Skip to main content

Community Ecology of Fungal Pathogens on Bromus tectorum

Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

Bromus tectorum L. (cheatgrass or downy brome) presents a rich resource for soil microorganisms because of its abundant production of biomass, seeds, and surface litter. Many of these organisms are opportunistic saprophytes, but several fungal species regularly found in B. tectorum stands function as facultative or obligate pathogens. These organisms interact dynamically with abiotic factors such as interannual variation in weather, with other soil microorganisms, with their hosts, and with each other to create spatially and temporally varying patterns of endemic or epidemic disease. Five principal soilborne pathogens, Ustilago bullata Berk. (head smut pathogen), Tilletia bromi (Brockm.) Nannf. (chestnut bunt pathogen), Pyrenophora semeniperda (Brittlebank & Adams) Shoemaker (black fingers of death pathogen), Fusarium Link sp. n. (Fusarium seed rot pathogen), and a new species in the Rutstroemiaceae (bleach blonde syndrome pathogen), are known to have sometimes major impacts on B. tectorum seed bank dynamics, seedling emergence, and seed production. These pathogens exhibit niche specialization, so that they are rarely in direct competition. They sometimes interact to increase the total impact on B. tectorum stand structure, which can result in stand failure or “die-off.” Die-offs represent areas where B. tectorum has been controlled by natural processes, suggesting that these areas might be suitable targets for restoration. Naturally occurring fungal pathogens that can have a strong negative impact on B. tectorum success have also been considered as candidate organisms for B. tectorum biocontrol using an augmentative mycoherbicidal strategy.

Keywords

  • Biocontrol
  • Epidemic disease
  • Stand failure
  • Seed bank dynamics
  • Soilborne pathogen

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-24930-8_7
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-24930-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6

References

  • Allen PS, Meyer SE, Foote K (2010) Induction and release of secondary dormancy under field conditions in Bromus tectorum. In: Pendleton R, Meyer SE, Schultz B (eds) Seed Ecology III – The third international society for seed science meeting on seeds and the environment – “Seeds and Change”, 20–24 June 2010, Salt Lake City, UT. USDA, Forest Service, Rocky Mountain Research Station, Albuquerque, NM, pp 2–3

    Google Scholar 

  • Baughman OW (2014) Will native plants succeed where exotic invaders fail? Cheatgrass die-off as an opportunity for restoration in the Great Basin, USA. MS thesis, University of Nevada, Reno, NV

    Google Scholar 

  • Baughman OW, Meyer SE (2013) Is Pyrenophora semeniperda the cause of downy brome (Bromus tectorum) die-offs? Invasive Plant Sci Manag 6:105–111

    CrossRef  Google Scholar 

  • Beckstead J, Meyer SE, Molder CJ et al (2007) A race for survival: can Bromus tectorum seeds escape Pyrenophora semeniperda-caused mortality by germinating quickly? Ann Bot 99:907–914

    CrossRef  Google Scholar 

  • Beckstead J, Meyer SE, Connolly BM et al (2010) Cheatgrass facilitates spillover of a seed bank pathogen onto native grass species. J Ecol 98:168–177

    CrossRef  Google Scholar 

  • Beckstead J, Miller LE, Connolly BM (2012) Direct and indirect effects of plant litter on a seed–pathogen interaction in Bromus tectorum seed banks. Seed Sci Res 22:135–144

    CrossRef  Google Scholar 

  • Beckstead J, Meyer SE, Reinhart K et al (2014) Factors affecting host range in a generalist seed pathogen of semi-arid shrublands. Plant Ecol 215:427–440

    CrossRef  Google Scholar 

  • Boguena T, Meyer SE, Nelson DL (2007) Low temperature during infection limits Ustilago bullata disease incidence on Bromus tectorum. Biocontrol Sci Tech 17:33–52

    CrossRef  Google Scholar 

  • Bonanomi G, Antignani V, Pane C et al (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 89:311–324

    Google Scholar 

  • Bonanomi G, Gaglione SA, Incerti G et al (2013) Biochemical quality of organic amendments affects soil fungistasis. Appl Soil Ecol 72:135–142

    CrossRef  Google Scholar 

  • Boose D, Harrison S, Clement S et al (2011) Population genetic structure of the seed pathogen Pyrenophora semeniperda on Bromus tectorum in western North America. Mycologia 103:85–93

    CrossRef  Google Scholar 

  • Boyd ML, Carris LM (1997) Molecular relationships among varieties of the Tilletia fusca (T. bromi) complex and related species. Mycol Res 101:269–277

