• Antonietta Quigg
Part of the Developments in Applied Phycology book series (DAPH, volume 6)


Our understanding of the types, amounts, and roles of micronutrients (that is, iron, manganese, zinc, copper, molybdenum, cobalt, vanadium and nickel) in microalgae has expanded enormously in the last few decades, as has our ability to measure and decipher their activities, fate and behavior in both cells and their surrounding environment. The ability to acquire (uptake) and eliminate (efflux) micronutrients is a physiological trait that varies between taxa and can be linked to evolutionary histories and changes in ocean chemistry. The evolutionary inheritance hypothesis examines the imprint of endosymbiosis on the elemental stoichiometry of microalgae; their rich and diverse polyphyletic origins are retained such that species-specific traits play an important role in determining the micronutrient quota’s (intracellular concentrations), their response to different environmental perturbations including upwelling and pollution, and consequently successional patterns, community composition and/or competition. While some all the micronutrients discussed have a nutritional role, some may also be toxic if accumulated in excess of a cells requirements. In other instances, some micronutrients have been found to be replaceable or exchangeable, in the metallo centers of enzymes, but not in all microalgae. Micronutrients thereby function in the presence of other micronutrients and are affected by them, these synergistic and antagonistic interactions, are concurrently influenced by macronutrients and a variety of anthropogenic and emergent pollutants (specifically engineered nanoparticles and nanomaterials), which we also discuss. Anthropogenic inputs of micronutrients to the environment exceed inputs from natural sources. As a result, there has been a concurrent impact on the biota, altering ecological stoichiometries, food webs and trophic movement of these elements. We also discuss the importance of light and increasing CO2 concentrations.


Manganese Zinc Copper Molybdenum Cobalt Vanadium Nickel Iron Uptake Efflux Stoichiometry Evolutionary histories Ocean chemistry Anthropogenic Emergent pollutants 


  1. Ahner BA, Morel FMM (1995) Phytochelatin production in marine algae: II. Induction by various metals. Limnol Oceanogr 40:658–665CrossRefGoogle Scholar
  2. Allen MB, Arnon DI (1955) Studies on nitrogen-fixing blue-green algae. I. growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol 30:366–372PubMedPubMedCentralCrossRefGoogle Scholar
  3. Altman H, Fetter F, Kaindl K (1968) Untersuchungen über den einfluss von Zn-lonen auf die m-RNA synthese in Chlorella Zellen. Z Naturforsch 23b:395–396Google Scholar
  4. Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137–1142PubMedCrossRefGoogle Scholar
  5. Anderson MA, Morel FMM, Guillard RRL (1978) Growth limitation of a coastal diatom by low zinc ion activity. Nature 276:70–71CrossRefGoogle Scholar
  6. Araie H, Shiraiwa Y (2016) Selenium in algae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 281–288Google Scholar
  7. Arnon DI (1953) Growth and function as criteria in determining the essential nature of inorganic nutrients. In: Truog E (ed) Mineral nutrition of plants. University Wisconsin Press, Wisconsin, pp 313–341Google Scholar
  8. Arnon DI, Ichioka PS (1955) Molybdenum in relation to nitrogen metabolism. II. Assimilation of ammonia and urea without molybdenum by Scenedesmus. Physiol Plant 8:552–560CrossRefGoogle Scholar
  9. Arnon DI, Wessel G (1953) Vanadium as an essential element for green plants. Nature 172:1039–1040PubMedCrossRefGoogle Scholar
  10. Arnon DI, Ichioka PS, Wessel G, Fujiwara A, Woolley JT (1955) Molybdenum in relation to nitrogen metabolism. I. Assimilation of nitrate nitrogen by Scenedesmus. Physiol Plant 8:538–551CrossRefGoogle Scholar
  11. Beardall J, Raven JA (2016) Carbon acquisition by microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 89–99Google Scholar
  12. Beardall J, Sobrino C, Stojkovic S (2009) Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochem Photobiol Sci 8:1257–1265PubMedCrossRefGoogle Scholar
