholar
  43. Feng Y, Warner ME, Zhang Y, Sun J, Fu F-X, Rose JM, Hutchins DA (2008) Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur J Phycol 43:87–98CrossRefGoogle Scholar
  44. Frada M, Probert I, Allen MJ, Wilson WH, de Vargas C (2008) The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proc Natl Acad Sci 105:15944–15949PubMedPubMedCentralCrossRefGoogle Scholar
  45. Frada M, Percopo I, Young J, Zingone A, de Vargas C, Probert I (2009) First observations of heterococcolithophore–holococcolithophore life cycle combinations in the family Pontosphaeraceae (Calcihaptophycideae, Haptophyta). Mar Micropaleontol 71:20–27CrossRefGoogle Scholar
  46. Frada MJ, Bidle KD, Probert I, de Vargas C (2012) In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Environ Microbiol 14:1558–1569PubMedCrossRefGoogle Scholar
  47. Fresnel J (1994) A heteromorphic life cycle in two coastal coccolithophorids, Hymenomonas lacuna and Hymenomonas coronata (Prymnesiophyceae). Can J Bot 72:1455–1462CrossRefGoogle Scholar
  48. Fujiwara S, Hirokawa Y, Takatsuka Y, Suda K, Asamizu E, Takayanagi T, Shibata D, Tabata S, Tsuzuki M (2007) Gene expression profiling of coccolith-bearing cells and naked cells in haptophyte Pleurochrysis haptonemofera with a cDNA macroarray system. Mar Biotechnol 9:550–560PubMedCrossRefGoogle Scholar
  49. Gao X, Dodge JD, Lewis J (1989) An ultrastructural study of planozygotes and encystment of a marine dinoflagellate, Scrippsiella sp. Br Phycol J 24:153–165CrossRefGoogle Scholar
  50. Gao KS, Xu JT, Gao G, Li YH, Hutchins DA, Huang BQ, Wang L, Zheng Y, Jin P, Cai XN, Hader DP, Li W, Xu K, Liu NN, Riebesell U (2012) Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat Clim Chang 2:519–523Google Scholar
  51. Geisen M, Billard C, Broerse A, Cros L, Probert I, Young J (2002) Life-cycle associations involving pairs of holococcolithophorid species: intraspecific variation or cryptic speciation? Eur J Phycol 37:531–550CrossRefGoogle Scholar
  52. Geisen M, Young JR, Probert I, Sáez AG, Baumann K-H, Sprengel C, Bollmann J, Cros L, de Vargas C, Medlin LK (2004) Species level variation in coccolithophores. In: Young JR, Thierstein HR (eds) Coccolithophores. Springer, Berlin, pp 327–366CrossRefGoogle Scholar
  53. Gottschling M, Keupp H, Plotner J, Knop R, Willems H, Kirsch M (2005) Phylogeny of calcareous dinoflagellates as inferred from ITS and ribosomal sequence data. Mol Phylogenet Evol 36:444–455PubMedCrossRefGoogle Scholar
  54. Gottschling M, Renner SS, Meier KJS, Willems H, Keupp H (2008) Timing deep divergence events in calcareous dinoflagellates. J Phycol 44:429–438CrossRefGoogle Scholar
  55. Gottschling M, Soehner S, Zinssmeister C, John U, Plotner J, Schweikert M, Aligizaki K, Elbrachter M (2012) Delimitation of the Thoracosphaeraceae (Dinophyceae), including the calcareous dinoflagellates, based on large amounts of ribosomal RNA sequence data. Protist 163:15–24PubMedCrossRefGoogle Scholar
  56. Gussone N, Langer G, Thoms S, Nehrke G, Eisenhauer A, Riebesell U, Wefer G (2006) Cellular calcium pathways and isotope fractionation in Emiliania huxleyi. Geology 34:625CrossRefGoogle Scholar
  57. Gussone N, Zonneveld K, Kuhnert H (2010) Minor element and Ca isotope composition of calcareous dinoflagellate cysts of cultured Thoracosphaera heimii. Earth Planet Sci Lett 289:180–188CrossRefGoogle Scholar
  58. Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rummele SE, Bhattacharya D (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Mol Biol Evol 24:1702–1713PubMedCrossRefGoogle Scholar
