The Cell Cycle of Microalgae

  • Vilém Zachleder
  • Kateřina Bišová
  • Milada Vítová
Part of the Developments in Applied Phycology book series (DAPH, volume 6)


Growth and division of microalgae are indispensable for their survival and spread throughout the environment. Microalgae divide by two mechanisms: binary and multiple fission. Binary fission is the division into two daughter cells, as seen in the majority of eukaryotic organisms; it also represents a transition to multiple fission. Multiple fission, typical for some green algae, leads to division into more than two daughter cells (from 4 to 1024), in principle, 2n. Here, we describe the different organizational types of multiple fission cell cycles, with distinct timing of DNA replication, nuclear, and cellular divisions, and discuss how they are regulated at physiological and molecular levels. We show in detail how different growth conditions, particularly changes in light and temperature, will affect not only growth and the accumulation of macromolecules (RNA, protein, starch) but also, through unknown coordination mechanisms, how the cells perform multiple fission cell cycles to generate the number of daughter cells. Finally, we discuss the relationship between two major algal compartments: the nucleocytoplasmic and chloroplastic compartments. Growth and division of the two are intricately intertwined and possibly co-regulated by mechanisms that are not fully understood.


Cell cycles Microalgae Multiple fission Commitment to cell division DNA replication Nuclear division Light intensity Temperature Chloroplast division cycle Nucleocytoplasmic and chloroplast relationships 



cyclin-dependent kinase


chloroplast ribosomal RNA


cytosolic ribosomal RNA


inhibitor of cyclin-dependent kinase


commitment point


dimerization partner


transcription factor


5-fluorodeoxyuridin, inhibitor of thymidylate synthase


nalidixic acid, an inhibitor of DNA gyrase, (1-ethy1-1,4-dihydro-7-methy1-4-oxo-1,8-naphtyridine-3-carboxylic acid)


nuclear DNA


chloroplast (plastid) DNA


retinoblastoma protein



This study was supported by the National Programme of Sustainability I, ID: LO1416 and by the Czech Academy of Sciences (grant number RVO 61388971). V.Z. and K.B. were supported by grant of Grant Agency of the Czech Republic no. 15-09231S.