  13. Berman-Frank I, Quigg A, Finkel ZV, Irwin AJ, Haramaty L (2007) Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnol Oceanogr 52:2260–2269CrossRefGoogle Scholar
  14. Bishop NI (1964) Site of action of copper in photosynthesis. Nature 204:401–402CrossRefGoogle Scholar
  15. Boison G, Steingen C, Stal LJ, Bothe H (2006) The rice field cyanobacteria Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase. Arch Microbiol 186:367–376PubMedCrossRefGoogle Scholar
  16. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681Google Scholar
  17. Bortels H (1940) Über die Bedeutung des Molybdäns für stickstoffbindende Nostocaceen. Arch Mikrobiol 11:155–186CrossRefGoogle Scholar
  18. Bradshaw C, Kautsky U, Kumblad L (2012) Ecological stoichiometry and multielement transfer in a coastal ecosystem. Ecosystems 15:591–603CrossRefGoogle Scholar
  19. Brand LE, Sunda WG, Guillard RRL (1983) Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol Oceanogr 28:1182–1198CrossRefGoogle Scholar
  20. Brand LE, Sunda WG, Guillard RRL (1986) Reduction of marine phytoplankton reproduction rates by copper and cadmium. J Exp Mar Biol Ecol 96:225–250CrossRefGoogle Scholar
  21. Bruland KW (1980) Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet Sci Lett 47:176–198CrossRefGoogle Scholar
  22. Bruland KW, Donat JR, Hutchins DA (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr 36:1555–1577CrossRefGoogle Scholar
  23. Butler A (1998) Acquisition and utilization of transition metal ions by marine organisms. Science 281:207–210PubMedCrossRefGoogle Scholar
  24. Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, pp 45–102Google Scholar
  25. Campbell PG, Errecalde O, Fortin C, Hiriart-Baer VP, Vigneault B (2002) Metal bioavailability to phytoplankton-applicability of the biotic ligand model. Comp Biochem Physiol C 133:189–206Google Scholar
  26. Cannon WB (1932) The wisdom of the body. W.W. Norton and Company, New York, 294 ppGoogle Scholar
  27. Chen C-S, Anaya JM, Zhang S, Spurgin J, Chuang C-Y, Xu C, Miao A-J, Chen X, Schwehr KA, Jiang Y, Quigg A, Santschi PH, Chin W-C (2011) Effects of engineered nanoparticles on the assembly of exopolymeric substances from marine phytoplankton. PLoS One 6(7): e21865. doi: 10.1371/journal.pone.0021865
  28. Cheniae GM, Martin JF (1969) Photoreactivation of manganese catalyst in photosynthetic oxygen evolution. Plant Physiol 44:351–360PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832PubMedPubMedCentralCrossRefGoogle Scholar
  30. Collier RW (1985) Molybdenum in the northeast Pacific Ocean. Limnol Oceanogr 30:1351–1354CrossRefGoogle Scholar
  31. Crawford DW, Lipsen MS, Purdie DA, Lohan MC, Statham PJ, Whitney FA, Putland JN, Johnson WK, Sutherland N, Peterson TD, Harrison PJ, Wong CS (2003) Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific. Limnol Oceanogr 48:1583–1600CrossRefGoogle Scholar
  32. Croot PL, Moffett JW, Brand LE (2000) Production of extracellular Cu complexing ligands by eukaryotic phytoplankton in response to Cu stress. Limnol Oceanogr 45:619–627CrossRefGoogle Scholar
  33. Croot PL, Karlson B, van Elteren JT, Kroon JJ (2003) Uptake and efflux of 64Cu by the marine cyanobacterium Synechococcus (WH7803). Limnol Oceanogr 48:179–188CrossRefGoogle Scholar
  34. Cullen JT, Lane TW, Morel FMM, Sherrell RM (1999) Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration. Nature 402:165–167CrossRefGoogle Scholar
  35. Cvetkovic A, Menon AL, Thorgersen MP, Scott JW, Poole FL 2nd, Jenney FE Jr, Lancaster WA, Praissman JL, Shanmukh S, Vaccaro BJ, Trauger SA, Kalisiak E, Apon JV, Siuzdak G, Yannone SM, Tainer JA, Adams MW (2010) Microbial metalloproteomes are largely uncharacterized. Nature 466:779–882PubMedCrossRefGoogle Scholar
  36. Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177PubMedCrossRefGoogle Scholar
  37. Dupont CL, Barbeau K, Palenik B (2007) Ni uptake and limitation in marine Synechococcus. Appl Environ Microbiol 74:23–31PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dupont CL, Butcher A, Valas RE, Bourne PE, Caetano-Anolles G (2010) History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc Natl Acad Sci U S A 107:10567–10572PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dyhrman ST (2016) Nutrients and their acquisition: phosphorus physiology in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 155–183Google Scholar