  59. Hagino K, Bendif E, Young JR, Kogame K, Probert I, Takano Y, Horiguchi T, de Vargas C, Okada H (2011) New evidence for morphological and genetic variation in the cosmopolitan coccolithophore Emiliania huxleyi (Prymnesiophyceae) from the COX1b-ATP4 genes. J Phycol 47:1164–1176CrossRefGoogle Scholar
  60. Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864PubMedPubMedCentralCrossRefGoogle Scholar
  61. Harper JT, Waanders E, Keeling PJ (2005) On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int J Syst Evol Microbiol 55:487–496PubMedCrossRefGoogle Scholar
  62. Harris RP (1994) Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Mar Biol 119:431–439CrossRefGoogle Scholar
  63. Hassenkam T, Johnsson A, Bechgaard K, Stipp SLS (2011) Tracking single coccolith dissolution with picogram resolution and implications for CO2 sequestration and ocean acidification. Proc Natl Acad Sci U S A 108:8571–8576PubMedPubMedCentralCrossRefGoogle Scholar
  64. Henriksen K, Stipp SLS (2009) Controlling biomineralization: the effect of solution composition on coccolith polysaccharide functionality. Cryst Growth Des 9:2088–2097CrossRefGoogle Scholar
  65. Herfort L, Thake B, Roberts J (2002) Acquisition and use of bicarbonate by Emiliania huxleyi. New Phytol 156:427–436CrossRefGoogle Scholar
  66. Holtz L-M, Thoms S, Langer G, Wolf-Gladrow DA (2013) Substrate supply for calcite precipitation in Emiliania huxleyi: assessment of different model approaches. J Phycol 49:417–426CrossRefGoogle Scholar
  67. Houdan A, Billard C, Marie D, Not F, Sáez AG, Young JR, Probert I (2004) Holococcolithophore‐heterococcolithophore (Haptophyta) life cycles: flow cytometric analysis of relative ploidy levels. Syst Biodivers 1:453–465CrossRefGoogle Scholar
  68. Houdan A, Probert I, Van Lenning K, Lefebvre S (2005) Comparison of photosynthetic responses in diploid and haploid life-cycle phases of Emiliania huxleyi (Prymnesiophyceae). Mar Ecol Prog Ser 292:139–146CrossRefGoogle Scholar
  69. Houdan A, Probert I, Zatylny C, Veron B, Billard C (2006) Ecology of oceanic coccolithophores. I. Nutritional preferences of the two stages in the life cycle of Coccolithus braarudii and Calcidiscus leptoporus. Aquat Microb Ecol 44:291–301CrossRefGoogle Scholar
  70. Iglesias-Rodriguez MD, Schofield OM, Batley J, Medlin LK, Hayes PK (2006) Intraspecific genetic diversity in the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton population studies. J Phycol 42:526–536CrossRefGoogle Scholar
  71. Iglesias-Rodriguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, von Dassow P, Rehm E, Armbrust EV, Boessenkool KP (2008) Phytoplankton calcification in a high-CO2 world. Science 320:336–340PubMedCrossRefGoogle Scholar
  72. Janofske D (2000) Scrippsiella trochoidea and scrippsiella regalis, nov. comb. (Peridiniales, Dinophyceae): a comparison. J Phycol 36:178–189CrossRefGoogle Scholar
  73. Jansson C, Northen T (2010) Calcifying cyanobacteria-the potential of biomineralization for carbon capture and storage. Curr Opin Biotechnol 21:365–371PubMedCrossRefGoogle Scholar
  74. Jiang HB, Cheng HM, Gao KS, Qiu BS (2013) Inactivation of Ca2+/H+ Exchanger in Synechocystis sp. Strain PCC 6803 promotes cyanobacterial calcification by upregulating CO2-concentrating mechanisms. Appl Environ Microbiol 79:4048–4055PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jin P, Gao KS, Beardall J (2013a) Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Evolution 67:1869–1878PubMedCrossRefGoogle Scholar
