Skip to main content

Silicification in the Microalgae

  • Chapter
  • First Online:
Book cover The Physiology of Microalgae

Part of the book series: Developments in Applied Phycology ((DAPH,volume 6))

Abstract

Silicon (Si) is incorporated in species from most of the biological kingdoms. In this review we focus on what is known about: Si accumulation and the formation of siliceous structures in microalgae and some related non-photosynthetic groups, molecular and genetic mechanisms controlling silicification in the microalgae, and the potential costs and benefits associated with silicification in the microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Wherever possible the currently accepted names for species are used. The name used in the paper cited is also indicated. For details of names see chapter “Systematics, Taxonomy and Species Names: Do They Matter?” of this book (Borowitzka 2016).

References

  • Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, le Gall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Allison CW (1981) Siliceous microfossils from the Lower Cambrian of Northwest Canada: possible source for biogenic chert. Science 211:53–55

    Article  CAS  PubMed  Google Scholar 

  • Allison CW, Hilgert JW (1986) Scale microfossils from the Early Cambrian of northwest Canada. J Paleont 60:973–1015

    Google Scholar 

  • Alverson AJ (2007) Strong purifying selection in the silicon transporters of marine and freshwater diatoms. Limnol Oceanogr 52:1420

    Article  CAS  Google Scholar 

  • Anderson RA (1987) Synurophyceae classis nov: a new class of algae. Am J Bot 74:337–353

    Article  Google Scholar 

  • Anderson OR (1990) Effects of silicate deficiency on test morphology, cytoplasmic fine structure, and growth of the testate amoeba Netzelia tuberculata (Wallich) Netzel (Rhizopoda, Testacea) grown in laboratory culture. Arch Protistenk 138:17–27

    Article  Google Scholar 

  • Anderson OR, Cowling AJ (1994) The fine structure of the euglyphid testate amoeba Assulina muscorum (Rhizopoda: Euglyphidae) with observations of growth rate in culture, morphometries, and siliceous scale deposition. Eur J Protistol 30:451–461

    Article  Google Scholar 

  • Annenkov VV, Basharina TN, Danilovtseva EN, Grachev MA (2013) Putative silicon transport vesicles in the cytoplasm of the diatom Synedra acus during surge uptake of silicon. Protoplasma 250:1147–1155

    Article  CAS  PubMed  Google Scholar 

  • Ariztia EV, Andersen RA, Sogin ML (1991) A new phylogeny for Chromophyte algae using 16S‐like rRNA sequence from Mallomoas papillosa (Synurophyceae) and Tribonema aequale (Xanthophycae). J Phycol 27:428–436

    Article  CAS  Google Scholar 

  • Baines SB, Twining BS, Brzezinski MA, Krause JW, Vogt S, Assael D, McDaniel H (2012) Significant silicon accumulation by marine picocyanobacteria. Nat Geosci 5:886–891

    Article  CAS  Google Scholar 

  • Bell GR (1961) Penetration of spines from a marine diatom into the gill tissue of lingcod (Ophiodon elongatus). Nature 192:279–280

    Article  Google Scholar 

  • Bold H, Wynne M (1978) Introduction to the algae: structure and reproduction. Prentice Hall, Princeton

    Google Scholar 

  • Booth BC, Marchant HJ (1987) Parmales, a new order of marine chrysophytes, with descriptions of three new genera and seven new species. J Phycol 23:245–260

    Article  Google Scholar 

  • Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681

    Chapter  Google Scholar 

  • Borowitzka MA, Volcani BE (1978) The polymorphic diatom Phaeodactylum tricornutum: ultrastructure of its morphotypes. J Phycol 14:10–21

    Article  Google Scholar 

  • Brunner E, Richthammer P, Ehrlich H, Paasch S, Simon P, Ueberlein S, van Pée KH (2009) Chitin‐based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angew Chem Int Ed 48:9724–9727

    Article  CAS  Google Scholar 

  • Brzezinski MA (1992) Cell-cycle effects on the kinetics of silicic acid uptake and resource competition among diatoms. J Plankton Res 14:1511–1539

    Article  CAS  Google Scholar 

  • Brzezinski MA, Olson RJ, Chisholm SW (1990) Silicon availability and cell-cycle progression in marine diatoms. Mar Ecol Prog Ser 67:83–96