  40. Dyhrman ST, Anderson DM (2003) Urease activity in cultures and field populations of the toxic dinoflagellate Alexandrium. Limnol Oceanogr 48:647–655CrossRefGoogle Scholar
  41. Eilers H (1926) Zur kenntnis der Ernährungsphysiologie von Stichococcus bacillaris Näg. Rec Trav Bot Neerl 23:362–395Google Scholar
  42. Errecalde O, Campbell PGC (2000) Cadmium and zinc bioavailability to Selenastrum capricornutum (Chlorophyceae): accidental metal uptake and toxicity in the presence of citrate. J Phycol 36:473–483CrossRefGoogle Scholar
  43. Falchuk KH, Krishan A, Vallee BL (1975) DNA distribution in the cell cycle of Euglena gracilis. Cytofluorometry of zinc deficient cells. Biochemistry 14:3439–3444PubMedCrossRefGoogle Scholar
  44. Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275CrossRefGoogle Scholar
  45. Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Scientific Publishers, Oxford, 375 ppGoogle Scholar
  46. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360PubMedCrossRefGoogle Scholar
  47. Fay P, Vasconcelos L (1974) Nitrogen metabolism and ultrastructure in Anabaena cylindrica. 2. Effect of molybdenum and vanadium. Arch Microbiol 99:221–230PubMedCrossRefGoogle Scholar
  48. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838PubMedCrossRefGoogle Scholar
  49. Finkel ZV (2016) Silicification in the microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 289–300Google Scholar
  50. Finkel ZV, Quigg A, Raven JA, Reinfelder JR, Schofield OE, Falkowski PG (2006) Irradiance and the elemental stoichiometry of marine phytoplankton. Limnol Oceanogr 51:2690–2701CrossRefGoogle Scholar
  51. Finkel ZV, Quigg A, Chiampi RK, Schofield OE, Falkowski PG (2007) Phylogenetic diversity in Cd:P regulation by marine phytoplankton. Limnol Oceanogr 52:1131–1138CrossRefGoogle Scholar
  52. Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137CrossRefGoogle Scholar
  53. Fortin C, Campbell PG (2001) Thiosulfate enhances silver uptake by a green alga: role of anion transporters in metal uptake. Environ Sci Technol 35:2214–2218PubMedCrossRefGoogle Scholar
  54. Foster PL (1977) Copper exclusion as a mechanism of heavy metal tolerance in a green alga. Nature 269:322–323CrossRefGoogle Scholar
  55. Franklin NM, Stauber JL, Apte SC, Lim RP (2002) Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. Environ Toxicol Chem 21:742–751PubMedCrossRefGoogle Scholar
  56. Frausto da Silva JRR, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life, 2nd edn. Oxford University Press, Oxford, 600 ppGoogle Scholar
  57. Glass JB, Wolfe-Simon F, Anbar AD (2009) Coevolution of marine metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology 7:100–123PubMedCrossRefGoogle Scholar
  58. Glass JB, Wolfe-Simon F, Elser JJ, Anbar AD (2010) Molybdenum-nitrogen colimitation in heterocystous cyanobacteria. Limnol Oceanogr 55:667–676CrossRefGoogle Scholar
  59. Gong N, Chen C, Xie L, Chen H, Lin X, Zhang R (2005) Characterization of a thermostable alkaline phosphatase from a novel species Thermus yunnanensis sp. nov. and investigation of its cobalt activation at high temperature. Biochim Biophys Acta 1750:103–111PubMedCrossRefGoogle Scholar
  60. Guseva KA (1940) Dyeystvye myedi na vodoroslei. Mikrobiologie 9:480–499Google Scholar
  61. Hallenbeck PC, Kostel PJ, Benemann JR (1979) Purification and properties of nitrogenase from the cyanobacterium Anabaena cylindrica. Eur J Biochem 98:275–284PubMedCrossRefGoogle Scholar
  62. Harrison PJ, Parslow JS, Conway HL (1989) Determination of nutrient uptake kinetic parameters: a comparison of methods. Mar Ecol Prog Ser 52:301–312CrossRefGoogle Scholar
  63. Hassler CS, Wilkinson KJ (2003) Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii. Environ Toxicol Chem 22:620–626PubMedCrossRefGoogle Scholar
  64. Hassler CS, Behra R, Wilkinson KJ (2005) Impact of zinc acclimation on bioaccumulation and homeostasis in Chlorella kesslerii. Aquat Toxicol 74:139–149PubMedCrossRefGoogle Scholar