  76. Jin P, Gao KS, Villafane VE, Campbell DA, Helbling EW (2013b) Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation. Plant Physiol 162:2084–2094PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kaffes A, Thoms S, Trimborn S, Rost B, Langer G, Richter K-U, Köhler A, Norici A, Giordano M (2010) Carbon and nitrogen fluxes in the marine coccolithophore Emiliania huxleyi grown under different nitrate concentrations. J Exp Mar Biol Ecol 393:1–8CrossRefGoogle Scholar
  78. Karwath B, Janofske D, Tietjen F, Willems H (2000) Temperature effects on growth and cell size in the marine calcareaous dinoflagellate Thoracospaera heimii. Mar Micropaleontol 39:43–51CrossRefGoogle Scholar
  79. Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493PubMedCrossRefGoogle Scholar
  80. Kegel JU, John U, Valentin K, Frickenhaus S (2013) Genome variations associated with viral susceptibility and calcification in Emiliania huxleyi. PLoS One 8:e80684PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kohn M, Zonneveld KAF (2010) Calcification depth and spatial distribution of Thoracosphaera heimii cysts implications for palaeoceanographic reconstructions. Deep Sea Res I 57:1543–1560CrossRefGoogle Scholar
  82. Kolb A, Strom S (2013) An inducible antipredatory defense in haploid cells of the marine microalga Emiliania huxleyi (Prymnesiophyceae). Limnol Oceanogr 58:932–944Google Scholar
  83. Langer G, Geisen M, Baumann K-H, Kläs J, Riebesell U, Thoms S, Young JR (2006) Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem Geophys Geosyst 7:9. doi: 10.1029/2005GC001227 CrossRefGoogle Scholar
  84. Langer G, Nehrke G, Thoms S, Stoll H (2009) Barium partitioning in coccoliths of Emiliania huxleyi. Geochim Cosmochim Acta 73:2899–2906CrossRefGoogle Scholar
  85. Langer G, de Nooijer LJ, Oetjen K (2010) On the role of the cytoskeleton in coccolith morphogenesis: the effect of cytoskeleton inhibitors. J Phycol 46:1252–1256CrossRefGoogle Scholar
  86. Langer G, Oetjen K, Brenneis T (2012) Calcification of Calcidiscus leptoporus under nitrogen and phosphorus limitation. J Exp Mar Biol Ecol 413:131–137CrossRefGoogle Scholar
  87. Lefebvre SC, Benner I, Stillman JH, Parker AE, Drake MK, Rossignol PE, Okimura KM, Komada T, Carpenter EJ (2012) Nitrogen source and pCO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore Emiliania huxleyi: potential implications of ocean acidification for the carbon cycle. Global Chang Biol 18:493–503CrossRefGoogle Scholar
  88. Leonardos N, Read B, Thake B, Young JR (2009) No mechanistic dependence of photosynthesis on calcification in the coccolithophorid Emiliania huxleyi (Haptophyta). J Phycol 45:1046–1051CrossRefGoogle Scholar
  89. Liu H, Aris-Brosou S, Probert I, de Vargas C (2010) A time line of the environmental genetics of the haptophytes. Mol Biol Evol 27:161–176PubMedCrossRefGoogle Scholar
  90. Lohbeck KT, Riebesell U, Reusch TBH (2012) Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci 5:346–351CrossRefGoogle Scholar
  91. Lohbeck KT, Riebesell U, Collins S, Reusch TBH (2013) Functional genetic divergence in high CO2 adapted Emiliania huxleyi populations. Evolution 67:1892–1900PubMedCrossRefGoogle Scholar
  92. Mackinder LC, Worthy CA, Biggi G, Hall M, Ryan KP, Varsani A, Harper GM, Wilson WH, Brownlee C, Schroeder DC (2009) A unicellular algal virus, Emiliania huxleyi virus 86, exploits an animal-like infection strategy. J Gen Virol 90:2306–2316PubMedCrossRefGoogle Scholar