    Article  CAS  Google Scholar 

  • Bursa A (1969) Actiniscus canadensis n. sp., A. pentasterias Ehrenberg v. arcticus n. var., Pseudactiniscus pentasterias n. gen., n. sp., marine relicts in Canadian Arctic Lakes. J Protozool 16:411–418

    Article  Google Scholar 

  • Chapman DV, Dodge JD, Heaney SI (1982) Cyst formation in the freshwater dinoflagellate Ceratium hirundinella (Dinophyceae). J Phycol 18:121–129

    Article  Google Scholar 

  • Curnow P, Senior L, Knight MJ, Thamatrakoln K, Hildebrand M, Booth PJ (2012) Expression, purification, and reconstitution of a diatom silicon transporter. Biochemistry 51:3776–3785

    Article  CAS  PubMed  Google Scholar 

  • Daugbjerg N, Guillou L (2001) Phylogenetic analyses of Bolidophyceae (Heterokontophyta) using rbcL gene sequences support their sister group relationship to diatoms. Phycologia 40:153–161

    Article  Google Scholar 

  • Davidson AT, Bramich D, Marchant HJ, McMinn A (1994) Effects of UV-B irradiation on growth and survival of Antarctic marine diatoms. Mar Biol 119:507–515

    Article  Google Scholar 

  • De La Rocha C, Passow U (2004) Recovery of Thalassiosira weissflogii from nitrogen and silicon starvation. Limnol Oceanogr 49:245–255

    Article  Google Scholar 

  • De Stefano L, De Stefano M, Maddalena P, Moretti L, Rea I, Mocella V, Rendina I (2007) Playing with light in diatoms: small water organisms with a natural photonic crystal structure. Proc SPIE Photon Mater Devices Appl II 6593:659313. doi:10.1117/12.723987

    Google Scholar 

  • Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Bestawy E, Bellinger EG, Sigee DC (1996) Elemental composition of phytoplankton in a subtropical lake: X-ray microanalytical studies on the dominant algae Spirulina platensis (Cyanophyta) and Cyclotella meneghiniana (Bacillariophyceae). Eur J Phycol 31:157–166

    Article  Google Scholar 

  • Eren J (1969) Cyst formation in Peridinium cinctum. J Protozool 16(S4):35

    Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  CAS  PubMed  Google Scholar 

  • Finkel ZV, Kotrc B (2010) Silica use through time: macroevolutionary change in the morphology of the diatom frustule. Geomicrobiol J 27:596–608

    Article  CAS  Google Scholar 

  • Finkel Z, Matheson K, Regan K, Irwin A (2010) Genotypic and phenotypic variation in diatom silicification under paleo-oceanographic conditions. Geobiology 8:433–445

    Article  CAS  PubMed  Google Scholar 

  • Fu FF, Akagi T, Yabuki S, Iwaki M, Ogura N (2000) Distribution of rare earth elements in seaweed: implication of two different sources of rare earth elements and silicon in seaweed. J Phycol 36:62–70

    Article  CAS  Google Scholar 

  • Fuhrman JA, Chisholm SW, Guillard RRL (1978) Marine alga Platymonas sp. accumulates silicon without apparent requirement. Nature 272:244–246

    Article  CAS  Google Scholar 

  • Fuhrmann T, Landwehr S, El Rharbi-Kucki M, Sumper M (2004) Diatoms as living photonic crystals. Appl Phys B 78:257–260

    Article  CAS  Google Scholar 

  • Grachev M, Sherbakova T, Masyukova Y, Likhoshway Y (2005) A potential zinc-binding motif in silicic acid transport proteins of diatoms. Diatom Res 20:409–411

    Article  Google Scholar 

  • Green JC, Hibberd DJ, Pienaar RN (1982) The taxonomy of Prymnesium (Prymnesiophyceae) including a description of a new cosmopolitan species, P. patellifera sp. nov., and further observations on P. parvum N. Carter. Br Phycol J 17:363–382

    Article  Google Scholar 

  • Guillou L (2011) Characterization of the Parmales: much more than the resolution of a taxonomic enigma. J Phycol 47:2–4

    Article  Google Scholar 

  • Guiry MD, Guiry, GM (2015) AlgaeBase. National University of Ireland. Retrieved from http://www.algaebase.org on 10 February 2015