  1. Abrahams S, Cavet G, Oakenfull EA, Carmichael JP, Shah ZH, Soni R, Murray JAH (2001) A novel and highly divergent Arabidopsis cyclin isolated by complementation in budding yeast. Biochim Biophys Acta 1539:1–6PubMedCrossRefGoogle Scholar
  2. Adam G, Steiner U, Seuwen K (1983) Proliferative activity and ribosomal RNA content of 3T3 and SV 40-3T3 cells. Cell Biol Int Rep 7:955–962PubMedCrossRefGoogle Scholar
  3. Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15:584–593CrossRefGoogle Scholar
  4. An SS, Friedl T, Hegewald E (1999) Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from ITS-2rDNA sequence comparisons. Plant Biol 1:418–428Google Scholar
  5. Alberghina L, Sturani E (1981) Control of growth and of the nuclear division cycle in Neurospora crassa. Microbiol Rev 45:99–122PubMedPubMedCentralGoogle Scholar
  6. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Krager N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86PubMedCrossRefGoogle Scholar
  7. Badour SS, Tan CK, Waygood ER (1977) Observation on cell development in Chlamydomonas segni (Chlorophyceae) at low and high carbon dioxide tension. J Phycol 13:80–86Google Scholar
  8. Ballin G, Doucha J, Zachleder V, Šetlík I (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of nitrogen starvation. Biol Plant 30:81–91CrossRefGoogle Scholar
  9. Baserga R (1990) The cell cycle – myths and realities. Cancer Res 50:6769–6771PubMedGoogle Scholar
  10. Baserga R, Estensen RD, Petersen RO (1965) Inhibition of DNA synthesis in Ehrlich ascites cells by actinomycin D. II. The presynthetic block in the cell cycle. Proc Natl Acad Sci U S A 54:1141–1147PubMedPubMedCentralCrossRefGoogle Scholar
  11. Beach D, Durkacz B, Nurse P (1982) Functionally homologous cell cycle control genes in budding and fission yeast. Nature 300:706–709PubMedCrossRefGoogle Scholar
  12. Bedard DP, Singer RA, Johnston GL (1980) Transient cell cycle arrest of Saccharomyces cerevisiae by amino acid analog 2-DL-thienylamine. J Bacteriol 141:100–105PubMedPubMedCentralGoogle Scholar
  13. Bišová K, Vítová M, Zachleder V (2000) The activity of total histone H1 kinases is related to growth and commitment points while the p13(suc1)-bound kinase activity relates to mitoses in the alga Scenedesmus quadricauda. Plant Physiol Biochem 38:755–764CrossRefGoogle Scholar
  14. Bišová K, Zachleder V (2014) Cell-cycle regulation in green algae dividing by multiple fission. J Exp Bot 65:2585–2602PubMedCrossRefGoogle Scholar
  15. Bisova K, Krylov DM, Umen JG (2005) Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. Plant Physiol 137:1–17CrossRefGoogle Scholar
  16. Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681Google Scholar
  17. Boudolf V, Vlieghe K, Beemster GTS, Magyar Z, Acosta JAT, Maes S, Schueren E, Inze D, Veyldera L (2004) The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell 16:2683–2692PubMedPubMedCentralCrossRefGoogle Scholar
  18. Boudolf V, Inze D, De Veylder L (2006) What if higher plants lack a CDC25 phosphatase? Trends Plant Sci 11:474–479PubMedCrossRefGoogle Scholar
  19. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedCrossRefGoogle Scholar
  20. Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae-novel highly efficient starch producers. Biotechnol Bioeng 108:766–776PubMedCrossRefGoogle Scholar
  21. Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577CrossRefGoogle Scholar
  22. Cepák V, Zachleder V (1988) Regulation of chloroplast and cytoplasmic rRNA accumulation by light energy and its relation to reproductive events during the cell cycle of the alga Scenedesmus quadricauda. Plant Sci 57:205–213CrossRefGoogle Scholar
  23. Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549CrossRefGoogle Scholar
  24. Chiang KS (1971) Replication, transmission and recombination of cytoplasmic DNAs in C. reinhardi. In: Boardmann NK, Linnane AW, Smillie RM (eds) Autonomy and biogenesis of mitochondria and chloroplasts. North Holland Publishing Company, Amsterdam, pp 235–249Google Scholar
  25. Chiang KS (1975) The nuclear and chloroplast DNA replication mechanisms in Chlamydomonas reinhardtii: their regulation, periodicity and interaction. In: Colloque Internationale. CNRS, Paris, pp 147–158Google Scholar
  26. Chiang KS, Sueoka N (1967a) Replication of chromosomal and cytoplasmic DNA during mitosis and meiosis in the eucaryote Chlamydomonas reinhardi. J Cell Physiol 70:89–112PubMedCrossRefGoogle Scholar
  27. Chiang KS, Sueoka N (1967b) Replication of chloroplast DNA in Chlamydomonas reinhardi during vegetative cell cycle: its mode and regulation. Biochemistry 57:1506–1513Google Scholar
  28. Coleman AW, Maguire MJ (1982) A microspectrophotometric analysis of nuclear and chloroplast DNA in Volvox. Dev Biol 94:441–450PubMedCrossRefGoogle Scholar
  29. Cooper S (1979) A unifying model for the G1 period in prokaryotes and eukaryotes. Nature 280:17–19PubMedCrossRefGoogle Scholar
  30. Cooper S (1984) The continuum model as a unified description of the division cycle of eukaryotes and prokaryotes. In: Nurse P, Streiblová E (eds) The microbial cell cycle. CRC Press, Boca Raton, pp 7–18Google Scholar
  31. Cooper S (1987) On G0 and cell cycle controls. Bioessays 7:220–223PubMedCrossRefGoogle Scholar
  32. Cooper S (1990) The Escherichia coli cell cycle. Res Microbiol 141:17–29PubMedCrossRefGoogle Scholar
  33. Cooper S, Helmstetter CE (1968) Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31:519–540PubMedCrossRefGoogle Scholar
  34. Corellou F, Camasses A, Ligat L, Peaucellier G, Bouget FY (2005) Atypical regulation of a green lineage-specific B-type cyclin-dependent kinase. Plant Physiol 138:1627–1636PubMedPubMedCentralCrossRefGoogle Scholar
  35. Culotti J, Hartwell LH (1971) Genetic control of the cell division cycle in yeast. II. Seven genes controlling nuclear division. Exp Cell Res 67:389–401PubMedCrossRefGoogle Scholar
  36. Dalmon J (1970) Deoxyribonucleic acid metabolism during the cellular cycle of Chlorella. Bull Inf Sci Tech 145:53–55Google Scholar
  37. Dalmon J, Bayen M, Gilet R (1975) Periodic synthesis from Chlorella pyrenoidosa (strain 211/8b and strain Emerson). In: Colloque Internationale. CNRS, Paris, pp 179–183Google Scholar
  38. Darley WM, Volcani BE (1969) Role of silicon in diatom metabolism. A silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Reimann and Lewin. Exp Cell Res 58:334–342PubMedCrossRefGoogle Scholar
  39. Darzynkiewicz Z, Evenson D, Staiano-Coico L, Sharpless T, Melamed MR (1979a) Correlation between cell cycle duration and RNA content. J Cell Physiol 100:425–438PubMedCrossRefGoogle Scholar
  40. Darzynkiewicz Z, Evenson D, Staiano-Coico L, Sharpless T, Melamed MR (1979b) Relationship between RNA content and progression of lymphocytes through S phase of cell cycle. P Natl Acad Sci USA 76:338–362CrossRefGoogle Scholar