  65. Heijerick DG, De Schamphelaere KA, Janssen CR (2002) Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations. Comp Biochem Physiol C 133:207–218Google Scholar
  66. Hill KL, Hassett R, Kosman D, Merchant S (1996) Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability. Plant Physiol 112:697–704PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ho T-Y, Quigg A, Finkel ZV, Milligan AJ, Wyman K, Falkowski PG, Morel FMM (2003) The elemental composition of some marine phytoplankton. J Phycol 39:1145–1159CrossRefGoogle Scholar
  68. Ho T-Y, Chou W-C, Wei C-L, Lin F-J, Wong GTF, Lin H-L (2010) Trace metal cycling in the surface water of the South China Sea: vertical fluxes, composition, and sources. Limnol Oceanogr 55:1807–1820CrossRefGoogle Scholar
  69. Hoffman BM, Lukoyanov D, Yang Z-Y, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062PubMedPubMedCentralCrossRefGoogle Scholar
  70. Holm-Hansen O, Gerloff GC, Skoog F (1954) Cobalt as an essential element for blue-green algae. Physiol Plant 7:665–675CrossRefGoogle Scholar
  71. Hopkins EF (1930) The necessity and function of manganese in the growth of Chorella sp. Science 72:609–610PubMedCrossRefGoogle Scholar
  72. Hou W-C, Westerhoff P, Posner JD (2013) Biological accumulation of engineered nanomaterials: a review of current knowledge. Environ Sci Process Impact 15:103–122CrossRefGoogle Scholar
  73. Howarth RW, Marino R, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol Oceanogr 33:688–701CrossRefGoogle Scholar
  74. Hudson RJM (1998) Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of nonequilibrium effects. Sci Total Environ 219:95–115CrossRefGoogle Scholar
  75. Hudson RJM, Morel FMM (1993) Trace metal transport by marine microorganisms: implications of metal coordination kinetics. Deep-Sea Res I 40:129–150CrossRefGoogle Scholar
  76. Hutner SH, Provasoli L, Stockstad ELR, Hoffman CE, Belt M, Franklin AL, Jukes JH (1949) Assay of antipernicious anemia factor with Euglena. Proc Soc Exp Biol Med 70:117–120CrossRefGoogle Scholar
  77. Jacob R, Lind O (1977) The combined relationship of temperature and molybdenum concentration to nitrogen fixation by Anabaena cylindrica. Microb Ecol 3:205–217CrossRefGoogle Scholar
  78. Jakuba RW, Moffett JW, Dyhrman ST (2008) Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean. Glob Biogeochem Cycles 22, GB4012CrossRefGoogle Scholar
  79. Ji YC, Sherrell RM (2008) Differential effects of phosphorus limitation on cellular metals in Chlorella and Microcystis. Limnol Oceanogr 53:1790–1804CrossRefGoogle Scholar
  80. Katoh S, Sugi I, Shiratori I, Takamiya I (1961) Distribution of plastocyanin in plants, with special reference to its localization in chloroplasts. Arch Biochem Biophys 94:136–141PubMedCrossRefGoogle Scholar
  81. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TE, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanoparticles in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851PubMedCrossRefGoogle Scholar
  82. Knauer K, Behra R, Sigg L (1997) Adsorption and uptake of copper by the green alga Scenedesmus subspicatus (Chlorophyta). J Phycol 33:596–601CrossRefGoogle Scholar
  83. Kola H, Wilkinson KJ (2005) Cadmium uptake by a green alga can be predicted by equilibrium modeling. Environ Sci Technol 39:3040–3047PubMedCrossRefGoogle Scholar
  84. Kumblad L, Bradshaw C (2008) Element composition of biota, water and sediment in the Forsmark area, Baltic Sea. Concentrations, bioconcentration factors and partitioning coefficients (Kd) of 48 elements. Svensk Kärnbränslehantering AB, SKB TR-08-09, Stockholm, Sweden, Report, 109 ppGoogle Scholar
  85. Kuss J, Kremling K (1999) Spatial variability of particle associated trace elements in near-surface waters of the North Atlantic (30°N/60°W to 60°N/2°W) derived by large volume sampling. Mar Chem 68:71–86CrossRefGoogle Scholar
  86. La Fontaine S, Quinn JM, Nakamoto SS, Page MD, Göhre V, Moseley JL, Kropat J, Merchant S (2002) Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryot Cell 1:736–757PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) A cadmium enzyme from a marine diatom. Nature 435:42PubMedCrossRefGoogle Scholar
  88. Larkum AW (2016) Photosynthesis and light harvesting in algae. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 67–87Google Scholar
  89. LaRoche J, Boyd PW, McKay RML, Geider RJ (1996) Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382:802–805CrossRefGoogle Scholar
  90. Le Faucheur S, Behra R, Sigg L (2005) Phytochelatin induction, cadmium accumulation, and algal sensitivity to free cadmium ion in Scenedesmus vacuolatus. Environ Toxicol Chem 24:1731–1737PubMedCrossRefGoogle Scholar
  91. Lee JG, Morel FMM (1995) Replacement of Zinc by cadmium in marine phytoplankton. Mar Ecol Prog Ser 127:305–309CrossRefGoogle Scholar
  92. Lee JG, Ahner BA, Morel FMM (1996) Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii. Environ Sci Technol 30:1814–1821CrossRefGoogle Scholar
  93. Lemaire S, Kreyer E, Stein M, Schepens I, Issakidis-Bourguet E, Gérard-Hirne C, Miginiac-Maslow M, Jacquot J-P (1999) Heavy-metal regulation of thioredoxin gene expression in Chlamydomonas reinhardtii. Plant Physiol 120:773–778PubMedPubMedCentralCrossRefGoogle Scholar
  94. Luoma SN (2008) Silver nanotechnologies and the environment: old problems or new challenges? Woodrow Wilson International Center for Scholars, Report PEN 15, Washington DC, USA, 68 ppGoogle Scholar
  95. Ma H, Williams PL, Stephen A (2013) Ecotoxicity of manufactured ZnO nanoparticles: a review. Environ Pollut 172:76–85PubMedCrossRefGoogle Scholar
  96. Maldonado MT, Allen AE, Chong JS, Lin K, Leus D, Karpenko N, Harris SL (2006) Copper-dependent iron transport in coastal and oceanic diatoms. Limnol Oceanogr 51:1729–1743CrossRefGoogle Scholar
  97. Marchetti A, Maldonado MT (2016) Iron. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 233–279Google Scholar
  98. Markowitz VM, Szeto E, Palaniappan K, Grechkin Y, Chu K, Chen I-MA, Dubchak I, Anderson I, Lykidis A, Mavromatis K, Ivanova NN, Kyrpides NC (2008) The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res 36:D528–D533PubMedPubMedCentralCrossRefGoogle Scholar
  99. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343CrossRefGoogle Scholar
  100. Martin JH, Knauer GA (1973) Elemental composition of plankton. Geochim Cosmochim Acta 37:1639–1653CrossRefGoogle Scholar
  101. Martin RE, Quigg A (2013) The tiny plants that once ruled the seas. Sci Am 308:40–45PubMedCrossRefGoogle Scholar
  102. Martin JH, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr 36:1793–1802CrossRefGoogle Scholar
  103. Martin RE, Quigg A, Podkovyrov V (2008) The evolution of ocean stoichiometry and diversification of the marine biosphere. Palaeogeogr Palaeoclimatol Palaeoecol 258:277–291CrossRefGoogle Scholar
  104. McKay RML, La Roche J, Yakunin AF, Durnford DG, Geider RJ (1999) Accumulation of ferredoxin and flavodoxin in a marine diatom in response to Fe. J Phycol 35:510–519CrossRefGoogle Scholar
  105. Mendez-Alvarez S, Leisinger U, Eggen RL (1999) Adaptative responses in Chlamydomonas reinhardtii. Int Microbiol 2:15–22PubMedGoogle Scholar
  106. Messinger J, Nugent JHA, Evans MCW (1997) Detection of an EPR multiline signal for the S0 state in photosystem II. Biochemistry 36:11055–11060PubMedCrossRefGoogle Scholar
  107. Miao A-J, Wang WX (2004) Relationships between cell-specific growth rate and uptake rate of cadmium and zinc by a coastal diatom. Mar Ecol Prog Ser 275:103–113CrossRefGoogle Scholar
  108. Miao A-J, Schwehr KA, Xu C, Zhang S-J, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041PubMedCrossRefGoogle Scholar
  109. Miao A-J, Luo Z, Chen C-S, Chin W-C, Santschi PH, Quigg A (2010a) Intracellular uptake: A possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 5, e15196PubMedPubMedCentralCrossRefGoogle Scholar
  110. Miao A-J, Luo A, Chen C-S, Chin W-C, Santschi PH, Quigg A (2010b) Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29:2814–2822PubMedCrossRefGoogle Scholar
  111. Mikami B, Ida S (1984) Purification and properties of ferredoxin nitrate reductase from the cyanobacterium Plectonema boryanum. Biochem Biophys Acta 791:294–304Google Scholar
  112. Moffett JW, Brand LE (1996) Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnol Oceanogr 41:388–395CrossRefGoogle Scholar
  113. Moffett JW, Dupont C (2007) Cu complexation by organic ligands in the subarctic NW Pacific and Bering Sea. Deep-Sea Res I 54:586–595CrossRefGoogle Scholar
  114. Moffett JW, Brand LE, Zika RG (1990) Distribution and potential sources and sinks of copper chelators in the Sargasso Sea. Deep-Sea Res 37:27–36CrossRefGoogle Scholar
  115. Morel FMM, Hudson RJM (1985) The geobiological cycle of trace elements in aquatic systems: Redfield revisited. In: Stumm W (ed) Chemical processes in lakes. Wiley-Interscience, New York, pp 251–281Google Scholar
  116. Morel FMM, Price NM (2003) The biogeochemical cycles of trace metals in the oceans. Science 300:944–947PubMedCrossRefGoogle Scholar
  117. Morel FMM, Reinfelder JR, Roberts SB, Chamberlain CP, Lee JG, Yee D (1994) Zinc and carbon co-limitation of marine phytoplankton. Nature 369:740–742CrossRefGoogle Scholar
  118. Morel FMM, Milligan AJ, Saito MA (2003) Marine bioinorganic chemistry: the role of trace of metals in the oceanic cycles of major nutrients. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, vol 6. Elsevier, Cambridge, pp 113–143CrossRefGoogle Scholar
  119. Nagel K, Adelmeier U, Voight J (1996) Subcellular distribution of cadmium in the unicellular alga Chlamydomonas reinhardtii. J Plant Physiol 149:86–90CrossRefGoogle Scholar
  120. Navarro E, Baun A, Behra R, Hartmann NIB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Ecotoxicity of nanoparticles on algae, plants and fungi: state of the art and future needs. Spec Issue Ecotoxicol Chem Risk Assess Nanopart 17:372–386Google Scholar
  121. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedCrossRefGoogle Scholar
  122. O’Kelley JC (1974) Inorganic nutrients. In: Stewart WD (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 610–635Google Scholar
  123. Payne CD, Price NM (1999) Effects of cadmium toxicity on growth and elemental composition of marine phytoplankton. J Phycol 35:293–302CrossRefGoogle Scholar
  124. Peers G, Price NM (2006) Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441:341–344PubMedCrossRefGoogle Scholar
  125. Pinheiro JP, van Leeuwen HP (2001) Metal speciation dynamics and bioavailability. 2. Radial diffusion effects in the microorganism range. Environ Sci Technol 35:894–900PubMedCrossRefGoogle Scholar
  126. Prask JA, Plocke DJ (1971) A role for Zn in the structural integrity of the cytoplasmic ribosomes of Euglena gracilis. Plant Physiol 48:150–155PubMedPubMedCentralCrossRefGoogle Scholar
  127. Provasoli L, Carlucci AF (1974) Vitamins and growth regulators. In: Stewart WD (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 741–787Google Scholar
  128. Quigg A (2008) Trace elements. In: Jørgensen SE, Fath BD (eds) Ecological stoichiometry. Encyclopedia of ecology, vol 5. Elsevier, Oxford, pp 3564–3573CrossRefGoogle Scholar
  129. Quigg A, Finkel ZV, Irwin AJ, Rosenthal Y, Ho T-Y, Reinfelder JR, Schofield O, Morel FMM, Falkowski PG (2003a) The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425:291–294PubMedCrossRefGoogle Scholar
  130. Quigg A, Beardall J, Wydrzynski T (2003b) An investigation of the photosynthetic O2-evolving reactions in two marine microalgae as a function of the photon flux during growth. Funct Plant Biol 30:301–308CrossRefGoogle Scholar
  131. Quigg A, Reinfelder JR, Fisher NS (2006) Copper-uptake kinetics in diverse marine phytoplankton. Limnol Oceanogr 51:893–899CrossRefGoogle Scholar
  132. Quigg A, Irwin AJ, Finkel ZV (2011) Evolutionary imprint of endosymbiosis of elemental stoichiometry: testing inheritance hypotheses. Proc R Soc Biol Sci 278:526–534CrossRefGoogle Scholar
  133. Quigg A, Chin W-C, Chen C-S, Zhang S, Jiang Y, Miao A-J, Schwehr KA, Xu C, Santschi PH (2013) Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. Spec Issue Sustain Nanotechnol ACS Sustain Chem Eng 1:686–702CrossRefGoogle Scholar
  134. Rao KVM (1963) The effect of molybdenum on the growth of Oocystis marssonii Lemm. Indian J Plant Physiol 6:142–149Google Scholar
  135. Raven JA (1988) The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol 109:279–287CrossRefGoogle Scholar
  136. Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytol 116:1–18CrossRefGoogle Scholar
  137. Raven JA, Giordano M (2016) Combined nitrogen. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 143–154Google Scholar
  138. Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149CrossRefGoogle Scholar
  139. Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. Liverpool University Press, Liverpool, pp 176–192Google Scholar
  140. Saito MA, Moffett JW, Chisholm SW, Waterbury JB (2002) Cobalt limitation and uptake in Prochlorococcus. Limnol Oceanogr 47:1629–1636CrossRefGoogle Scholar
  141. Scott CT, Lyons W, Bekker A, Shen Y, Poulton SW, Chu X, Anbar AD (2008) Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452:456–459PubMedCrossRefGoogle Scholar
  142. Steele RL (1965) Induction of sexuality in two centric diatoms. Bioscience 15:298CrossRefGoogle Scholar
  143. Stewart WDP (ed) (1974) Algal physiology and biochemistry. University of California Press, Berkeley/Los Angeles, 998 ppGoogle Scholar
  144. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, 584 ppGoogle Scholar
  145. Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689–692PubMedCrossRefGoogle Scholar
  146. Sunda WG (1994) Trace metal/phytoplankton interactions in the sea. In: Bidoglio G, Stumm W (eds) Chemistry of aquatic systems: local and global perspectives. Kluwer, Dordrecht, pp 213–247CrossRefGoogle Scholar
  147. Sunda WG (2012) Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front Microbiol 3:1–22Google Scholar
  148. Sunda WG, Guillard RRL (1976) The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J Mar Res 34:511–529Google Scholar
  149. Sunda WG, Huntsman SA (1992) Feedback interactions between zinc and phytoplankton in seawater. Limnol Oceanogr 37:25–40CrossRefGoogle Scholar
  150. Sunda WG, Huntsman SA (1995a) Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnol Oceanogr 40:1404–1417CrossRefGoogle Scholar
  151. Sunda WG, Huntsman SA (1995b) Regulation of copper concentration in the oceanic nutricline by phytoplankton uptake and regeneration cycles. Limnol Oceanogr 40:132–137CrossRefGoogle Scholar
  152. Sunda WG, Huntsman SA (1996) Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom. Limnol Oceanogr 41:373–387CrossRefGoogle Scholar
  153. Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–392Google Scholar
  154. Sunda WG, Huntsman SA (1998a) Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Sci Total Environ 219:165–181CrossRefGoogle Scholar
  155. Sunda WG, Huntsman SA (1998b) Interactions among Cu2+, Zn2+, and Mn2+ in controlling cellular Mn, Zn, and growth rate in the coastal alga Chlamydomonas. Limnol Oceanogr 43:1055–1064CrossRefGoogle Scholar
  156. Sunda WG, Huntsman SA (1998c) Interactive effects of external manganese, the toxic metals copper and zinc, and light in controlling cellular manganese and growth in a coastal diatom. Limnol Oceanogr 43:1467–1475CrossRefGoogle Scholar
  157. Sunda WG, Huntsman SA (1998d) Control of Cd concentrations in a coastal diatom by interactions among free ionic Cd, Zn, and Mn in seawater. Environ Sci Technol 32:2961–2968CrossRefGoogle Scholar
  158. Sunda WG, Huntsman SA (2000) Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: implications for oceanic Cd cycling. Limnol Oceanogr 45:1501–1516CrossRefGoogle Scholar
  159. Sunda WG, Huntsman SA (2004) Relationships among photoperiod, carbon fixation, growth, chlorophyll a, and cellular iron and zinc in a coastal diatom. Limnol Oceanogr 49:1742–1753CrossRefGoogle Scholar
  160. Sunda WG, Huntsman SA (2005) Effect of CO2 supply and demand on zinc uptake and growth limitation in a coastal diatom. Limnol Oceanogr 50:1181–1192CrossRefGoogle Scholar
  161. Sunda WG, Huntsman SA (2008) Relationships among growth rate, cellular manganese concentrations and manganese transport kinetics in estuarine and oceanic species of the diatom Thalassiosira. J Phycol 22:259–270Google Scholar
  162. Taylor AR, Brownlee C (2016) Calcification. In: Borowitzka MA, Beardall J, Raven JA (eds) Physiology of microalgae. Springer, Dordrecht, pp 301–318Google Scholar
  163. Teicheler-Zallen D (1969) The effect of manganese on chloroplast structure and photosynthetic ability of Chlamydomonas reinhardi. Plant Physiol 44:701–710CrossRefGoogle Scholar
  164. Ter Steeg PF, Hanson PJ, Paerl HW (1986) Growth limiting quantities and accumulation of molybdenum in Anabaena oscillarioides (Cyanobacteria). Hydrobiologia 140:143–147CrossRefGoogle Scholar
  165. Thiel T (1993) Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 175:6276–6286PubMedPubMedCentralGoogle Scholar
  166. Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci U S A 103:5442–5447PubMedPubMedCentralCrossRefGoogle Scholar
  167. Tuit C, Waterbury J, Ravizza G (2004) Diel variation of molybdenum and iron in marine diazotrophic cyanobacteria. Limnol Oceanogr 49:978–990CrossRefGoogle Scholar
  168. Twining BS, Baines SB (2013) The trace metal composition of marine phytoplankton. Annu Rev Mar Sci 5:191–215CrossRefGoogle Scholar
  169. Twining BS, Nñnez-Milland D, Vogt S, Johnson RS, Sedwick PN (2010) Variations in Synechococcus cell quotas of phosphorus, sulfur, manganese, iron, nickel, and zinc within mesoscale eddies in the Sargasso Sea. Limnol Oceanogr 55:492–506CrossRefGoogle Scholar
  170. van Leeuwen HP (1999) Metal speciation dynamics and bioavailability: inert and labile complexes. Environ Sci Technol 33:3743–3748CrossRefGoogle Scholar
  171. Vega JM, Herrera J, Aparicio PJ, Paneque A, Losada M (1971) Role of molybdenum in nitrate reduction by Chlorella. Plant Physiol 48:294–299PubMedPubMedCentralCrossRefGoogle Scholar
  172. Verma SK, Singh HN (1990) Factors regulating copper uptake in a cyanobacterium. Curr Microbiol 21:33–37CrossRefGoogle Scholar
  173. Verma SK, Singh HN (1991) Evidence for energy-dependent copper efflux as a mechanism of Cu2+ resistance in the cyanobacterium Nostoc calcicola. FEMS Microbiol Lett 84:291–294CrossRefGoogle Scholar
  174. Vraspir JM, Butler A (2009) Chemistry of marine ligands and siderophores. Annu Rev Mar Sci 1:43–63CrossRefGoogle Scholar
  175. Wacker WE (1962) Nucleic acids and metals. III Changes in nucleic acid, protein and metal content as a consequence of zinc deficiency in Euglena gracilis. Biochemistry 1:859–865PubMedCrossRefGoogle Scholar
  176. Warburg O, Krippahl G, Buchholz W (1955) Wirkung von Vanadium auf die photosynthese. Z Naturf 10b:422Google Scholar
  177. Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71PubMedCrossRefGoogle Scholar
  178. Whitfield M (2001) Interactions between phytoplankton and trace metals in the ocean. Adv Mar Biol 41:3–128Google Scholar
  179. Wilkinson KJ, Buffle J (2004) Critical evaluation of physico-chemical parameters and processes for modeling the biological uptake of trace metals in environmental (aquatic) systems. In: van Leeuwen HP, Köestler W (eds) Physico-chemical kinetics and transport at biointerfaces, vol 9, IUPAC Series in Analytical and Physical Chemistry of Environmental Systems. Wiley, Chichester, pp 447–533Google Scholar
  180. Wojciechowski CL, Cardia JP, Kantrowitz ER (2002) Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity. Protein Sci 11:903–911PubMedPubMedCentralCrossRefGoogle Scholar
  181. Wolfe M (1954) The effect of molybdenum upon the nitrogen metabolism of Anabaena cylindrica. I. A study of the molybdenum requirement for nitrogen fixation and for nitrate and ammonia assimilation. Ann Bot 18:299–308Google Scholar
  182. Worms I, Simon DF, Hassler CS, Wilkinson KJ (2006) Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88:1721–1731PubMedCrossRefGoogle Scholar
  183. Xu Y, Morel FMM (2013) Cadmium in phytoplankton. In: Sigel A, Sigel H, Sigel RKO (eds) Cadmium: from toxicity to essentiality, vol 11, Metal Ions in Life Sciences. Springer, Dordrecht, pp 509–528CrossRefGoogle Scholar
  184. Yee D, Morel FMM (1996) In vivo substitution of zinc by cobalt in carbonic anhydrase of a marine diatom. Limnol Oceanogr 41:573–577CrossRefGoogle Scholar
  185. Zerkle AL, House CH, Cox RP, Canfield DE (2006) Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology 4:285–297CrossRefGoogle Scholar
  186. Zhang S, Jiang Y, Chen C-S, Spurgin J, Schwehr KA, Quigg A, Chin W-C, Santschi PH (2012) Aggregation and dissolution of quantum dots in marine environments: the importance of extracellular polymeric substances. Environ Sci Technol 46:8764–8772PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Marine BiologyTexas A&M University at GalvestonGalvestonUSA
  2. 2.Department of OceanographyTexas A&M UniversityCollege StationUSA

Personalised recommendations