  93. Mackinder L, Wheeler G, Schroeder D, Riebesell U, Brownlee C (2010) Molecular mechanisms underlying calcification in coccolithophores. Geomicrobiol J 27:585–595CrossRefGoogle Scholar
  94. Mackinder L, Wheeler G, Schroeder D, von Dassow P, Riebesell U, Brownlee C (2011) Expression of biomineralization-related ion transport genes in Emiliania huxleyi. Environ Microbiol 13:3250–3265PubMedCrossRefGoogle Scholar
  95. Marsh ME (2003) Regulation of CaCO3 formation in coccolithophores. Comp Biochem Physiol B 136:743–754PubMedCrossRefGoogle Scholar
  96. Medlin LK, Sáez AG, Young JR (2008) A molecular clock for coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary. Mar Micropaleontol 67:69–86CrossRefGoogle Scholar
  97. Meier KJS, Willems H (2003) Calcareous dinoflagellate cysts in surface sediments from the Mediterranean Sea: distribution patterns and influence of main environmental gradients. Mar Micropaleontol 48:321–354CrossRefGoogle Scholar
  98. Meier KJS, Young JR, Kirsch M, Feist-Burkhardt S (2007) Evolution of different life-cycle strategies in oceanic calcareous dinoflagellates. Eur J Phycol 42:81–89CrossRefGoogle Scholar
  99. Montresor M, Janofske D, Wallems H (1997) The cyst-theca relationship in Calciodinellum operosum Emend. (Peridinales, Dinophyceae) and a new approach for the study of calcareous cysts. J Phycol 33:122–131CrossRefGoogle Scholar
  100. Morse JW, Gledhill DK, Millero FJ (2003) CaCO3 precipitation kinetics in waters from the great Bahama bank. Geochim Cosmochim Acta 67:2819–2826CrossRefGoogle Scholar
  101. Muller MN, Schulz KG, Riebesell U (2010) Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeoscience 7:1109–1116CrossRefGoogle Scholar
  102. Nejstgaard JC, Bamstedt U, Bagoien E, Solberg PT (1995) Algal constraints on copepod grazing- growth-state, toxicity, cell size and season as regulating factors. ICES J Mar Sci 52:347–357CrossRefGoogle Scholar
  103. Nguyen B, Bowers RM, Wahlund TM, Read BA (2005) Suppressive subtractive hybridization of and differences in gene expression content of calcifying and noncalcifying cultures of Emiliania huxleyi strain 1516. Appl Environ Microbiol 71:2564–2575PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nöel M-H, Kawachi M, Inouye I (2004) Induced dimorphic life cycle of a coccolithophorid, Calyptrosphaera sphaeroidea (Prymnesiophyceae, Haptophyta). J Phycol 40:112–129CrossRefGoogle Scholar
  105. Not F, Siano R, Kooistra WHCF, Simon N, Vaulot D, Probert I (2012) Diversity and ecology of eukaryotic marine phytoplankton. Adv Bot Res 64:1–53CrossRefGoogle Scholar
  106. Pagarete A, Allen MJ, Wilson WH, Kimmance SA, de Vargas C (2009) Host-virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest. Environ Microbiol 11:2840–2848PubMedCrossRefGoogle Scholar
  107. Pagarete A, Le Corguille G, Tiwari B, Ogata H, de Vargas C, Wilson WH, Allen MJ (2011) Unveiling the transcriptional features associated with coccolithovirus infection of natural Emiliania huxleyi blooms. FEMS Microbiol Ecol 78:555–564PubMedCrossRefGoogle Scholar
  108. Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci 108:13624–13629PubMedPubMedCentralCrossRefGoogle Scholar
  109. Parke M, Adams I (1960) The motile (Crystallolithus hyalinus Gaarder & Markali) and non-motile phases in the life history of Coccolithus pelagicus (Wallich) Schiller. J Mar Biol Assoc UK 39:263–274CrossRefGoogle Scholar
  110. Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93:803–959PubMedPubMedCentralCrossRefGoogle Scholar