  41. Darzynkiewicz Z, Sharpless T, Staiano CL, Melamed MR (1980) Subcompartments of the G1 phase of cell cycle detected by flow cytometry. P Natl Acad Sci USA 77:6696–6699CrossRefGoogle Scholar
  42. De Veylder L, Larkin JC, Schnittger A (2011) Molecular control and function of endoreplication in development and physiology. Trends Plant Sci 16:624–634PubMedCrossRefGoogle Scholar
  43. Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral J-P, Bouget F-Y, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. P Natl Acad Sci USA 103:11647–11652CrossRefGoogle Scholar
  44. Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264PubMedCrossRefGoogle Scholar
  45. Dewitte W, Riou-Khamlichi C, Scofield S, Healy JMS, Jacqmard A, Kilby NJ, Murray JAH (2003) Altered cell cycle distribution, hyperplasia, and inhibited differentiation in arabidopsis caused by the D-type cyclin CYCD3. Plant Cell 15:79–92PubMedPubMedCentralCrossRefGoogle Scholar
  46. Donnan L, John PCL (1983) CeII cycle control by timer and sizer in Chlamydomonas. Nature 304:630–633PubMedCrossRefGoogle Scholar
  47. Donnan L, Carvill EP, Gilliland TJ, John PCL (1985) The cell-cycles of Chlamydomonas and Chlorella. New Phytol 99:1–40CrossRefGoogle Scholar
  48. Ducommun B, Brambilla P, Felix MA, Franza BR, Karsenti E, Draetta G (1991) Cdc2 phosphorylation is required for its interaction with cyclin. EMBO J 10:3311–3319PubMedPubMedCentralGoogle Scholar
  49. Duynstee EE, Schmidt RR (1967) Total starch and amylose levels during synchronous growth of Chlorella pyrenoidosa. Arch Biochem Biophys 119:382–386PubMedCrossRefGoogle Scholar
  50. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396PubMedCrossRefGoogle Scholar
  51. Fang SC, de los Reyes C, Umen JG (2006) Cell size checkpoint control by the retinoblastoma tumor suppressor pathway. PLoS Genet 2:1565–1579CrossRefGoogle Scholar
  52. Fantes PA (1977) Control of cell size and cycle time in Schizosaccharomyces pombe. J Cell Sci 24:51–67PubMedGoogle Scholar
  53. Fantes P, Nurse P (1977) Control of cell-size at division in fission yeast by a growth- modulated size control over nuclear division. Exp Cell Res 107:377–386PubMedCrossRefGoogle Scholar
  54. Farinas B, Mary C, de O Manes C-L, Bhaud Y, Peaucellier G, Moreau H (2006) Natural synchronisation for the study of cell division in the green unicellular alga Ostreococcus tauri. Plant Mol Biol 60:277–292PubMedCrossRefGoogle Scholar
  55. Ferreira P, Hemerly AS, Villarroel R, Van Montagu M, Inze D (1991) The Arabidopsis functional homolog of the p34cdc2 protein kinase. Plant Cell 3:531–540PubMedPubMedCentralGoogle Scholar
  56. Fobert PR, Gaudin V, Lunness P, Coen ES, Doonan JH (1996) Distinct classes of cdc2-related genes are differentially expressed during the cell division cycle in plants. Plant Cell 8:1465–1476PubMedPubMedCentralCrossRefGoogle Scholar
  57. Forsburg SL, Nurse P (1991) Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Annu Rev Cell Biol 7:227–256PubMedCrossRefGoogle Scholar
  58. Fujikawa-Yamamoto K (1982) RNA dependence in the cell cycle of V79 cells. J Cell Physiol 112:60–66PubMedCrossRefGoogle Scholar
  59. Fujikawa-Yamamoto K (1983) The relation between length of the cell cycle duration and RNA content in HeLa S3 cells. Cell Struct Funct 8:303–308PubMedCrossRefGoogle Scholar
  60. Goto K, Johnson CH (1995) Is the cell division cycle gated by a circadian clock – the case of Chlamydomonas reinhardtii. J Cell Biol 129:1061–1069PubMedCrossRefGoogle Scholar
  61. Gould KL, Nurse P (1989) Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342:39–45PubMedCrossRefGoogle Scholar
  62. Gould KL, Moreno S, Owen DJ, Sazer S, Nurse P (1991) Phosphorylation at Thr167 is required for Schizosaccharomyces pombe p34cdc2 function. EMBO J 10:3297–3309PubMedPubMedCentralGoogle Scholar
  63. Grant D, Swinton DC, Chiang KS (1978) Differential patterns of mitochondrial, chloroplastic and nuclear-DNA synthesis in synchronous cell-cycle of Chlamydomonas reinhardtii. Planta 141:259–267PubMedCrossRefGoogle Scholar
  64. Hartwell LH (1971) Genetic control of the cell division cycle in yeast: IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 69:265–276PubMedCrossRefGoogle Scholar
  65. Hartwell LH, Culotti J, Reid B (1970) Genetic control of the cell-division cycle in Yeast, I. Detection of mutants. Proc Natl Acad Sci U S A 66:352–359PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hartwell L, Mortimer RK, Culotti J, Culotti M (1973) Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics 74:267–286PubMedPubMedCentralGoogle Scholar
  67. Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183:46–51PubMedCrossRefGoogle Scholar
  68. Hashimoto H, Murakami S (1982) Chloroplast replication and loss of chloroplast DNA induced by nalidixic acid in Euglena gracilis. Cell Struct Funct 7:111–120CrossRefGoogle Scholar
  69. Heinhorst S, Cannon G, Weissbach A (1985) Chloroplast DNA synthesis during the cell cycle in cultured cells of Nicotiana tabacum: inhibition by nalidixic acid and hydroxyurea. Arch Biochim Biophys 239:475–479CrossRefGoogle Scholar
  70. Helmstetter CE, Cooper S (1968) DNA synthesis during the division cycle of rapidly growing Escherichia coli B/r. J Mol Biol 31:507–518PubMedCrossRefGoogle Scholar
  71. Helmstetter CE, Cooper S, Pierucci O (1968) On the bacterial life sequence. Cold Spring Harb Symp Quant Biol 33:809–822PubMedCrossRefGoogle Scholar
  72. Hesse M (1974) Wachstum und Synchronisierung der Alge Bumilleriopsis filiformis Vischer (Xanthophyceae). Planta 120:135–146PubMedCrossRefGoogle Scholar
  73. Hildebrand M, Abbriano RM, Polle JEW, Traller JC, Trentacoste EM, Smith SR, Davis AK (2013) Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production. Curr Opin Chem Biol 17:506–514PubMedCrossRefGoogle Scholar
  74. Hindley J, Phear GA (1984) Sequence of the cell division gene CDC2 from Schizosaccharomyces pombe: patterns of splicing and homology to protein kinases. Gene 31:129–134PubMedCrossRefGoogle Scholar
  75. Hirt H, Pay A, Györgyey J, Bakó L, Neméth K, Bögre L, Schweyen RJ, Heberle-Bors E, Dudits D (1991) Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2. Proc Natl Acad Sci U S A 88:1636–1640PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hopkins HA, Flora JB, Schmidt RR (1972) Periodic DNA accumulation during the cell cycle of a thermophilic strain of Chlorella pyrenoidosa. Arch Biochim Biophys 153:845–849CrossRefGoogle Scholar
  77. Hormanseder E, Tischer T, Mayer TU (2013) Modulation of cell cycle control during oocyte-to-embryo transitions. EMBO J 32:2191–2203PubMedPubMedCentralCrossRefGoogle Scholar
  78. Howard A, Pelc SR (1953) Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity (Lond) [Suppl] 6:261–273Google Scholar
  79. Hunt T (1989) Maturation promoting factor, cyclin and the control of M-phase. Curr Opin Cell Biol 1:268–274PubMedCrossRefGoogle Scholar