    CrossRef  CAS  Google Scholar 

  • Boyd ML, Carris LM (1998) Evidence supporting the separation of the Vulpia-and Bromus-infecting isolates in the Tilletia fusca (T. bromi) complex. Mycologia 90:1031–1039

    Google Scholar 

  • Campbell MA, Medd RW (2003) Leaf, floret and seed infection of wheat by Pyrenophora semeniperda. Plant Pathol 52:437–447

    CrossRef  Google Scholar 

  • Castlebury LA, Carris LM, Vánky K (2005) Phylogenetic analysis of Tilletia and allied genera in order Tilletiales (Ustilaginomycetes; Exobasidiomycetidae) based on large subunit nuclear rDNA sequences. Mycologia 97:888–900

    CrossRef  CAS  Google Scholar 

  • Christensen M, Meyer SE, Allen PS (1996) A hydrothermal time model of seed after-ripening in Bromus tectorum L. Seed Sci Res 6:155–164

    CrossRef  Google Scholar 

  • Connolly BM, Pearson DE, Mack RN (2014) Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion. Ecology 95:1759–1769

    CrossRef  CAS  Google Scholar 

  • Crute IR, Holub EB, Burdon JJ (eds) (1997) The gene-for-gene relationship in plant – parasite interactions. CAB International, Oxon

    Google Scholar 

  • Duran R, Fischer GW (1961) The genus Tilletia. Washington State University, Pullman, WA

    Google Scholar 

  • Evidente A, Andolfi A, Vurro M et al (2002) Cytochalasins Z1, Z2 and Z3, three 24-oxa[14] cytochalasans produced by Pyrenophora semeniperda. Phytochemistry 60:45-53

    CrossRef  CAS  Google Scholar 

  • Finch H, Allen PS, Meyer SE (2013) Environmental factors influencing Pyrenophora semeniperda-caused seed mortality in Bromus tectorum. Seed Sci Res 23:57–66

    Google Scholar 

  • Fischer GW (1940) Host specialization in the head smut of grasses, Ustilago bullata. Phytopathology 30:991–1017

    Google Scholar 

  • Fischer GW, Holton CS (1957) Biology and control of the smut fungi. Ronald Press, New York, NY

    Google Scholar 

  • Franke J, Meyer SE, Geary B (2014) Bleach blonde syndrome, a new disease of Bromus tectorum implicated in cheatgrass die-offs. Botanical Society of America 2014 Annual Meeting, Boise ID. Abstract 446.

    Google Scholar 

  • Franke J, Geary B, Meyer SE (2014) Identification of the infection route of a Fusarium seed pathogen into non-dormant Bromus tectorum seeds. Phytopathology 104:1306-1313

    CrossRef  Google Scholar 

  • Garbeva P, Hol WH, Termorshuizen AJ et al (2011) Fungistasis and general soil biostasis–a new synthesis. Soil Biol Biochem 43:469–477

    CrossRef  CAS  Google Scholar 

  • Hoffmann JA, Meiners JP (1971) Host specialization in the complex species, Tilletia fusca. Phytopathology 61:225–227

    CrossRef  Google Scholar 

  • Jeves TM, Coley-Smith JR (1980) Germination of sclerotia of Stromatinia gladioli. Trans Br Mycol Soc 74:13–18

    CrossRef  Google Scholar 

  • Klemmedson JO, Smith JG (1964) Cheatgrass (Bromus tectorum L.). Bot Rev 30:226–262

    CrossRef  Google Scholar 

  • Kreitlow KW, Bleak AT (1964) Podosporiella verticillata, a soilborne pathogen of some western Gramineae. Phytopathology 54:353–357

    Google Scholar 

  • Kreizinger EJ, Fischer GW, Law AG (1947) Reactions of mountain brome and Canada wild-rye strains to head smut (Ustilago bullata). J Agric Res 75:105–111

    Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell, Ames, IA

    Google Scholar 

  • Lockwood JL (1977) Fungistasis in soils. Biol Rev 52:1–43

    CrossRef  CAS  Google Scholar 

  • Masi M, Evidente A, Meyer S et al (2013) Effect of strain and cultural conditions on the production of cytochalasin B by the potential mycoherbicide Pyrenophora semeniperda (Pleosporaceae, Pleosporales). Biocontrol Sci Tech 24:53–64

    CrossRef  Google Scholar 

  • Masi M, Meyer S, Cimmino A et al (2014a) Pyrenophoric acid, a phytotoxic sesquiterpenoid penta-2,4-dienoic acid produced by Pyrenophora semeniperda, a potential mycoherbicide for biocontrol of annual bromes. J Nat Prod 77:925–930