  111. Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, Bowser SS, Cepicka I, Decelle J, Dunthorn M, Fiore-Donno AM, Gile GH, Holzmann M, Jahn R, Jirků M, Keeling PJ, Kostka M, Kudryavtsev A, Lara E, Luke J, Mann DG, Mitchell EAD, Nitsche F, Romeralo M, Saunders GW, Simpson AGB, Smirnov AV, Spouge JL, Stern RF, Stoeck T, Zimmermann J, Schindel D, de Vargas C (2012) CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol 10:e1001419PubMedPubMedCentralCrossRefGoogle Scholar
  112. Payne VE, Rickaby REM, Benning LG, Shaw S (2008) Calcite crystal growth orientation: implications for trace metal uptake into coccoliths. Mineral Mag 72:269–272CrossRefGoogle Scholar
  113. Pond DW, Harris RP, Brownlee C (1995) A microinjection technique using a pH-sensitive dye to determine the gut pH of Calanus helgolandicus. Mar Biol 123:75–79CrossRefGoogle Scholar
  114. Quinn PS, Cortes MY, Bollmann J (2005) Morphological variation in the deep ocean-dwelling coccolithophore Florisphaera profunda (Haptophyta). Eur J Phycol 40:123–133CrossRefGoogle Scholar
  115. Ramos JBE, Schulz KG, Febiri S, Riebesell U (2012) Photoacclimation to abrupt changes in light intensity by Phaeodactylum tricornutum and Emiliania huxleyi: the role of calcification. Mar Ecol Prog Ser 452:11–26CrossRefGoogle Scholar
  116. Raven JA, Crawfurd K (2012) Environmental controls on coccolithophore calcification. Mar Ecol Prog Ser 470:137–166CrossRefGoogle Scholar
  117. Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, Mayer C, Miller J, Monier A, Salamov A, Young J, Aguilar M, Claverie JM, Frickenhaus S, Gonzalez K, Herman EK, Lin YC, Napier J, Ogata H, Sarno AF, Shmutz J, Schroeder D, de Vargas C, Verret F, von Dassow P, Valentin K, Van de Peer Y, Wheeler G, Dacks JB, Delwiche CF, Dyhrman ST, Glockner G, John U, Richards T, Worden AZ, Zhang XY, Grigoriev IV, Emiliania Huxleyi A (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209–213PubMedCrossRefGoogle Scholar
  118. Reusch TB, Boyd PW (2013) Experimental evolution meets marine phytoplankton. Evolution 67:1849–1859PubMedCrossRefGoogle Scholar
  119. Richier S, Kerros ME, de Vargas C, Haramaty L, Falkowski PG, Gattuso JP (2009) Light-dependent transcriptional regulation of genes of biogeochemical interest in the diploid and haploid life cycle stages of Emiliania huxleyi. Appl Environ Microbiol 75:3366–3369PubMedPubMedCentralCrossRefGoogle Scholar
  120. Richier S, Fiorini S, Kerros ME, von Dassow P, Gattuso JP (2011) Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: from physiology to molecular level. Mar Biol 158:551–560PubMedPubMedCentralCrossRefGoogle Scholar
  121. Rickaby REM, Schrag DP, Zondervan I, Riebesell U (2002) Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi. Global Biogeochem Cycles 16(1):1006. doi: 10.1029/2001GB001408 CrossRefGoogle Scholar
  122. Ridgwell A, Schmidt DN, Turley C, Brownlee C, Maldonado MT, Tortell P, Young JR (2009) From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification. Biogeosciences 6:2611–2623CrossRefGoogle Scholar
  123. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47:179–214CrossRefGoogle Scholar
  124. Riding R (2006) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology 4:299–316CrossRefGoogle Scholar
  125. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367PubMedCrossRefGoogle Scholar
  126. Robbins LL, Tao Y, Evans CA (1997) Temporal and spatial distribution of whitings on Great Bahama Bank and a new lime mud budget. Geology 25:947–950CrossRefGoogle Scholar