  80. Huysman MJJ, Martens C, Vandepoele K, Gillard J, Rayko E, Heijde M, Bowler C, Inze D, Van de Peer Y, De Veylder L, Vyverman W (2010) Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol 11:1–19CrossRefGoogle Scholar
  81. Huysman MJJ, Fortunato AE, Matthijs M, Costa BS, Vanderhaeghen R, Van den Daele H, Sachse M, Inzé D, Bowler C, Kroth PG, Wilhelm C, Falciatore A, Vyverman W, De Veylder L (2013) AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum). Plant Cell 25:215–228PubMedPubMedCentralCrossRefGoogle Scholar
  82. Huysman MJJ, Martens C, Vyverman W, De Veylder L (2014) Protein degradation during the diatom cell cycle: annotation and transcriptional analysis of SCF and APC/C ubiquitin ligase genes in Phaeodactylum tricornutum. Mar Genomics 14:39–46PubMedCrossRefGoogle Scholar
  83. Inagaki S, Umeda M (2011) Cell-cycle control and plant development. Int Rev Cell Mol Biol 291:227–261Google Scholar
  84. Inzé D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105PubMedCrossRefGoogle Scholar
  85. Itoh R, Takahashi H, Toda K, Kuroiwa H, Kuroiwa T (1997) DNA gyrase involvement in chloroplast-nucleoid division in Cyanidioschyzon merolae. Eur J Cell Biol 73:252–258PubMedGoogle Scholar
  86. Iwamura T (1955) Change of nucleic acid content in Chlorella cells during the course of their life cycle. J Biochem 42:575–589Google Scholar
  87. Iwamura T (1962) Nucleotides and nucleic acids. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic, New York, pp 231–238Google Scholar
  88. Iwamura T (1966) Nucleic acids in chloroplasts and metabolic DNA. Prog Nucleic Acid Res Mol Biol 5:133–155PubMedCrossRefGoogle Scholar
  89. Iwamura I (1970) DNA species in algae. Annu NY Acad Sci 175:488–510CrossRefGoogle Scholar
  90. Iwamura T, Kuwashima S (1969) Two DNA species in chloroplasts of Chlorella. Biochim Biophys Acta 174:330–339PubMedCrossRefGoogle Scholar
  91. Iwamura T, Myers J (1959) Changes in the content and distribution of the nucleic acid bases in Chlorella during the life cycle. Arch Biochem Biophys 84:267–277PubMedCrossRefGoogle Scholar
  92. Iwamura T, Katoh K, Nishimura T (1982) Semi-conservative replication of chloroplast DNA in synchronized Chlorella. Cell Struct Funct 7:71–86CrossRefGoogle Scholar
  93. James TW, Jope C (1978) Visualization by fluorescence of chloroplast DNA in higher plants by means of the DNA-specific probe 4,6-diamidino-2-phenylindole. J Cell Biol 79:623–630PubMedCrossRefGoogle Scholar
  94. Jin P, Gu Y, Morgan DO (1996) Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol 134:963–970PubMedCrossRefGoogle Scholar
  95. John PCL (1984) Control of the cell division cycle in Chlamydomonas. Microbiol Sci 1:96–101PubMedGoogle Scholar
  96. John PLC (1987) Control points in the Chlamydomonas cell cycle. In: Robinson DG, Starr RC, Wiesnar W (eds) Algal development. Molecular and cellular aspects. Springer, Berlin, pp 9–16Google Scholar
  97. John PCL, McCullough AW, Atkinson AWJ, Forde BG, Gunning BES (1973) The cell cycle in Chlorella. In: Balls M, Billet FS (eds) The cell cycle in development and differentiation. Cambridge University Press, Cambridge, pp 61–76Google Scholar
  98. John PC, Sek FJ, Lee MG (1989) A homolog of the cell cycle control protein p34cdc2 participates in the division cycle of Chlamydomonas, and a similar protein is detectable in higher plants and remote taxa. Plant Cell 1:1185–1193PubMedPubMedCentralCrossRefGoogle Scholar
  99. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193PubMedCrossRefGoogle Scholar
  100. Johnston GC, Singer RA (1978) RNA synthesis and control of cell division in yeast S. cerevisiae. Cell 14:951–958PubMedCrossRefGoogle Scholar
  101. Kabeya Y, Miyagishima S (2013) Chloroplast DNA replication is regulated by the redox state independently of chloroplast division in Chlamydomonas reinhardtii. Plant Physiol 161:2102–2112PubMedPubMedCentralCrossRefGoogle Scholar
  102. Kanesaki Y, Kobayashi Y, Hanaoka M, Tanaka K (2009) Mg-protoporphyrin IX signaling in Cyanidioschyzon merolae: multiple pathways may involve the retrograde signaling in plant cells. Plant Signal Behav 4:1190–1192PubMedPubMedCentralCrossRefGoogle Scholar
  103. Kates JR, Chiang KS, Jones RF (1968) Studies on DNA replication during synchronized vegetative growth and gametic differentiation in Chlamydomonas reinhardtii. Exp Cell Res 49:121–135PubMedCrossRefGoogle Scholar
  104. Kawano S, Suzuki T, Kuroiwa T (1982) Structural homogeneity of mitochondrial DNA in the mitochondrial nucleoid of Physarum polycephalum. Biochim Biophys Acta 696:290–298PubMedCrossRefGoogle Scholar
  105. Kemp CL, Lee KA (1975) Synchronous growth in the colonial alga Eudorina elegans (Chlorophyceae). J Phycol 12:105–109Google Scholar
  106. Khadaroo B, Robbens S, Ferraz C, Derelle E, Eychenie S, Cooke R, Peaucellier G, Delseny M, Demaille J, Van de Peer Y, Picard A, Moreau H (2004) The first green lineage cdc25 dual-specificity phosphatase. Cell Cycle 3:513–518PubMedCrossRefGoogle Scholar
  107. Kirk DL (1998) Volvox: molecular genetic origins of multicellularity and cellular differentiation. Cambridge University Press, Cambridge, p 381Google Scholar
  108. Knutsen G, Lien T (1981) Properties of synchronous cultures of Chlamydomonas reinhardtii under optimal conditions, and some factors influencing them. Ber Deut Bot Ges 94:599–611Google Scholar
  109. Knutsen G, Lien T, Skoog L (1974) Deoxyribonucleoside triophosphate and DNA synthesis in synchronized cultures of Chlamydomonas. Exp Cell Res 83:442–445PubMedCrossRefGoogle Scholar
  110. Kobayashi Y, Kanesaki Y, Tanaka A, Kuroiwa H, Kuroiwa T, Tanaka K (2009) Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells. Proc Natl Acad Sci USA 106:803–807PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kobayashi Y, Imamura S, Hanaoka M, Tanaka K (2011) A tetrapyrrole-regulated ubiquitin ligase controls algal nuclear DNA replication. Nat Cell Biol 13:483–487PubMedCrossRefGoogle Scholar
  112. Kumagai A, Dunphy WG (1991) Molecular mechanism of the final steps in the activation of MPF. Cold Spring Harbor Symp Quant Biol 56:585–589PubMedCrossRefGoogle Scholar
  113. Kuroiwa T, Suzuki T, Ogawa K, Kawano S (1981) The chloroplast nucleus: distribution, number, size and shape, and a model for the multiplication of the chloroplast genome during chloroplast development. Plant Cell Physiol 22:381–396Google Scholar
  114. Kuroiwa T, Kawano S, Nishibayashi S, Sato C (1982) Epifluorescent microscopic evidence for maternal inheritance of chloroplast DNA. Nature 298:481–483PubMedCrossRefGoogle Scholar
  115. Kuroiwa T, Kwang WJ, Martin F (1991) The replication, differentiation, and inheritance of plastids with emphasis on the concept of organelle nuclei. Int Rev Cytol 128:1–62CrossRefGoogle Scholar
  116. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673-690Google Scholar