  • Hale MS, Mitchell JG (2001) Functional morphology of diatom frustule microstructures: hydrodynamic control of Brownian particle diffusion and advection. Aquat Microb Ecol 24:287–295

    Article  Google Scholar 

  • Hale MS, Mitchell JG (2002) Effects of particle size, flow velocity, and cell surface microtopography on the motion of submicrometer particles over diatoms. Nano Lett 2:657–663

    Article  CAS  Google Scholar 

  • Hamm CE, Smetacek V (2007) Armour: why, when and how. In: Falkowksi PG, Knoll AH (eds) Evolution of aquatic photoautotrophs. Academic, San Diego, pp 311–332

    Google Scholar 

  • Hansen G (1993) Light and electron microscopical observations of the dinoflagellate Actiniscus pentasterias (Dinophyceae). J Phycol 29:486–499

    Article  Google Scholar 

  • Hargraves PE (2002) The ebrian flagellates Ebria and Hermesinum. Plankton Biol Ecol 49:9–16

    Google Scholar 

  • Harper HEJ, Knoll AH (1975) Silica, diatoms, and Cenozoic radiolarian evolution. Geology 3:175–177

    Article  Google Scholar 

  • Hildebrand M (2003) Biological processing of nanostructured silica in diatoms. Prog Org Coat 47:256–266

    Article  CAS  Google Scholar 

  • Hildebrand M, Volcani BE, Gassmann W, Schroeder JI (1997) A gene family of silicon transporters. Nature 385:688

    Article  CAS  PubMed  Google Scholar 

  • Hirota R, Hata Y, Ikeda T, Ishida Y, Kuroda A (2010) The silicon layer supports acid resistance of Bacillus cereus spores. J Bacteriol 192:111–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichinomiya M, Yoshikawa S, Kamiya M, Ohki K, Takaichi S, Kuwata A (2011) Isolation and characterization of Parmales (Heterokonta/Herterokontophyta/Stramenopiles) from the Oyashio region, Western North Pacific. J Phycol 47:144–151

    Article  Google Scholar 

  • Katz ME, Finkel ZV, Gryzebek D, Knoll AH, Falkowski PG (2004) Eucaryotic phytoplankton: evolutionary trajectories and global biogeochemical cycles. Ann Rev Ecol Evol Syst 35:523–556

    Article  Google Scholar 

  • Kitchen JC, Zaneveld RV (1992) A three-layer sphere model of the optical properties of phytoplankton. Limnol Oceanogr 37:1680–1690

    Article  Google Scholar 

  • Knoll AH (1992) The early evolution of eukaryotes: a geological perspective. Science 256:622–627

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH (2003) Biomineralizatin and evolutionary history. Rev Mineral Geochem 54:329–356

    Article  CAS  Google Scholar 

  • Knoll AH, Summons RE, Waldbauer JR, Zumberge JE (2007) The geological succession of primary producers in the oceans. In: Falkowksi PG, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier, Amsterdam, pp 133–163

    Chapter  Google Scholar 

  • Konno S, Jordan RW (2012) Parmales. eLS. doi:http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0023691/references

  • Krienitz L, Peschke T, Giering B (1990) Lichtmikroskopische, rasterelektronenmikroskopische und röntgenmikroanalytische untersuchungen an Hemitonia maeandrocystis Skuja (Chlorophyta, Phacotaceae). Arch Protistenk 138:159–170

    Article  Google Scholar 

  • Krivtsov V, Bellinger EG, Sigee DC (2005) Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion. Aquat Ecol 39:123–134

    Article  CAS  Google Scholar 

  • Kröger N, Wetherbee R (2000) Pleuralins are involved in theca differentiation in the diatom Cylindrotheca fusiformis. Protist 151:263–273

    Article  PubMed  Google Scholar 

  • Kröger N, Bergsdorf C, Sumper M (1996) Frustulins: domain conservation in a protein family associated with diatom cell walls. Eur J Biochem 239:259–264

    Article  PubMed  Google Scholar 

  • Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Article  PubMed  Google Scholar 

  • Kröger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Species-specific polyamines from diatoms control silica morphology. Proc Nat Acad Sci 97:14133–14138

    Article  PubMed  PubMed Central  Google Scholar 

  • Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    Article  PubMed  CAS  Google Scholar 

  • Lazarus DB, Kotrc B, Wulf G, Schmidt DN (2009) Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability. Proc Natl Acad Sci U S A 106:9333–9338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leadbeater B, Barker DN (1995) Biomineralization and scale production in the Chrysophyta. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, Cambridge, pp 141–164

    Chapter  Google Scholar 

  • Li C-W, Volcani B (1984) Aspects of silicification in wall morphogenesis of diatoms. Phil Trans Roy Soc London B 304:519–528

    Article  Google Scholar 

  • Likhoshway YV, Masyukova YA, Sherbakova T, Petrova D, Grachev M (2006) Detection of the gene responsible for silicic acid transport in chrysophycean algae. Doklady Biol Sci 408:256–260

    Article  Google Scholar 

  • Lipps JH (1970) Ecology and evolution of silicoflagellates. In: Proceedings of the North American Paleontological Convention, The Paleontological Society Special Publication, Chicago, 2:965–993

    Google Scholar 

  • Loeblich A III, Loeblich LA (1984) Dinoflagellate cysts. In: Spector D (ed) Dinoflagellates. Academic, New York, pp 443–480

    Chapter  Google Scholar 

  • Lovejoy C, Massana R, Pedrós-Alió C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manton I, Parke M (1960) Further observations on small green flagellates with special reference to possible relatives of Chromulina pusilla Butcher. J Mar Biol Assoc UK 39:275–298

    Article  Google Scholar 

  • Marron AO, Alston MJ, Heavens D, Akam M, Caccamo M, Holland PW, Walker G (2013) A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates. Proc Roy Soc B 280:20122543

    Article  CAS  Google Scholar 

  • Meisterfeld R (2002) Testate amoebae with filopodia. In: Lee JJ, Leedate GF, Bradbury P (eds) The illustrated guide to teh Protozoa, vol 2. Society of Protozoologists, Lawrence, pp 1054–1084

    Google Scholar 

  • Milligan AJ, Morel FMM (2002) A proton buffering role for silica in diatoms. Science 297:1848–1850

    Article  CAS  PubMed  Google Scholar 

  • Millington WF, Gawlik SR (1967) Silica in the wall of Pediastrum. Nature 216:68–68

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JG, Seuront L, Doubell MJ, Losic D, Voelcker NH, Seymour J, Lal R (2013) The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PLoS One 8(5):e59548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuta H, Yasui H (2012) Protective function of silicon deposition in Saccharina japonica sporophytes (Phaeophyceae). J Appl Phycol 24:1177–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mock T, Samanta MP, Iverson V, Berthiaume C, Robison M, Holtermann K, Durkin C, Splinter BonDurant S, Richmond K, Rodesch M, Kallas T, Huttlin EL, Cerrina F, Sussman MR, Armbrust EV (2008) Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bio-processes. Proc Natl Acad Sci U S A 105:1579–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moestrup Ø, Thomsen HA (1990) Dictyocha speculum (Siliflagellatea, Dictyochyceae), studies on armoured and unarmoured stages. Biol Skr 37:1–57

    Google Scholar 

  • Moore LF, Traquair JA (1976) Silicon, a required nutrient for Cladophora glomerata (L) Kütz. (Chlorophyta). Planta 128:179–182

    Article  CAS  PubMed  Google Scholar 

  • Nelson DM, Riedel GF, Millan-Nunez R, Lara-Lara JR (1984) Silicon uptake by algae with no known Si requirement. I. True cellular uptake and pH -induced precipitation by Phaeodactylum tricornutum (Bacillariophyceae) and Platymonas sp. (Prasinophyceae). J Phycol 20:140–147

    Article  Google Scholar 

  • Ogden C (1979) An ultrastructural study of division in Euglypha (Protozoa: Rhizopoda). Protistologica 15:541–556

    Google Scholar 

  • Ota S, Eikrem W, Edvardsen B (2012) Ultrastructure and molecular phylogeny of Thaumatomonads (Cercozoa) with emphasis on Thaumatomastix salina from Oslofjorden, Norway. Protist 163:560–573

    Article  CAS  PubMed  Google Scholar 

  • Parker BC (1969) Occurrence of silica in brown and green algae. Can J Bot 6:37–46

    Google Scholar 

  • Perch-Nielsen K (1978) Eocene to Pliocene archaeomonads, ebridians, and endoskeletal dinoflagellates from the Norwegian Sea, DSDP Leg 38. Initial Rep Deep Sea Drill Proj 38:147–175

    Google Scholar 

  • Poll WH, Vrieling EG, Gieskes WW (1999) Location and expression of frustulins in the pennate diatoms Cylindrotheca fusiformis, Navicula pelliculosa, and Navicula salinarum (Bacillariophyceae). J Phycol 35:1044–1053

    Article  Google Scholar 

  • Pondaven P, Gallinari M, Chollet S, Bucciarelli E, Sarthou G, Schultes S, Jean F (2007) Grazing-induced changes in cell wall silicification in a marine diatom. Protist 158:21–28

    Article  CAS  PubMed  Google Scholar 

  • Porter S (2011) The rise of predators. Geology 39:607–608

    Article  Google Scholar 

  • Porter SM, Knoll AH (2009) Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26:360–385

    Article  Google Scholar 

  • Porter SM, Meisterfeld R, Knoll AH (2003) Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. J Paleont 77:409–429

    Article  Google Scholar 

  • Poulsen N, Scheffel A, Sheppard VC, Chesley PM, Kroger N (2013) Penatlysine clusters mediate silica targeting of silaffins in Thalassiosira pseudonana. J Biol Chem. 288:20100-20109

    Google Scholar 

  • Preisig HR (1994) Siliceous structures and silicification in flagellated protists. Protoplasma 181:29–42

    Article  Google Scholar 

  • Racki G, Cordey F (2000) Radiolarian paleoecology and radiolarites: is the present the key to the past? Earth Sci Rev 52:83–120

    Article  CAS  Google Scholar 

  • Raven JA, Waite AM (2004) The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol 162:45–61

    Article  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The Diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Sandgren CD (1989) SEM investigations of statospore (stomatocyst) development in diverse members of the Chrysophyceae and Synurophyceae. Nova Hedwigia Beih 95:45–69

    Google Scholar 

  • Sandgren CD, Smol JP, Kristiansen J (1995) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sandgren CD, Hall SA, Barlow SB (1996) Siliceous scale production in Chrysophyte and Synurophyte algae. 1. Effects of silica-limited growth on cell silica content, scale morphology, and the construction of the scale layer of Synura petersenii. J Phycol 32:675–692

    Article  CAS  Google Scholar 

  • Santos J, Almeida SF, Figueira E (2013) Cadmium chelation by frustulins: a novel metal tolerance mechanism in Nitzschia palea (Kützing) W. Smith Ecotoxicol 22:166–173

    Article  CAS  Google Scholar 

  • Sapriel G, Quinet M, Heijde M, Jourdren L, Tanty V, Luo G, Le Crom S, Lopez PJ (2009) Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS One 4(10):e7458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheffel A, Poulsen N, Shian S, Kröger N (2011) Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc Natl Acad Sci 108:3175–3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz K (1973) A bound form of silicon in glycosaminoglycans and polyuronides. Proc Natl Acad Sci 70:1608–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott FJ, Marchant HJ (2005) Antarctic marine protists. Australian Biological Resources Study, Hobart

    Google Scholar 

  • Sherbakova T, Masyukova YA, Safonova T, Petrova D, Vereshagin A, Minaeva T, Adelshin R, Triboy T, Stonik I, Aizdaitcher N (2005) Conserved motif CMLD in silicic acid transport proteins of diatoms. Mol Biol 39:269–280

    Article  CAS  Google Scholar 

  • Shrestha R, Tesson B, Norden-Krichmar T, Federowicz S, Hildebrand M, Allen A (2012) Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genomics 13(1):499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigee DC, Holland R (1997) Elemental composition, correlations, and ratios within a population of Stuarastrum planctonicum (Zygnematales): an x-ray microanalytical study. J Phycol 33:182–190

    Article  Google Scholar 

  • Sigee DC, Levado E (2000) Cell surface elemental composition of Microcystis aeruginosa: high-Si and low-Si subpopulations within the water column of a eutrophic lake. J Plankton Res 22:2137–2153

    Article  CAS  Google Scholar 

  • Sigee DC, Levado E, Dodwell AJ (1999) Elemental composition of depth samples of Ceratium hirundinella (Pyrrophyta) within a stratified lake: an X-ray microanalytical study. Aquat Microb Ecol 19:177–187

    Article  Google Scholar 

  • Simpson TL, Volcani BE (1981) Introduction. In: Simpson TL, Volcani BE (eds) Silicon and siliceous structures in biological systems. Springer, New York, p 587

    Google Scholar 

  • Smetacek VS (1985) Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar Biol 84:239–251

    Article  Google Scholar 

  • Tappan HN (1980) The paleobiology of plant protists. Freeman W.H, San Francisco

    Google Scholar 

  • Tatewaki M, Mizuno M (1979) Growth inhibition by germanium dioxide in various algae, especially in brown algae. Jpn J Phycol 27:205–212

    CAS  Google Scholar 

  • Tesson B, Hildebrand M (2010) Extensive and intimate association of the cytoskeleton with forming silica in diatoms: control over patterning on the meso-and micro-scale. PLoS One 5(12):e14300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tesson B, Hildebrand M (2013) Characterization and localization of insoluble organic matrices associated with diatom cell walls: insight into their roles during cell wall formation. PLoS One 8(4):e61675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thamatrakoln K, Hildebrand M (2005) Approaches for functional characterization of diatom silicic acid transporters. J Nanosci Nanotech 5:158–166

    Article  CAS  Google Scholar 

  • Thamatrakoln K, Hildebrand M (2007) Analysis of Thalassiosira pseudonana silicon transporters indicates distinct regulatory levels and transport activity throught the cell cycle. Eukaryot Cell 6:271–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thamatrakoln K, Alverson AJ, Hildebrand M (2006) Comparative sequence analysis of diatom silicon transporters: towards a mechanistic model of silicon transport. J Phycol 42:822–834

    Article  CAS  Google Scholar 

  • Thomsen HA, Moestrup O (1985) Is Distephanus speculum a fish killer? A report on an unusual agal bloom from Danish coastal waters. Bull Mar Sci 37:778

    Google Scholar 

  • van Tol HM, Irwin AJ, Finkel ZV (2012) Macroevolutionary trends in silicoflagellate skeletal morphology: the costs and benefits of silicification. Paleobiology 38:391–402

    Article  Google Scholar 

  • Van Valkenburg SD, Norris RE (1970) The growth and morphology of the silicoflagellate Dictyocha fibula Ehrenberg in culture. J Phycol 6:48–54

    Google Scholar 

  • Vrieling EG, Gieskes W, Beelen TP (1999) Silicon deposition in diatoms: control by the pH inside the silicon deposition vesicle. J Phycol 35:548–559

    Article  CAS  Google Scholar 

  • Vrieling EG, Sun Q, Tian M, Kooyman PJ, Gieskes WW, van Santen RA, Sommerdijk NA (2007) Salinity-dependent diatom biosilicification implies an important role of external ionic strength. Proc Natl Acad Sci 104:10441–10446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzl S, Hett R, Richthammer P, Sumper M (2008) Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro. Angew Chem 120:1753–1756

    Article  Google Scholar 

  • Williams RJP (1981) Natural selection of the chemical elements. Proc R Soc Lond B 213:361–397

    Article  CAS  Google Scholar 

  • Wylezich C, Mylnikov AP, Weitere M, Arndt H (2007) Freshwater thaumatomonads as common amoeboid heterotrophic flagellates: their phylogenetic relationships and description of the new species Thaumatomonas coloniensis n. sp. J Eukaryot Microbiol 54:347–357

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Noel MH, Nakayama T, Naganuma T, Inouye I (2006) A Haptophyte bearing siliceous scales: ultrastructure and phylogenetic position of Hyalolithus neolepis gen. et sp. nov. (Prymnesiophyceae, Haptophyta). Protist 157:213–234

    Article  CAS  PubMed  Google Scholar 

  • Zurzolo C, Bowler C (2001) Exploring bioinorganic pattern formation in diatoms. A story of polarized trafficking. Plant Physiol 127:1339–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe V. Finkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Finkel, Z.V. (2016). Silicification in the Microalgae. In: Borowitzka, M., Beardall, J., Raven, J. (eds) The Physiology of Microalgae. Developments in Applied Phycology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-24945-2_13

Download citation

Publish with us

Policies and ethics