  127. Rokitta SD, de Nooijer LJ, Trimborn S, de Vargas C, Rost B, John U (2011) Transcriptome analyses reveal differential gene expression patterns between the life-cycle stages of Emiliania huxleyi (Haptophyta) and reflect specialization to different ecological niches. J Phycol 47:829–838CrossRefGoogle Scholar
  128. Rost B, Riebesell U (2004) Coccolithophores and the biological pump: responses to environmental changes. In: Thierstein HR, Young JR (eds) Coccolithophores, from molecular processes to global impact. Springer, Heidelberg, pp 99–125Google Scholar
  129. Rowson JD, Leadbeater BSC, Green JC (1986) Calcium carbonate deposition in the motile (Crystallolithus) phase of Coccolithus pelagicus (Prymnesiophyceae). Br Phycol J 21:359–370CrossRefGoogle Scholar
  130. Satoh M, Iwamoto K, Suzuki I, Shiraiwa Y (2009) Cold stress stimulates intracellular calcification by the coccolithophore, Emiliania huxleyi (Haptophyceae) under phosphate-deficient conditions. Mar Biotechnol 11:327–333PubMedCrossRefGoogle Scholar
  131. Schmoker C, Hernandez-Leon S, Calbet A (2013) Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J Plankton Res 35:691–706CrossRefGoogle Scholar
  132. Schroeder DC, Biggi GF, Hall M, Davy J, Martinez JM, Richardson AJ, Malin G, Wilson WH (2005) A genetic marker to separate Emiliania huxleyi (Prymnesiophyceae) morphotypes. J Phycol 41:874–879CrossRefGoogle Scholar
  133. Sciandra A, Harlay J, Lefevre D, Lemee R, Rimmelin P, Denis M, Gattuso JP (2003) Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation. Mar Ecol Prog Ser 261:111–122CrossRefGoogle Scholar
  134. Sett S, Bach LT, Schulz KG, Koch-Klavsen S, Lebrato M, Riebesell U (2014) Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2. PLoS One 9:e88308PubMedPubMedCentralCrossRefGoogle Scholar
  135. Shi D, Xu Y, Morel FMM (2009) Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. Biogeosciences 6:1199–1207CrossRefGoogle Scholar
  136. Shigaki T, Hirschi KD (2006) Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants. Plant Biol 8:419–429PubMedCrossRefGoogle Scholar
  137. Shutler JD, Land PE, Brown CW, Findlay HS, Donlon CJ, Medland M, Snooke R, Blackford JC (2013) Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years of satellite Earth observation data. Biogeosciences 10:2699–2709CrossRefGoogle Scholar
  138. Stiller JW, Huang J, Ding Q, Tian J, Goodwillie C (2009) Are algal genes in non-photosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 10:484PubMedPubMedCentralCrossRefGoogle Scholar
  139. Stoecker DK, Johnson MD, deVargas C, Not F (2009) Acquired phototrophy in aquatic protists. Aquat Microb Ecol 57:279–310CrossRefGoogle Scholar
  140. Stoll HM, Schrag DP (2000) Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate. Geochem Geophys Geosyst 1:1006. doi: 10.1029/1999GC000015 CrossRefGoogle Scholar
  141. Stoll HM, Ziveri P, Geisen M, Probert I, Young JR (2002) Potential and limitations of Sr/Ca ratios in coccolith carbonate: new perspectives from cultures and monospecific samples from sediments. Phil Trans R Soc London A 360:719–747CrossRefGoogle Scholar
  142. Stoll H, Langer G, Shimizu N, Kanamaru K (2012) B/Ca in coccoliths and relationship to calcification vesicle pH and dissolved inorganic carbon concentrations. Geochim Cosmochim Acta 80:143–157CrossRefGoogle Scholar
  143. Suffrian K, Schulz KG, Gutowska MA, Riebesell U, Bleich M (2011) Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability. New Phytol 190:595–608PubMedCrossRefGoogle Scholar