  117. Landrieu I, da Costa M, De Veylder L, Dewitte F, Vandepoele K, Hassan S, Wieruszeski J-M, Faure J-D, Van Montagu M, Inze D, Lippens G (2004a) A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:13380–13385PubMedPubMedCentralCrossRefGoogle Scholar
  118. Landrieu I, Hassan S, Sauty M, Dewitte F, Wieruszeski JM, Inze D, De Veylder L, Lippens G (2004b) Characterization of the Arabidopsis thaliana Arath; CDC25 dual-specificity tyrosine phosphatase. Biochem Biophys Res Commun 322:734–739PubMedCrossRefGoogle Scholar
  119. Langan TA, Gautier J, Lohka M, Hollingsworth R, Moreno S, Nurse P, Maller J, Sclafani RA (1989) Mammalian growth-associated H1 histone kinase: a homologue of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells. Mol Cell Biol 9:3860–3868PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lee MG, Nurse P (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327:31–35PubMedCrossRefGoogle Scholar
  121. Lee MH, Yang HY (2003) Regulators of G1 cyclin-dependent kinases and cancers. Cancer Metastasis Rev 22:435–449PubMedCrossRefGoogle Scholar
  122. Lee J, Das A, Yamaguchi M, Hashimoto J, Tsutsumi N, Uchimiya H, Umeda M (2003) Cell cycle function of a rice B2-type cyclin interacting with a B-type cyclin-dependent kinase. Plant J 34:417–425PubMedCrossRefGoogle Scholar
  123. Li X, Přibyl P, Bišová K, Kawano S, Cepák V, Zachleder V, Čížková M, Brányiková I, Vítová M (2013) The microalga Parachlorella kessleri––a novel highly efficient lipid producer. Biotechnol Bioeng 110:97–107PubMedCrossRefGoogle Scholar
  124. Lieberman HB (1995) Extragenic suppressors of Schizosaccharomyces-pombe Rad9 mutations uncouple radioresistance and hydroxyurea sensitivity from cell-cycle checkpoint control. Genetics 141:107–117PubMedPubMedCentralGoogle Scholar
  125. Lieberman I, Abrams R, Ove P (1963) Changes in the metabolism of ribonucleic acid preceding the synthesis of deoxyribonucleic acid in mammalian cells cultured from the animal. J Biol Chem 238:2141–2149PubMedGoogle Scholar
  126. Lien T, Knutsen G (1973) Phosphate as a control factor in cell division of Chlamydomonas reinhardti, studied in synchronous culture. Exp Cell Res 78:79–88PubMedCrossRefGoogle Scholar
  127. Lien T, Knutsen G (1976) Synchronized cultures of a cell wall-less mutant of Chlamydomonas reinhardii. Arch Microbiol 108:189–194PubMedCrossRefGoogle Scholar
  128. Lien T, Knutsen G (1979) Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): a review of optimal conditions. J Phycol 15:191–200CrossRefGoogle Scholar
  129. Liskay MR, Leonard KE, Prescott DM (1979) Different chinese hamster cell lines express a G1 period for different reasons. Somat Cell Genet 5:615–623PubMedCrossRefGoogle Scholar
  130. Liskay MR, Kornfeld B, Fullerton P, Evans R (1980) Protein synthesis and the presence or absence of a measurable G1 in cultured chinese hamster cells. J Cell Physiol 104:461–467PubMedCrossRefGoogle Scholar
  131. Lorenzen H (1957) Synchrone Zellteilung von Chlorella bei verschiedenen Licht-Dunkel -Wechseln. Flora 144:473–496Google Scholar
  132. Lorenzen H (1980) Time measurements in unicellular algae and its influence on productivity. In: Shelef G, Soeder CJ (eds) Algae Biomass. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 411–419Google Scholar
  133. Lorenzen H, Albrodt J (1981) Timing and circadian rhythm and their importance for metabolic regulation in Chlorella. Ber Deut Bot Ges 94:347–355Google Scholar
  134. Lorenzen H, Schleif J (1966) Zur Bedeutung der kürzest moeglichen Generationsdauer in Synchronkulturen von Chlorella. Flora 156:673–683Google Scholar
  135. Magyar Z, Meszaros T, Miskolczi P, Deak M, Feher A, Brown S, Kondorosi E, Athanasiadis A, Pongor S, Bilgin M, Bako L, Koncz C, Dudits D (1997) Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cells. Plant Cell 9:223–235PubMedPubMedCentralCrossRefGoogle Scholar
  136. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232CrossRefGoogle Scholar
  137. Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima S, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657PubMedCrossRefGoogle Scholar
  138. Meijer L, Arion D, Golsteyn R, Pines J, Brizuela L, Hunt T, Beach D (1989) Cyclin is a component of the sea urchin egg M-phase specific histone H1 kinase. EMBO J 8:2275–2282PubMedPubMedCentralGoogle Scholar
  139. Mendenhall MD, Hodge AE (1998) Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1191–1243PubMedPubMedCentralGoogle Scholar
  140. Menges M, Hennig L, Gruissem W, Murray JAH (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277:41987–42002PubMedCrossRefGoogle Scholar
  141. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250PubMedPubMedCentralCrossRefGoogle Scholar
  142. Meyerson M, Enders GH, Wu CL, Su LK, Gorka C, Nelson C, Harlow E, Tsai LH (1992) A family of human cdc2-related protein kinases. EMBO J 11:2909–2917PubMedPubMedCentralGoogle Scholar
  143. Minshull J (1989) Cyclin and MPF: driving mitosis. Bioessays 11:149–151CrossRefGoogle Scholar
  144. Minshull J, Blow JJ, Hunt T (1989a) Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell 56:947–956PubMedCrossRefGoogle Scholar
  145. Minshull J, Pines J, Golsteyn R, Standart N, Mackie S, Colman A, Blow J, Ruderman JV, Wu M, Hunt T (1989b) The role of cyclin synthesis, modification and destruction in the control of cell division. J Cell Sci Suppl 12:77–97PubMedCrossRefGoogle Scholar
  146. Mironov V, De Veylder L, Van Montagu M, Inzé D (1999) Cyclin-dependent kinases and cell division in plants – the nexus. Plant Cell 11:509–529PubMedPubMedCentralGoogle Scholar
  147. Mitchison JM (1971) The biology of the cell cycle. Cambridge University Press, Cambridge, 313 ppGoogle Scholar
  148. Mitchison JM (1977) The timing of cell cycle events. In: Little M, Laweletz N, Petzelt C, Ponstingle H, Schroeter D, Zimmerman HP (eds) Mitosis, facts and questions. Springer, Berlin, pp 1–13CrossRefGoogle Scholar
  149. Miyagishima SY, Fujiwara T, Sumiya N, Hirooka S, Nakano A, Kabeya Y, Nakamura M (2014) Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nat Commun 5:3807PubMedCrossRefGoogle Scholar
  150. Moberg S, Knutsen G, Goksoyr J (1968) The point of no return concept in cell division. The effects of some metabolic inhibitors on synchronized Chlorella pyrenoidosa. Physiol Plant 21:390–400CrossRefGoogle Scholar
  151. Moreno S, Hayles J, Nurse P (1989) Regulation of p34cdc2 protein-kinase during mitosis. Cell 58:361–372PubMedCrossRefGoogle Scholar
  152. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134PubMedCrossRefGoogle Scholar
  153. Morimura Y (1959) Synchronous culture of Chlorella. I. Kinetic analysis of the life cycle of Chlorella ellipsoidea as affected by changes of temperature and light intensity. Plant Cell Physiol 1:49–62Google Scholar
  154. Moser BA, Russell P (2000) Cell cycle regulation in Schizosaccharomyces pombe. Curr Opin Microbiol 3:631–636PubMedCrossRefGoogle Scholar