    CrossRef  CAS  Google Scholar 

  • Masi M, Meyer S, Clement S et al (2014b) Spirostaphylotrichin W, a spirocyclic γ-lactam isolated from liquid culture of Pyrenophora semeniperda, a potential mycoherbicide for cheatgrass (Bromus tectorum) biocontrol. Tetrahedron 70:1497–1501

    CrossRef  CAS  Google Scholar 

  • Mathre DE (1996) Dwarf bunt: politics, identification, and biology. Ann Rev Phytopathol 34:67–85

    Google Scholar 

  • Medd RW, Campbell MA (2005) Grass seed infection following inundation with Pyrenophora semeniperda. Biocontrol Sci Tech 15:21–36

    CrossRef  Google Scholar 

  • Medd RW, Murray GM, Pickering DI (2003) Review of the epidemiology and economic importance of Pyrenophora semeniperda. Australas Plant Pathol 32:539–550

    CrossRef  Google Scholar 

  • Meiners JP (1958) Studies on the biology of Tilletia bromi-tectorum. Phytopathology 48:211–216

    Google Scholar 

  • Meiners JP, Fischer GW (1953) Further studies on host specialization in the head smut of grasses, Ustilago bullata. Phytopathology 43:200–203

    Google Scholar 

  • Meiners JP, Waldher JT (1959) Factors affecting spore germination of twelve species of Tilletia from cereals and grasses. Phytopathology 49:724–728

    Google Scholar 

  • Meyer SE, Nelson DL, Clement S (2001) Evidence for resistance polymorphism in the Bromus tectorum-Ustilago bullata pathosystem: implications for biocontrol. Can J Plant Pathol 23:19–27

    CrossRef  CAS  Google Scholar 

  • Meyer SE, Nelson DL, Clement S et al (2005) Genetic variation in Ustilago bullata: molecular genetic markers and virulence on Bromus tectorum host lines. Int J Plant Sci 166:105–115

    CrossRef  CAS  Google Scholar 

  • Meyer SE, Quinney D, Nelson DL et al (2007a) Impact of the pathogen Pyrenophora semeniperda on Bromus tectorum seedbank dynamics in North American cold deserts. Weed Res 47:54–62

    CrossRef  Google Scholar 

  • Meyer SE, Smith DC, Beckstead J (2007b) Bromus tectorum seed banks: impact of the pathogen Pyrenophora semeniperda. In: Turner S, Merritt D, Clarke S et al (eds) Seed ecology II. Conference proceedings. The second international meeting on seeds and the environment, Perth, Australia, 9–13 September 2007. Kings Park and Botanic Garden, Perth, Australia

    Google Scholar 

  • Meyer SE, Beckstead J, Allen PS et al (2008a) A seed bank pathogen causes seedborne disease: Pyrenophora semeniperda on undispersed grass seeds in western North America. Can J Plant Pathol 30:525–533

    CrossRef  Google Scholar 

  • Meyer SE, Nelson DL, Clement S et al (2008b) Cheatgrass (Bromus tectorum) biocontrol using indigenous fungal pathogens. In: Kitchen SG, Pendleton RL, Monaco TA et al (comps) Proceedings—Shrublands under fire: disturbance and recovery in a changing world, 6–8 June 2006. Cedar City, UT. Gen Tech Rep RMRS-P-52. USDA, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, pp 61–67

    Google Scholar 

  • Meyer SE, Nelson D, Clement S et al (2010a) Ecological genetics of the Bromus tectorum (Poaceae)–Ustilago bullata (Ustilaginaceae) pathosystem: a role for frequency-dependent selection? Am J Bot 97:1304–1312

    CrossRef  Google Scholar 

  • Meyer SE, Stewart TE, Clement S (2010b) The quick and the deadly: growth vs. virulence in a seed bank pathogen. New Phytol 187:209–216

    CrossRef  Google Scholar 

  • Meyer SE, Leger EA, Beckstead J et al (2013a) Understanding the causes and consequences of cheatgrass die-offs in the Great Basin. First Summary Report: August 2011–December 2012. January 10, 2013. Unpublished report on file at the Idaho State Office of the USDI Bureau of Land Management, Boise, ID

    Google Scholar 

  • Meyer SE, Leger EA, Beckstead J et al (2013b). Understanding the causes and consequences of cheatgrass die-offs in the Great Basin. Second Summary Report: FY2013. November 18, 2013. Unpublished report on file at the Idaho State Office of the USDI, Bureau of Land Management, Boise, ID

    Google Scholar 

  • Meyer SE, Franke J, Baughman OW et al (2014a) Does Fusarium-caused seed mortality contribute to Bromus tectorum stand failure in the Great Basin? Weed Res 54(5):511–519

    CrossRef  Google Scholar 

  • Meyer SE, Merrill K, Allen P et al. (2014b) Indirect effects of an invasive annual grass on perennial grass seed fates. Oecologia 174:1401-1413

    Google Scholar 

  • Meyer SE, Masi M, Clement S et al (2015) Mycelial growth rate and toxin production in the seed pathogen Pyrenophora semeniperda: resource trade-offs and temporally varying selection. Plant Pathol DOI: 10.1111/ppa.12377

    Google Scholar 

  • Mordecai EA (2013) Despite spillover, a shared pathogen promotes native plant persistence in a cheatgrass-invaded grassland. Ecology 94:2744–2753

    CrossRef  Google Scholar 

  • Muller-Stover D, Kohlschmid E, Sauerborn J (2009) A novel strain of Fusarium oxysporum from Germany and its potential for biocontrol of Orobanche ramosa. Weed Res 2:175–182

    CrossRef  Google Scholar 

  • Nelson PE, Toussoun TA, Cook RJ (1981) Fusarium: diseases, biology and taxonomy. Pennsylvania State University Press, University Park, PA

    Google Scholar 

  • O’Donnell K (2000) Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92:919–938

    CrossRef  Google Scholar 

  • O’Donnell K, Rooney AP, Proctor R et al (2013) Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol 52:20–31

    CrossRef  Google Scholar 

  • Ola AR, Thomy D, Lai D et al (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through co-culture with Bacillus subtilis. J Nat Prod 76:2094–2099

    CrossRef  CAS  Google Scholar 

  • Paul AR (1969) The production of Pyrenophora semeniperda in culture. Trans Br Mycol Soc 52:373–379

    CrossRef  Google Scholar 

  • Piemeisel RL (1938) Changes in weedy plant cover on cleared sagebrush land and their probable causes. USDA Technical Bulletin 654

    Google Scholar 

  • Piemeisel RL (1951) Causes affecting change and rate of change in a vegetation of annuals in southern Idaho. Ecology 32:53–72

    CrossRef  Google Scholar 

  • Pimentel G, Peever TL, Carris LM (2000) Genetic variation among natural populations of Tilletia controversa and T. bromi. Phytopathology 90:376–383

    CrossRef  CAS  Google Scholar 

  • Sauerborn J, Dorr I, Abbasher A et al (1996) Electron microscopic analysis of the penetration process of Fusarium nygamai, a hyperparasite of Striga hermonthica. Biol Control 7:53–59

    CrossRef  Google Scholar 

  • Shoemaker RA (1966) A pleomorphic parasite of cereal seeds, Pyrenophora semeniperda. Can J Bot 44:1451–1456

    CrossRef  Google Scholar 

  • Slykhuis JT (1947) Studies on Fusarium culmorum blight of crested wheat and brome grass seedlings. Can J Res 25:155–180

    CrossRef  Google Scholar 

  • Smith DC, Meyer SE, Anderson VJ (2008) Factors affecting Bromus tectorum seed bank carryover in western Utah. Rangel Ecol Manag 61:430–436

    CrossRef  Google Scholar 

  • Soliai MM, Meyer SE, Udall JA et al (2014) De novo genome assembly of the fungal plant pathogen Pyrenophora semeniperda. PLoS One 9:1–11

    CrossRef  Google Scholar 

  • Stewart T, Meyer SE, Allen PS (2009) First report of Pyrenophora semeniperda in Turkey and Greece. Plant Dis Rep 93:1351

    CrossRef  Google Scholar 

  • Wallace HAH (1959) A rare seed-borne disease of wheat caused by Podosporiella verticillata. Can J Bot 37:509–515

    CrossRef  Google Scholar 

  • Walsh J, Laurence MH, Liew EC et al (2010) Fusarium: two endophytic novel species from tropical grasses of northern Australia. Fungal Divers 44:149–159

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meyer, S.E., Beckstead, J., Pearce, J. (2016). Community Ecology of Fungal Pathogens on Bromus tectorum . In: Germino, M., Chambers, J., Brown, C. (eds) Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US. Springer Series on Environmental Management. Springer, Cham. https://doi.org/10.1007/978-3-319-24930-8_7

Download citation