  144. Taylor AR, Russell MA, Harper GM, Collins TT, Brownlee C (2007) Dynamics of formation and secretion of heterococcoliths by Coccolithus pelagicuss ssp. braarudii. Eur J Phycol 42:125–136CrossRefGoogle Scholar
  145. Taylor AR, Chrachri A, Wheeler G, Goddard H, Brownlee C (2011) A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores. PLoS Biol 9:e1001085PubMedPubMedCentralCrossRefGoogle Scholar
  146. Thompson JB, SchultzeLam S, Beveridge TJ, DesMarais DJ (1997) Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnol Oceanogr 42:133–141PubMedCrossRefGoogle Scholar
  147. Trimborn S, Langer G, Rost B (2007) Effect of varying calcium concentrations and light intensities on calcification and photosynthesis in Emiliania huxleyi. Limnol Oceanogr 52:2285–2293CrossRefGoogle Scholar
  148. Tyrrell T, Holligan PM, Mobley CD (1999) Optical impacts of oceanic coccolithophore blooms. J Geophys Res 104:3223–3241CrossRefGoogle Scholar
  149. Van de Waal DB, John U, Ziveri P, Reichart GJ, Hoins M, Sluijs A, Rost B (2013) Ocean acidification reduces growth and calcification in a marine dinoflagellate. PLoS One 8:e65987PubMedPubMedCentralCrossRefGoogle Scholar
  150. Vardi A, Van Mooy BAS, Fredricks HF, Popendorf KJ, Ossolinski JE, Haramaty L, Bidle KD (2009) Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science 326:861–865PubMedCrossRefGoogle Scholar
  151. Vardi A, Haramaty L, Van Mooy BA, Fredricks HF, Kimmance SA, Larsen A, Bidle KD (2012) Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc Natl Acad Sci U S A 109:19327–19332PubMedPubMedCentralCrossRefGoogle Scholar
  152. Vink A (2004) Calcareous dinoflagellate cysts in South and equatorial Atlantic surface sediments: diversity, distribution, ecology and potential for palaeoenvironmental reconstruction. Mar Micropaleontol 50:43–88CrossRefGoogle Scholar
  153. Vink A, Zonneveld KAF, Willems H (2000) Distributions of calcareous dinoflagellate cysts in surface sediments of the western equatorial Atlantic Ocean, and their potential use in palaeoceanography. Mar Micropaleontol 38:149–180CrossRefGoogle Scholar
  154. von Dassow P, Ogata H, Probert I, Wincker P, Da Silva C, Audic S, Claverie JM, de Vargas C (2009) Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biol 10:R114CrossRefGoogle Scholar
  155. Wahlund TM, Hadaegh AR, Clark R, Nguyen B, Fanelli M, Read BA (2004) Analysis of expressed sequence tags from calcifying cells of marine coccolithophorid (Emiliania huxleyi). Mar Biotechnol 6:278–290PubMedGoogle Scholar
  156. Wendler J, Grafe KU, Willems H (2002) Palaeoecology of calcareous dinoflagellate cysts in the mid-Cenomanian Boreal Realm: implications for the reconstruction of palaeoceanography of the NW European shelf sea. Cretac Res 23:213–229CrossRefGoogle Scholar
  157. Westbroek P, Dejong EW, Vanderwal P, Borman AH, Devrind JPM, Kok D, Debruijn WC, Parker SB (1984) Mechanism of calcification in the marine alga Emiliania huxleyi. Phil Trans R Soc London B 304:435–444CrossRefGoogle Scholar
  158. Westbroek P, Young JR, Linschooten K (1989) Coccolith production (biomineralization) in the marine alga Emiliania huxleyi. J Protozool 36:368–373CrossRefGoogle Scholar
  159. Winter A, Henderiks J, Beaufort L, Rickaby REM, Brown CW (2014) Poleward expansion of the coccolithophore Emiliania huxleyi. J Plankton Res 36:316–325CrossRefGoogle Scholar
  160. Xu K, Gao KS (2012) Reduced calcification decreases photoprotective capability in the coccolithophorid Emiliania huxleyi. Plant Cell Physiol 53:1267–1274PubMedCrossRefGoogle Scholar