  155. Moulager M, Monnier A, Jesson B, Bouvet R, Mosser J, Schwartz C, Garnier L, Corellou F, Bouget F-Y (2007) Light-gependent regulation of cell division in Ostreococcus: evidence for a major transcriptional input. Plant Physiol 144:1360–1369PubMedPubMedCentralCrossRefGoogle Scholar
  156. Moulager M, Corellou F, Verge V, Escande M-L, Bouget F-Y (2010) Integration of light signals by the retinoblastoma pathway in the control of S phase entry in the picophytoplanktonic cell Ostreococcus. PLoS Genet 6:1–13CrossRefGoogle Scholar
  157. Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116:221–234PubMedCrossRefGoogle Scholar
  158. Nagashima H, Kuroiwa T, Fukuda I (1984) Chloroplast nucleoids in a unicellular hot spring alga Cyanidium caldarium and related algae. Experientia 40:363–364CrossRefGoogle Scholar
  159. Nasmyth KA (1979) A control acting over the initiation of DNA replication in the yeast Schizosaccharomyces pombe. J Cell Sci 36:155–168PubMedGoogle Scholar
  160. Nasmyth K (1996) Viewpoint: putting the cell cycle in order. Science 274:1643–1645PubMedCrossRefGoogle Scholar
  161. Nasmyth K, Nurse P (1981) Cell-division cycle mutants altered in DNA-replication and mitosis in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 182:119–124PubMedCrossRefGoogle Scholar
  162. Nasmyth K, Nurse P, Fraser RSS (1979) The effect of cell mass on the cell cycle timing and duration of S-phase in fission yeast. J Cell Sci 39:215–233PubMedGoogle Scholar
  163. Nelle R, Tischner R, Harnischfeger G, Lorenzen H (1975) Correlation between pigment systems and photosynthetic activity during the developmental cycle of Chlorella. Biochem Physiol Pflanz 167:463–472Google Scholar
  164. Nemoto Y, Kawano S, Kondoh K, Nagata T, Kuroiwa T (1990) Studies on plastid-nuclei (nucleoids) in Nicotiana tabacum L. III. Isolation of chloroplast-nuclei from mesophyll protoplasts and identification of chloroplast DNA-binding proteins. Plant Cell Physiol 31:767–776Google Scholar
  165. Nemoto Y, Kawano S, Kondoh K, Nagata T, Kuroiwa T (1991) Studies on plastid-nuclei (nucleoids) in Nicotiana tabacum L. IV. Association of chloroplast-DNA with proteins at several specific sites in isolated chloroplast-nuclei. Plant Cell Physiol 32:131–141Google Scholar
  166. Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30:687–696PubMedCrossRefGoogle Scholar
  167. Newport JW, Kirschner MW (1984) Regulation of the cell cycle during early Xenopus development. Cell 37:731–742PubMedCrossRefGoogle Scholar
  168. Nurse P (1975) Genetic control of cell size at division in yeast. Nature 256:547–551PubMedCrossRefGoogle Scholar
  169. Nurse P, Fantes P (1977) Transition-probability and cell-cycle initiation in yeast. Nature 267:647–647CrossRefGoogle Scholar
  170. Nurse P, Thuriaux P (1977) Controls over the timing of DNA replication during the cell cycle of fission yeast. Exp Cell Res 107:365–375PubMedCrossRefGoogle Scholar
  171. Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 146:167178CrossRefGoogle Scholar
  172. Nurse P, Durkacz B, Hayles J (1983) Cell cycle control genes of the unicellular eukaryote Schizosaccharomyces pombe. Biol Cell 7:483–484Google Scholar
  173. Ohad I (1975) Control by light of synthesis of membrane proteins of cytoplasmic and chloroplastic origin and their role in the formation and function of the active center of PSII and PSI in Chlamydomonas reinhardi Y-L. In: Colloque Internationale. CNRS, Paris, pp 267–268Google Scholar
  174. Parthier B (1982) The cooperation of nuclear and plastid genomes in plastid biogenesis and differentiation. Biochem Physiol Pflanzen 177:282–317Google Scholar
  175. Pienkos P, Walfield A, Hershberger CL (1974) Effect of nalidixic acid on Euglena gracilis: induced loss of chloroplast deoxyribonucleic acid. Arch Biochem Biophys 165:548–553PubMedCrossRefGoogle Scholar
  176. Pines J (1996) Cell cycle: reaching for a role for the Cks proteins. Curr Biol 6:1399–1402PubMedCrossRefGoogle Scholar
  177. Pirson A, Lorenzen H (1966) Synchronized dividing algae. Plant Physiol 17:439–458CrossRefGoogle Scholar
  178. Pirson A, Lorenzen H, Ruppel HG (1963) Der Licht-Dunkel-Wechsel als synchronisierendes Prinzip. In: Ashida J (ed) Studies on microalgae and photosynthetic bacteria, Japanese Society of Plant Physiologists, University of Tokyo Press, Tokyo, pp 127–139Google Scholar
  179. Porceddu A, Stals H, Reichheldt JP, Segers G, De Veylder L, Barroco RD, Casteels P, Van Montagu M, Inze D, Mironov V (2001) A plant-specific cyclin-dependent kinase is involved in the control of G(2)/M progression in plants. J Biol Chem 276:36354–36360PubMedCrossRefGoogle Scholar
  180. Přibyl P, Cepák V, Zachleder V (2013) Oil overproduction by means of microalgae. In: Bajpai RK, Prokop A, Zappi M (eds) Algal biorefineries. Springer, Dordrecht, pp 240–274Google Scholar
  181. Rading MM, Engel TA, Lipowsky R, Vallertani A (2011) Stationary size distributions of growing cells with binary and multiple cell division. J Stat Phys 145:1–22CrossRefGoogle Scholar
  182. Reed SI (1997) Control of the G1/S transition. Cancer Surv 29:7–23PubMedGoogle Scholar
  183. Reed SI, Hadwiger JA, Lörincz AT (1985) Protein kinase activity associated with the product of the yeast cell division cycle gene CDC28. Proc Natl Acad Sci U S A 82:4055–4059PubMedPubMedCentralCrossRefGoogle Scholar
  184. Renaudin JP, Doonan JH, Freeman D, Hashimoto J, Hirt H, Inze D, Jacobs T, Kouchi H, Rouze P, Sauter M, Savoure A, Sorrell DA, Sundaresan V, Murray JAH (1996) Plant cyclins: a unified nomenclature for plant A-, B- and D- type cyclins based on sequence organization. Plant Mol Biol 32:1003–1018PubMedCrossRefGoogle Scholar
  185. Řezanka T, Petranková M, Cepák V, Přibyl P, Sigler K, Cajthaml T (2010) Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol 55:265–269CrossRefGoogle Scholar
  186. Robbens S, Khadaroo B, Camasses A, Derelle E, Ferraz C, Inze D, Van de Peer Y, Moreau H (2005) Genome-wide analysis of core cell cycle genes in the unicellular green alga Ostreococcus tauri. Mol Biol Evol 22:589–597PubMedCrossRefGoogle Scholar
  187. Robreau G, Le Gal Y (1974) Effect of nalidixic acid in Chlamydomonas reinhardtii. In: Colloque Internationale. CNRS, Paris, pp 167–177Google Scholar
  188. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112PubMedCrossRefGoogle Scholar
  189. Rupeš I (2002) Checking cell size in yeast. Trends Genet 18:479–485PubMedCrossRefGoogle Scholar
  190. Russell P, Nurse P (1986) Cdc25 + functions as an inducer in the mitotic control of fission yeast. Cell 45:145–153Google Scholar
  191. Russell P, Nurse P (1987) Negative regulation of mitosis by wee1 +, a gene encoding a protein kinase homolog. Cell 49:559–567Google Scholar
  192. Segers G, Gadisseur I, Bergounioux C, de Almeida EJ, Jacqmard A, Van Montagu M, Inzé D (1996) The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle. Plant J 10:601–612Google Scholar
  193. Senger H, Bishop NI (1966) The light-dependent formation of nucleic acids in cultures of synchronized Chlorella. Plant Cell Physiol 7:441–455Google Scholar
  194. Senger H, Bishop NI (1969) Light-dependent formation of nucleic acids and its relation to the induction of synchronous cell division in Chlorella. In: Padilla GM, Whitson GL, Cameron IL (eds) The cell cycle. Academic, New York, pp 180–201Google Scholar
  195. Shen WH (2002) The plant E2F-Rb pathway and epigenetic control. Trends Plant Sci 7:505–511PubMedCrossRefGoogle Scholar
  196. Sherr CJ (1995) D-type cyclins. Trends Biochem Sci 20:187–190PubMedCrossRefGoogle Scholar
  197. Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677PubMedCrossRefGoogle Scholar
  198. Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163PubMedCrossRefGoogle Scholar
  199. Sherr CJ, Kato J, Quelle DE, Matsuoka M, Roussel MF (1994) D-type cyclins and their cyclin-dependent kinases: G1 phase integrators of the mitogenic response. Cold Spring Harbor Symp Quant Biol 59:11–19PubMedCrossRefGoogle Scholar
  200. Shrestha RP, Tesson B, Norden-Krichmar T, Federowicz S, Hildebrand M, Allen AE (2012) Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genomics 13:499PubMedPubMedCentralCrossRefGoogle Scholar
  201. Simanis V, Nurse P (1986) The cell-cycle control gene cdc2 + of fission yeast encodes a protein-kinase potentially regulated by phosphorylation. Cell 45:261–268Google Scholar
  202. Singer RA, Johnston GC (1979) Nalidixic acid causes a transient G1 arrest in the yeast Saccharomyces cerevisiae. Mol Gen Genet 176:37–39PubMedCrossRefGoogle Scholar
  203. Singer RA, Johnston GC (1981) Nature of G1 phase of yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 78:520–531Google Scholar
  204. Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88:3548–3555CrossRefGoogle Scholar
  205. Sorrell DA, Menges M, Healy JMS, Deveaux Y, Amano C, Su Y, Nakagami H, Shinmyo A, Doonan JH, Sekine M, Murray JAH (2001) Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar bright yellow-2 cells. Plant Physiol 126:1214–1223PubMedPubMedCentralCrossRefGoogle Scholar
  206. Spudich JL, Sager R (1980) Regulation of the Chlamydomonas cell-cycle by light and dark. J Cell Biol 85:136–146PubMedCrossRefGoogle Scholar
  207. Sueoka N, Chiang KS, Kates JR (1967) Deoxyribonucleic acid replication in meiosis of zoospores. J Mol Biol 25:47–66PubMedCrossRefGoogle Scholar
  208. Sullivan WC, Volcani BE (1973) Role of silicon in diatom metabolism. III. The effects of silicic acid on DNA polymerase TMP kinase and DNA synthesis in Cylindrotheca fusiformis. Biochim Biophys Acta 308:212–229PubMedCrossRefGoogle Scholar
  209. Šetlík I, Zachleder V (1981) Cell cycle of algae. In: Nečas O, Streiblová E, Vondrejs V (eds) Cell cycle of microorganisms. Academia Praha, Praha, pp 152–205 (in Czech)Google Scholar
  210. Šetlík I, Zachleder V (1983) Overlapping cell reproductive sequences in algae. In: Chaloupka J, Kotyk A, Streiblová E (eds) Progress in cell cycle controls. Institute of Microbiology, Czechoslovak Academy of Sciences, Prague, pp 51–77Google Scholar
  211. Šetlík I, Zachleder V (1984) The multiple fission cell reproductive patterns in algae. In: Nurse P, Streiblová E (eds) The microbial cell cycle. CRC Press, Boca Raton, pp 253–279Google Scholar
  212. Šetlík I, Berková E, Doucha J, Kubín S, Vendlová J, Zachleder V (1972) The coupling of synthetic and reproduction processes in Scenedesmus quadricauda. Arch Hydrobiol/Suppl 41, Algol Stud 7:172–217Google Scholar
  213. Šetlík I, Zachleder V, Doucha J, Berková E, Bartoš J (1975) The nature of temperature block in the sequence of reproductive processes in Chlorella vulgaris BEIJERINCK. Arch Hydrobiol/Suppl 49, Algol Stud 14:70–104Google Scholar
  214. Šetlík I, Ballin G, Doucha J, Zachleder V (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of sulphur starvation. Biol Plant 30:161–169CrossRefGoogle Scholar
  215. Tamiya H (1964) Growth and cell division of Chlorella. In: Zeuthen E (ed) Synchrony in cell division and growth. Wiley/J.Z. Sons Inc., New York, pp 247–305Google Scholar
  216. Tamiya H (1966) Synchronous cultures of algae. Plant Physiol 17:1–26CrossRefGoogle Scholar
  217. Tamiya H, Iwamura T, Shibata K, Hase E, Nihei T (1953) Correlation between photosynthesis and light-independent metabolism in growth of Chlorella. Biochim Biophys Acta 12:23–40PubMedCrossRefGoogle Scholar
  218. Teixeira LK, Reed SI (2013) Ubiquitin ligases and cell cycle control. Annu Rev Biochem 82:387–414PubMedCrossRefGoogle Scholar
  219. Thuriaux P, Nurse P, Carter B (1978) Mutants altered in the control co-ordinating cell division with cell growth in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 161:215–220PubMedGoogle Scholar
  220. Tucker RG, Darden WH (1972) Nucleic acid synthesis during the vegetative life cycle of Volvox aureus M5. Arch Mikrobiol 84:87–94PubMedCrossRefGoogle Scholar
  221. Tukaj Z, Kubínová A, Zachleder V (1996) Effect of irradiance on growth and reproductive processes during the cell cycle in Scenedesmus armatus (Chlorophyta). J Phycol 32:624–631CrossRefGoogle Scholar
  222. Tulin F, Cross FR (2014) A microbial avenue to cell cycle control in the plant superkingdom. Plant Cell 26:4019–4038PubMedPubMedCentralCrossRefGoogle Scholar
  223. Tyson JJ, Novak B (2008) Temporal organization of the cell cycle. Curr Biol 18:759–768CrossRefGoogle Scholar
  224. Umen JG, Goodenough UW (2001) Control of cell division by a retinoblastoma protein homolog in Chlamydomonas. Genes Dev 15:1652–1661PubMedPubMedCentralCrossRefGoogle Scholar
  225. Umlauf H, Zachleder V (1979) Die Synthese von Proteinen und Nukleinsaeuren als Testgrundlage. Wiss Hft Pädagog Hochschule Koethen 3:63–72Google Scholar
  226. van den Heuvel S, Dyson NJ (2008) Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol 9:713–724PubMedCrossRefGoogle Scholar
  227. van den Hoek C, Mann DG, Jahns HM (1995) Algae, an introduction to phycology. Cambridge University Press, Cambridge, 623 ppGoogle Scholar
  228. Vassef AA, Flora JB, Weeks JG, Bibbs BS, Schmidt RR (1973) The effects of enzyme synthesis and stability and of deoxyribonucleic acid replication on the cellular levels of aspartate transcarbamylase during the cell cycle of eukaryote Chlorella. J Biol Chem 248:1976–1987PubMedGoogle Scholar
  229. Vítová M, Zachleder V (2005) Points of commitment to reproductive events as a tool for analysis of the cell cycle in synchronous cultures of algae. Folia Microbiol 50:141–149CrossRefGoogle Scholar
  230. Vítová M, Hendrychová J, Cepák V, Zachleder V (2005) Visualization of DNA-containing structures in various species of Chlorophyta, Rhodophyta and Cyanophyta using SYBR green I dye. Folia Microbiol 50:333–340CrossRefGoogle Scholar
  231. Vítová M, Bišová K, Hlavová M, Kawano S, Zachleder V, Čížková M (2011a) Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by temperature. Planta 234:599–608PubMedCrossRefGoogle Scholar
  232. Vítová M, Bišová K, Umysová D, Hlavová M, Kawano S, Zachleder V, Čížková M (2011b) Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity. Planta 233:75–86PubMedCrossRefGoogle Scholar
  233. Wang H, Fowke LC, Crosby WL (1997) A plant cyclin-dependent kinase inhibitor gene. Nature 386:451–452Google Scholar
  234. Wanka F (1959) Untersuchungen über die Wirkung des Lichts auf die Zellteilung von Chlorella pyrenoidosa. Arch Mikrobiol 34:161–188PubMedCrossRefGoogle Scholar
  235. Wanka F (1962) Über den Einfluss des Lichts auf die Nucleinsäuresynthese bei Synchronkulturen von Chlorella pyrenoidosa. Ber Deut Bot Ges 75:457–464Google Scholar
  236. Wanka F (1967) The effect of light on DNA synthesis and related processes in synchronous cultures of Chlorella. Arch Mikrobiol 5:257–269CrossRefGoogle Scholar
  237. Wanka F (1968) Ultrastructural changes during normal and colchicine inhibited cell division of Chlorella. Protoplasma 66:105–130PubMedCrossRefGoogle Scholar
  238. Wanka F, Aelen JMA (1973) The effect of light on RNA and nucleotide synthesis in synchronous cultures of Chlorella. Plant Sci Lett 1:129–135CrossRefGoogle Scholar
  239. Wanka F, Geraedts J (1972) Effect of temperature in the regulation of DNA synthesis in synchronous cultures of Chlorella. Exp Cell Res 71:188–192PubMedCrossRefGoogle Scholar
  240. Wanka F, Moors J, Krijzer FNCM (1972) Dissociation of nuclear DNA replication from concomitant protein synthesis in synchronous cultures of Chlorella. Biochim Biophys Acta 269:153–161PubMedCrossRefGoogle Scholar
  241. Williamson QH, Fennel OJ (1975) The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA. Methods Cell Biol 12:335–351PubMedCrossRefGoogle Scholar
  242. Wilson R, Chiang KS (1977) Temporal programming of chloroplast and cytoplasmic ribosomal-RNA transcription in synchronous cell-cycle of Chlamydomonas reinhardtii. J Cell Biol 72:470–481PubMedCrossRefGoogle Scholar
  243. Woodcock CLF, Bogorad L (1970) Evidence for variation in the quantity of DNA among plastids of Acetabularia. J Cell Biol 44:361–375PubMedPubMedCentralCrossRefGoogle Scholar
  244. Yates I, Darley M, Kochert G (1975) Separation of cell types in synchronized cultures of Volvox carteri. Cytobios 12:211–223Google Scholar
  245. Zachleder V (1994) The effect of hydroxyurea and fluorodeoxyuridine on cell cycle events in the chlorococcal alga Scenedesmus quadricauda (Chlorophyta). J Phycol 30:274–279CrossRefGoogle Scholar
  246. Zachleder V (1995) Regulation of growth processes during the cell cycle of the chlorococcal alga Scenedesmus quadricauda under a DNA replication block. J Phycol 30:941–947CrossRefGoogle Scholar
  247. Zachleder V, Brányiková I (2013) Starch overproduction by means of algae. In: Bajpai RK, Prokop A, Zappi M (eds) Algal biorefineries. Springer, Dordrecht, pp 217–240Google Scholar
  248. Zachleder V, Cepák V (1987a) The effect of light on the number of chloroplast nucleoids in daughter cells of the alga Scenedesmus quadricauda. Protoplasma 138:37–44CrossRefGoogle Scholar
  249. Zachleder V, Cepák V (1987b) Variations in chloroplast nucleoid number during the cell cycle in the alga Scenedesmus quadricauda grown under different light conditions. Protoplasma 141:74–82CrossRefGoogle Scholar
  250. Zachleder V, Cepák V (1987c) Visualization of DNA containing structures by fluorochrome DAPI in those algal cells which are not freely permeable to the dye. Arch Hydrobiol/Suppl 78, Algol Stud 47:157–168Google Scholar
  251. Zachleder V, Šetlík I (1982) Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol Plant 24:341–353CrossRefGoogle Scholar
  252. Zachleder V, Šetlík I (1988) Distinct controls of DNA-replication and of nuclear division in the cell-cycles of the chlorococcal alga Scenedesmus quadricauda. J Cell Sci 91:531–539Google Scholar
  253. Zachleder V, Šetlík I (1990) Timing of events in overlapping cell reproductive sequences and their mutual interactions in the alga Scenedesmus quadricauda. J Cell Sci 97:631–638Google Scholar
  254. Zachleder V, van den Ende H (1992) Cell cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors. J Cell Sci 102:469–474Google Scholar
  255. Zachleder V, Doucha J, Berkova E, Setlik I (1975) Effect of synchronizing dark period on populations of Scenedesmus quadricauda. Biol Plant 17:416–433CrossRefGoogle Scholar
  256. Zachleder V, Abarzua S, Wittenburg E (1983) Effect of 3,4-benzopyrene on the course of the cell cycle events in the chlorococcal alga Scenedesmus quadricauda. Planta 157:432–440PubMedCrossRefGoogle Scholar
  257. Zachleder V, Ballin G, Doucha J, Šetlík I (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of phosphorus starvation. Biol Plant 30:92–99CrossRefGoogle Scholar
  258. Zachleder V, Kuptsova ES, Los DA, Cepák V, Kubín Š, Shapiguzov JM, Semenenko VE (1989) Division of chloroplast nucleoids and replication of chloroplast DNA during the cell cycle of Dunaliella salina grown under blue and red light. Protoplasma 150:160–167CrossRefGoogle Scholar
  259. Zachleder V, Kubinová A, Cepák V (1990) Relationships between chloroplast and cytoplasmic rRNA accumulation during the cell cycle of the green alga Scenedesmus quadricauda. Plant Sci 66:35–41CrossRefGoogle Scholar
  260. Zachleder V, Kawano S, Kuroiwa T (1995) The course of chloroplast DNA replication and its relationship to other reproductive processes in the chloroplast and nucleocytoplasmic compartment during the cell cycle of the alga Scenedesmus quadricauda. Protoplasma 188:245–251CrossRefGoogle Scholar
  261. Zachleder V, Kawano S, Kuroiwa T (1996) Uncoupling of chloroplast reproductive events from cell cycle division processes by 5-fluorodeoxyuridine in the alga Scenedesmus quadricauda. Protoplasma 192:228–234CrossRefGoogle Scholar
  262. Zachleder V, Schläfli O, Boschetti A (1997) Growth-controlled oscillation in activity of histone H1 kinase during the cell cycle of Chlamydomonas reinhardtii (Chlorophyta). J Phycol 33:673–681CrossRefGoogle Scholar
  263. Zachleder V, Bišová K, Vítová M, Kubín Š, Hendrychová J (2002) Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors. Eur J Phycol 37:361–371CrossRefGoogle Scholar
  264. Zachleder V, Kawano S, Cepák V, Kuroiwa T (2004) The effect of nalidixic acid on growth and reproductive events in nucleocytosolic and chloroplast compartments in the alga Scenedesmus quadricauda. Folia Microbiol 49:441–451CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vilém Zachleder
    • 1
  • Kateřina Bišová
    • 1
  • Milada Vítová
    • 1
  1. 1.Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of MicrobiologyCzech Academy of Sciences (CAS)TřeboňCzech Republic

Personalised recommendations