  161. Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818PubMedCrossRefGoogle Scholar
  162. Young JR, Henriksen K (2003) Biomineralization within vesicles: the calcite of coccoliths. In: Dove PM, DeYoreo JJ, Weiner S (eds) Reviews in mineralogy and geochemistry: biomineralization, vol 54. Mineralogical Society of America, Washington, DC, pp 189–215Google Scholar
  163. Young JR, Westbroek P (1991) Genotypic variation in the coccolithophorid species Emiliania huxleyi. Mar Micropaleontol 18:5–23CrossRefGoogle Scholar
  164. Young JR, Davis SA, Bown PR, Mann S (1999) Coccolith ultrastructure and biomineralisation. J Struct Biol 126:195–215PubMedCrossRefGoogle Scholar
  165. Young JR, Geisen M, Cros L, Kleijne A, Sprengel C, Probert I, Ostergaard J (2003) A guide to extant coccolithophore taxonomy. J Nannoplankton Res Spec Issue 1:1–125Google Scholar
  166. Young JR, Geisen M, Probert I (2005) Review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. Micropaleontology 51:267–288CrossRefGoogle Scholar
  167. Young JR, Andruleit H, Probert I (2009) Coccolith function and morphogenesis: insights from appendage-bearing coccolithophores of the family Syracosphaeraceae (Haptophyta). J Phycol 45:213–226CrossRefGoogle Scholar
  168. Zinssmeister C, Keupp H, Tischendorf G, Kaulbars F, Gottschling M (2013) Ultrastructure of calcareous dinophytes (Thoracosphaeraceae, Peridiniales) with a focus on vacuolar crystal-like particles. PLoS One 8:e54038PubMedPubMedCentralCrossRefGoogle Scholar
  169. Ziveri P, de Bernardi B, Baumann K-H, Stoll HM, Mortyn PG (2007) Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean. Deep Sea Res II 54:659–675CrossRefGoogle Scholar
  170. Ziveri P, Thoms S, Probert I, Geisen M, Langer G (2012) A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms. Biogeosciences 9:1025–1032CrossRefGoogle Scholar
  171. Zondervan I, Zeebe RE, Rost B, Riebesell U (2001) Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO2. Global Biogeochem Cycles 15:507–516CrossRefGoogle Scholar
  172. Zondervan I, Rost B, Riebesell U (2002) Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. J Exp Mar Biol Ecol 272:55–70CrossRefGoogle Scholar
  173. Zonneveld K (2004) Potential use of stable oxygen isotope composition of Thoracosphaera heimii (Dinophyceae) for upper watercolumn (thermocline) temperature reconstruction. Mar Micropaleontol 50:307–317CrossRefGoogle Scholar
  174. Zonneveld KAF, Mackensen A, Baumann K-H (2007) Stable oxygen isotopes of Thoracosphaera heimii (Dinophyceae) in relationship to temperature; a culture experiment. Mar Micropaleontol 64:80–90CrossRefGoogle Scholar
  175. Zonneveld KAF, Marret F, Versteegh GJM, Bogus K, Bonnet S, Bouimetarhan I, Crouch E, de Vernal A, Elshanawany R, Edwards L, Esper O, Forke S, Grøsfjeld K, Henry M, Holzwarth U, Kielt J-F, Kim S-Y, Ladouceur S, Ledu D, Chen L, Limoges A, Londeix L, Lu SH, Mahmoud MS, Marino G, Matsouka K, Matthiessen J, Mildenhal DC, Mudie P, Neil HL, Pospelova V, Qi Y, Radi T, Richerol T, Rochon A, Sangiorgi F, Solignac S, Turon J-L, Verleye T, Wang Y, Wang Z, Young M (2013) Atlas of modern dinoflagellate cyst distribution based on 2405 data points. Rev Palaeobot Palynol 191:1–197CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonUSA
  2. 2.Marine Biological Association of the UKThe LaboratoryPlymouthUK
  3. 3.School of Ocean and Earth SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations