Skip to main content

Mating System, Introduction and Genetic Diversity of Bromus tectorum in North America, the Most Notorious Product of Evolution Within Bromus Section Genea

Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

The genus Bromus (Poaceae) consists of approximately 150–160 species that occur in temperate regions worldwide. Members of section Genea in Bromus are native to Eurasia, and most are invasive in North America (NA). Most environmentally and economically important among these species is Bromus tectorum, which along with Bromus rubens and B. diandrus are some of the most destructive invasive grasses in the Western United States (USA). Members of section Genea form a polyploid series. Molecular data suggest a reticulate speciation pattern (a netlike pattern of diversification) for the polyploid members of Genea. Seed set, floral characteristics, sex allocation patterns, and genetic markers reveal that B. tectorum is predominately self-pollinating. Historical records and genetic data indicate that B. tectorum entered repeatedly into NA and that its current distribution can be attributed to multiple phenomena, including direct introduction from its native range and multidirectional range expansion. Across invasive populations of B. tectorum, overall genetic diversity (e.g., allelic richness and number of polymorphic loci) is lower compared to the diversity among native populations. Conversely, invasive populations of B. tectorum exhibit, on average, higher within-population genetic diversity than found in native populations, suggesting that multiple introductions have partially offset founder effects within invasive populations. Additionally, invasive populations appear to be genetic admixtures composed of two or more independently derived native genotypes. These admixtures have produced invasive populations with generally less genetic differentiation than native populations. The genetic consequences of multiple introductions have implications for the management of invasive populations of B. tectorum, especially in Western NA.

Keywords

  • Classical biological control
  • Enzyme electrophoresis (allozymes)
  • Founder effects
  • Genetic admixture
  • Herbarium specimens
  • Multiple introductions
  • Multidirectional range expansion
  • Reticulate speciation pattern
  • Self-pollinating mating system
  • Source populations

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-24930-8_4
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-24930-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8

References

  • Acedo C, Liamas F (2001) Variation of morphological characters of lemma and palea in the genus Bromus (Poaceae). Ann Bot Fenn 38:1–14

    Google Scholar 

  • Allard RW, Jain SK, Workman PL (1968) The genetics of inbreeding populations. Adv Genet 14:55–131

    CrossRef  Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    CrossRef  Google Scholar 

  • Anderson FE, Barton J, McLaren D (2010) Studies to assess the suitability of Uromyces pencanus as a biological control agents for Nassella neesiana (Poaceae) in Australia and New Zealand. Australas Plant Pathol 39:69–78

    Google Scholar 

  • Anderson FE, Diaz ML, Barton J et al (2011) Exploring the life cycles of three South American rusts that have potential as biological control agent of the stipoid grass Nassella neesiana in Australia. Fungal Biol 115:370–380

    CrossRef  Google Scholar 

  • Ashley MC, Longland WS (2007) Microsatellite evidence of facultative outcrossing in cheatgrass (Bromus tectorum): implications for the evolution of invasiveness. Plant Species Biol 22:197–204

    CrossRef  Google Scholar 

  • Ashley MC, Longland WS (2009) Assessing cheatgrass (Bromus tectorum) genetic diversity and population structure using RAPD and microsatellite molecular markers. Western N Am Nat 69:63–74

    CrossRef  Google Scholar 

  • Atkinson SY, Brown CS (2015) Attributes that confer invasiveness and impacts across the large genus Bromus – lessons from the Bromus REEnet database. In: Germino MJ, Chambers JC, Brown CS (eds) Exotic brome-grasses in arid and semiarid ecosystems of the Western US: causes, consequences, and management implications. Springer, New York, NY (Chapter 6)

    Google Scholar 

  • Avise JC (2004) Molecular markers, natural history, and evolution. Sinauer, Sunderland, MA

    Google Scholar 

  • Baker HG (1974) The evolution of weeds. Annu Rev Ecol Syst 5:1–24

    CrossRef  Google Scholar 

  • Balfourier F, Charmet G, Ravel C (1998) Genetic differentiation within and between natural populations of perennial and annual ryegrass (Lolium perenne and L. rigidum). Heredity 81:100–110

    CrossRef  Google Scholar 

  • Barrett SCH, Colautti RI, Eckert CG (2008) Plant reproductive systems and evolution during biological invasion. Mol Ecol 17:373–383

    CrossRef  Google Scholar 

  • Bartlett E, Novak SJ, Mack RN (2002) Genetic variation in Bromus tectorum (Poaceae): differentiation in the eastern United States. Am J Bot 89:602–612

    CrossRef  Google Scholar 

  • Basu C, Halfhill MD, Mueller TC et al (2004) Weed genomics: new tools to understand weed biology. Trends Plant Sci 9:391–398

    CAS  CrossRef  Google Scholar 

  • Beatley JC (1966) Ecological status of introduced brome grasses (Bromus spp.) in desert vegetation of southern Nevada. Ecology 47:548–554

    CrossRef  Google Scholar 

  • Blair AC, Wolfe LM (2004) The evolution of an invasive plant: an experimental study with Silene latifolia. Ecology 85:3035–3042

    CrossRef  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    Google Scholar 

  • Bouchenak-Khelladi Y, Salamin N, Saolainen V et al (2008) Large multigene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Mol Phylogenet Evol 47:488–505

    CAS  CrossRef  Google Scholar 

  • Bromilow C (1995) Problem plants of South Africa. Briza Press, Arcadia, South Africa

    Google Scholar 

  • Brooks ML (1999a) Habitat invasibility and dominance by alien annual plants in the western Mojave Desert. Biol Invasions 1:325–337

    CrossRef  Google Scholar 

  • Brooks ML (1999b) Alien annual grasses and fire in the Mojave Desert. Madrono 46:13–19

    Google Scholar 

  • Brooks ML, Belnap J, Brown CS et al (2015) Exotic annual Bromus invasions - comparisons among species and ecoregions in the Western United States. In: Germino MJ, Chambers JC, Brown CS (eds) Exotic brome-grasses in arid and semiarid ecosystems of the Western US: causes, consequences, and management implications. Springer, New York, NY (Chapter 2)

    Google Scholar 

  • Brown AHD (1990) Genetic characteristics of plant mating systems. In: Brown AHD, Glegg MT, Kahler AL et al (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, MA, pp 145–162

    Google Scholar 

  • Brown AHD, Burdon JJ (1987) Mating systems and colonizing success in plants. In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession and stability. The 26th symposium of the British Ecological Society held jointly with the Linnean Society of London. Blackwell, Oxford, pp 115–131

    Google Scholar 

  • Brown AHD, Marshall DR (1981) Evolutionary changes accompanying colonization in plants. In: Scudder GG, Reveal JL (eds) Evolution today. Hunt Institute of Botanical Documents, Carnegie-Mellon University Press, Pittsburgh, PA, pp 351–363

    Google Scholar 

  • Brown JS, Eckert CG (2004) Evolutionary increase in sexual and clonal reproductive capacity during biological invasion in an aquatic plant Butomus umbellatus. Am J Bot 92:495–502

    CrossRef  Google Scholar 

  • Brunet J (1992) Sex allocation in hermaphroditic plants. Trends Ecol Evol 3:79–84

    CrossRef  Google Scholar 

  • Burdon JJ, Marshall DR (1981) Biological control and the reproductive mode of weeds. J Appl Ecol 18:649–658

    Google Scholar 

  • Campbell CS, Quinn JA, Cheplick GP et al (1983) Cleistogamy in grasses. Annu Rev Ecol Syst 14:411–441

    CrossRef  Google Scholar 

  • Campbell DR (2000) Experimental tests of sex-allocation theory in plants. Trends Ecol Evol 15:227–232

    CrossRef  Google Scholar 

  • Cano L, Escarre J, Fleck I et al (2008) Increased fitness and plasticity of an invasive species in its introduced range: a study using Senecio pterophorus. J Ecol 96:468–476

    Google Scholar 

  • Catalan P, Kellogg EA, Olmstead RG (1997) Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. Mol Phylogenet Evol 8:150–166

    CAS  CrossRef  Google Scholar 

  • Chambers JC, Roundy BA, Blank RR et al (2007) What makes Great Basin sagebrush steppe ecosystems invasible by Bromus tectorum. Ecol Monogr 77:117–145

    CrossRef  Google Scholar 

  • Charlesworth D, Charlesworth B (1981) Allocation of resources to male and female functions in hermaphrodites. Biol J Linn Soc 15:57–74

    CrossRef  Google Scholar 

  • Clegg MT (1980) Measuring plant mating systems. BioScience 30:814–818

    CrossRef  Google Scholar 

  • Colautti RI, MacIsaac HJ (2004) A neutral terminology to define “invasive” species. Divers Distrib 10:135–141

    CrossRef  Google Scholar 

  • Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037

    CrossRef  Google Scholar 

  • Cox GW (2004) Alien species and evolution: the evolutionary ecology of exotic plants, animals, microbes, and interacting native species. Island Press, Washington, DC

    Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasion by exotic grasses, the grass/fire cycle and global change. Annu Rev Ecol Syst 23:63–87

    CrossRef  Google Scholar 

  • D’Antonio CM, Hughes RF, Tunison JT (2011) Long-term impacts of invasive grasses and subsequent fire in seasonally dry Hawaiian woodlands. Ecol Appl 21:1617–1628

    CrossRef  Google Scholar 

  • Dlugosch KM, Parker IM (2007) Molecular and quantitative trait variation across the native range of the invasive species Hypericum canariense: evidence for ancient patterns of colonization via pre-adaptation? Mol Ecol 16:4269–4283

    CAS  CrossRef  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founder events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    CAS  CrossRef  Google Scholar 

  • Dudash MR, Fenster CB (2001) The role of breeding system and inbreeding depression in the maintenance of an outcrossing mating strategy in Silene virginica (Caryophyllaceae). Am J Bot 88:1953–1959

    CAS  CrossRef  Google Scholar 

  • Durka W, Bossdorf O, Prati D et al (2005) Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Mol Ecol 14:1697–1706

    CrossRef  Google Scholar 

  • Dyer AR, Rice KJ (1999) Effects of competition on resource availability and growth of a California bunchgrass. Ecology 80:2697–2710

    CrossRef  Google Scholar 

  • Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15

    CAS  CrossRef  Google Scholar 

  • Eckert CG, Kalisz S, Geber MA et al (2010) Plant mating systems in a changing world. Trends Ecol Evol 25:35–43

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    CrossRef  Google Scholar 

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    CrossRef  Google Scholar 

  • Estoup A, Baird SJE, Ray N et al (2010) Combining genetic, historical and geographical data to reconstruct the dynamics of bioinvasions: application to the cane toad Bufo marinus. Mol Ecol Resour 10:886–901

    CrossRef  Google Scholar 

  • Facon B, Genton BJ, Shykoff J et al (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol Evol 21:130–135

    CrossRef  Google Scholar 

  • Ficetola GF, Bonin A, Miaud C (2008) Population genetics reveals origin and number of founders in a biological invasion. Mol Ecol 17:773–782

    CAS  CrossRef  Google Scholar 

  • Fisher AJ, DiTomasso JM, Gordon TR (2005) Intraspecific groups of Claviceps purpurea associated with grass species in Willapa Bay, Washington, and the prospects for biological control of invasive Spartina alterniflora. Biol Control 34:170–179

    CrossRef  Google Scholar 

  • Fisher RA (1958) The genetical theory of natural selection. Dover, New York, NY

    Google Scholar 

  • Fortune PM, Pourtau N, Viron N et al (2008) Molecular phylogeny and reticulate origins of the polyploidy Bromus species from section Genea (Poaceae). Am J Bot 95:454–464

    CAS  CrossRef  Google Scholar 

  • Futuyma DJ (2005) Evolution. Sinauer, Sunderland, MA

    Google Scholar 

  • Gaskin JF, Bon M-C, Cock MJW et al (2011) Applying molecular-based approaches to classical biological control of weeds. Biol Control 58:1–21

    CAS  CrossRef  Google Scholar 

  • Gaskin JF, Schwarzlander M, Kinter CL et al (2013) Propagule pressure, genetic structure, and geographic origins of Chondrilla juncea (Asteraceae): an apomictic invader of three continents. Am J Bot 100:1871–1882

    CrossRef  Google Scholar 

  • Gerlach JD, Rice KJ (2003) Testing life history correlates of invasiveness using congeneric plant species. Ecol Appl 13:167–179

    CrossRef  Google Scholar 

  • Germino MJ, Belnap J, Stark JM et al (2015) Ecosystem impacts of exotic annual invaders in the genus Bromus. In: Germino MJ, Chambers JC, Brown CS (eds) Exotic brome-grasses in arid and semiarid ecosystems of the Western US: causes, consequences, and management implications. Springer, New York, NY (Chapter 3)

    Google Scholar 

  • Goncalves da Silva A, Eberhard JR, Wright TF et al (2010) Genetic evidence for high propagule pressure and long-distance dispersal in monk parakeet (Myiopsitta monachus) invasive populations. Mol Ecol 19:3336–3350

    CrossRef  Google Scholar 

  • Goolsby JA, De Barro PJ, Makinson JR et al (2006) Matching the origins of an invasive weed for selection of a herbivore haplotype for a biological control programme. Mol Ecol 15:287–297

    CAS  CrossRef  Google Scholar 

  • Grevstad FS, Strong DR, Garcia-Rossi D et al (2003) Biological control of Spartina alterniflora in Willapa Bay, Washington using the planthopper Prokelisia marginata: agent specificity and early results. Biol Control 27:32–42

    CrossRef  Google Scholar 

  • Harmon-Threatt AN, Burns JH, Shemyakina LA et al (2009) Breeding system and pollination ecology of introduced plants compared to their native relatives. Am J Bot 96:1544–1550

    CrossRef  Google Scholar 

  • Hierro JL, Villarreal D, Eren O et al (2006) Disturbance facilitates invasion: the effects are stronger abroad than at home. Am Nat 168:144–156

    CrossRef  Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337

    CrossRef  Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV et al (1977) The world’s worst weeds: distribution and biology. University Press of Hawaii, Honolulu, HI

    Google Scholar 

  • Hudson ME (2008) Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol Ecol Res 8:3–17

    CAS  CrossRef  Google Scholar 

  • Hufft RA, Zelikova TJ (2015) Ecological Genetics, Local Adaptation, and Phenotypic Plasticity in Bromus tectorum in the Context of a Changing Climate. In: Germino MJ, Chambers JC, Brown CS (eds) Exotic brome-grasses in arid and semiarid ecosystems of the Western US: causes, consequences, and management implications. Springer, New York, NY (Chapter 5)Hulbert LC (1955) Ecological studies of Bromus tectorum and other annual bromegrasses. Ecol Monogr 25:181–213

    Google Scholar 

  • Huttanus TD, Mack RN, Novak SJ (2011) Propagule pressure and introduction pathways of Bromus tectorum (cheatgrass; Poaceae) in the Central United States. Int J Plant Sci 172:783–794

    CrossRef  Google Scholar 

  • Kao RH, Brown CS, Hufbauer RA (2008) High phenotypic and molecular variation in downy brome (Bromus tectorum). Invasive Plant Sci Manag 1:216–225

    CrossRef  Google Scholar 

  • Keeley JE, Allen CD, Betancourt J et al (2006) A 21st century perspective on postfire seeding. J Forestry 104:103–110

    Google Scholar 

  • Kellog EA (2001) Evolutionary history of grasses. Plant Physiol 125:1198–1205

    CrossRef  Google Scholar 

  • Knaap PA (1996) Cheatgrass (Bromus tectorum L.) dominance in the Great Basin desert: history, persistence, and influence of human activities. Glob Environ Chang 6:37–52

    CrossRef  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    CrossRef  Google Scholar 

  • Kolbe JJ, Larson A, Losos JB (2007) Differential admixture shapes morphological variation among invasive populations of the lizard Anolis sagrei. Mol Ecol 16:1579–1591

    CAS  CrossRef  Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci U S A 104:3883–3888

    CAS  CrossRef  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    CrossRef  Google Scholar 

  • Leger EA, Rice KJ (2003) Invasive California poppies (Eschscholzia californica Cham.) grow larger than native individuals under reduced competition. Ecol Lett 6:257–264

    CrossRef  Google Scholar 

  • Leger EA, Espeland EK, Merrill KR et al (2009) Genetic variation and local adaptation at a cheatgrass (Bromus tectorum) invasion edge in western Nevada. Mol Ecol 18:4366–4379

    CrossRef  Google Scholar 

  • Le Roux J, Wieczorek AM (2009) Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management. Ann Appl Biol 154:1–17

    CrossRef  CAS  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    CrossRef  Google Scholar 

  • Lombaert E, Guillemaud T, Thomas CE et al (2011) Inferring the origin of populations introduced from a genetically structured native range by approximate Bayesian computation: case study of the invasive ladybird Harmonia axyridis. Mol Ecol 20:4654–4670

    CAS  CrossRef  Google Scholar 

  • Mack RN (1981) Invasion of Bromus tectorum L. into western North America: an ecological chronicle. Agro-Ecosystems 7:145–165

    CrossRef  Google Scholar 

  • Mack RN (1989) Temperate grasslands vulnerable to plant invasion: characteristics and consequences. In: Drake J (ed) Biological invasions: a global perspective. Wiley, New York, NY, pp 155–179

    Google Scholar 

  • Mack RN (2000) Cultivation fosters plant naturalization by reducing environmental stochasticity. Biol Invasions 2:111–122

    CrossRef  Google Scholar 

  • Mack RN (2005) Assessing biotic invasions in time and space: the second imperative. In: Mooney HA, Mack RN, McNeely JA et al (eds) Invasive alien species: a new synthesis. Island Press, Washington, DC, pp 179–208

    Google Scholar 

  • Mack RN (2011) Fifty years of “Waging war on cheatgrass”: research advances, while meaningful control languishes. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, Oxford, pp 253–265

    Google Scholar 

  • Mack RN, Smith MC (2011) Invasive plants as catalysts for the spread of human parasites. NeoBiota 9:13–29

    CrossRef  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    CrossRef  Google Scholar 

  • Maron JL, Montserrat V, Bommarco R et al (2004) Rapid evolution of an invasive plant. Ecol Monogr 74:261–280

    CrossRef  Google Scholar 

  • McFadyen REC (1998) Biological control of weeds. Annu Rev Entomol 43:369–393

    CAS  CrossRef  Google Scholar 

  • McKone MJ (1985) Reproductive biology of several bromegrasses (Bromus): breeding system, pattern of fruit maturation, and seed set. Am J Bot 72:1334–1339

    CrossRef  Google Scholar 

  • McKone MJ (1987) Sex allocation and outcrossing rate: a test of theoretical predictions using bromegrasses (Bromus). Evolution 41:591–598

    CrossRef  Google Scholar 

  • McKone MJ (1989) Intraspecific variation in pollen yield in bromegrass (Poaceae; Bromus). Am J Bot 76:231–237

    CrossRef  Google Scholar 

  • Merrill KR, Meyer SE, Coleman CE (2012) Population genetic analysis of Bromus tectorum (Poaceae) indicates recent range expansion may be facilitated by specialist genotypes. Am J Bot 99:529–537

    CrossRef  Google Scholar 

  • Meyer SE, Ghimire S, Decker S et al (2013) Ghost of outcrossing past in downy brome, an inbreeding annual grass. J Hered 104:476–490

    CAS  CrossRef  Google Scholar 

  • Muhlenberg H (1793) Index Florae Lancastriensis. Trans Am Philos Soc Philadel 3:157–184

    CrossRef  Google Scholar 

  • Muller-Scharer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evol 19:417–422

    CrossRef  Google Scholar 

  • Nadeau NJ, Jiggins CD (2010) A golden age of evolutionary genetics? Genomic studies of adaptation in natural populations. Trends Genet 26:484–492

    CAS  CrossRef  Google Scholar 

  • Neuffer B, Hurka H (1999) Colonization history and introduction dynamics of Capsella bursa-pastoris (Brassicaceae) in North America: isozymes and quantitative traits. Mol Ecol 8:1667–1681

    CrossRef  Google Scholar 

  • Nicotra AB, Atkin OIK, Bonser SP et al (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    CAS  CrossRef  Google Scholar 

  • Novak SJ (2007) The role of evolution in the invasion process. Proc Natl Acad Sci U S A 104:3671–3672

    CAS  CrossRef  Google Scholar 

  • Novak SJ (2011) Geographic origins and introduction dynamics. In: Simberloff D, Rejmanek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, CA, pp 273–280

    Google Scholar 

  • Novak SJ, Mack RN (1993) Genetic variation in Bromus tectorum (Poaceae): comparison between native and introduced populations. Heredity 71:167–176

    CrossRef  Google Scholar 

  • Novak SJ, Mack RN (2001) Tracing plant introduction and spread: genetic evidence from Bromus tectorum (Cheatgrass). BioScience 51:114–122

    CrossRef  Google Scholar 

  • Novak SJ, Mack RN (2005) Genetic bottlenecks in alien plant species: influence of mating systems and introduction dynamics. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution and biogeography. Sinauer, Sunderland, MA, pp 201–228

    Google Scholar 

  • Novak SJ, Rausch JH (2009) Use of field surveys, distributional data and genetic analyses to monitor alien species: Taeniatherum caput-medusae as an example of the approach. NeoBiota 8:169–182

    Google Scholar 

  • Novak SJ, Sforza R (2008) Genetic analysis of native and introduced populations of Taeniatherum caput-medusae (Poaceae): implications for biological control. In: Julien MH, Sforza R, Bon M-C et al (eds) Proceedings of the XII international symposium on biological control of weeds. CAB International, Wallingford, pp 422–428

    Google Scholar 

  • Novak SJ, Mack RN, Soltis DE (1991) Genetic variation in Bromus tectorum (Poaceae): population differentiation in its North American range. Am J Bot 78:1150–1161

    CrossRef  Google Scholar 

  • Novak SJ, Mack RN, Soltis PS (1993) Genetic variation in Bromus tectorum (Poaceae): introduction dynamics in North America. Can J Bot 71:1441–1448

    CrossRef  Google Scholar 

  • Parsons WT, Cuthbertson EG (1992) Noxious weeds of Australia. Inkata Press, Melbourne

    Google Scholar 

  • Pawlak AR, Mack RN, Busch JW et al (2015) Invasion of Bromus tectorum (L.) into California and the American Southwest: rapid, multi-directional and genetically diverse. Biol Invasions 17(1):287–306

    CrossRef  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    CrossRef  Google Scholar 

  • Prentis PJ, Wilson JRU, Dormontt EE et al (2008) Adaptive evolution in invasive species. Trends Ecol Evol 13:288–294

    CAS  Google Scholar 

  • Prinzing A, Durka W, Klolz S et al (2002) Which species become aliens? Evol Ecol Res 4:385–405

    Google Scholar 

  • Ramakrishnan AP, Meyer SE, Waters J et al (2004) Correlation between molecular markers and adaptively significant genetic variation in Bromus tectorum. (Poaceae), an inbreeding annual grass. Am J Bot 91:797–803

    CrossRef  Google Scholar 

  • Ramakrishnan AP, Meyer SE, Fairbanks DJ et al (2006) Ecological significance of microsatellite variation in western North American populations of Bromus tectorum. Plant Species Biol 21:61–73

    CrossRef  Google Scholar 

  • Reusch TB, Wood TE (2007) Molecular ecology of global change. Mol Ecol 16:3973–3992

    CAS  CrossRef  Google Scholar 

  • Ricciardi A, Jones L, Kestrup ǺM et al (2011) Expanding the propagule pressure concept to understand the impact of biological invasions. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, Oxford, pp 225–235

    Google Scholar 

  • Richards CL, Bossdorf O, Pigliucci M (2010) What role does heritable epigenetic variation play in phenotypic evolution? BioScience 60:232–237

    CrossRef  Google Scholar 

  • Richards CL, Schrey AW, Pigliucci M (2012) Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett 15:1016–1025

    CrossRef  Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using independent loci. Heredity 88:221–228

    CrossRef  Google Scholar 

  • Roderick GK, Navajas M (2003) Genes in new environment: genetics and evolution in biological control. Nat Genet 4:889–899

    Google Scholar 

  • Ross KG, Shoemaker DD (2008) Estimation of the number of founders of an invasive pest insect population: the fire ant Solenopsis invicta in the USA. Proc R Soc B 275:2231–2240

    CrossRef  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    CrossRef  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ et al (2000) Global diversity scenarios for the year 2100. Science 287:1770–1774

    CAS  CrossRef  Google Scholar 

  • Salamin N, Wuest RO, Lavergne S et al (2010) Assessing rapid evolution in a changing environment. Trends Ecol Evol 25:692–698

    CrossRef  Google Scholar 

  • Sales F (1993) Taxonomy and nomenclature of Bromus sect. Genea. Edinb J Bot 50:1–31

    CrossRef  Google Scholar 

  • Sales F (1994) Evolutionary tendencies in some annual species of Bromus (Bromus L. section Genea Dum. (Poaceae)). Bot J Linn Soc 115:197–210

    CrossRef  Google Scholar 

  • Salo LF (2005) Red brome (Bromus rubens subsp. madritensis) in North America: possible modes for early introduction, subsequent spread. Biol Invasions 7:165–180

    CrossRef  Google Scholar 

  • Schachner LJ, Mack RN, Novak SJ (2008) Bromus tectorum (Poaceae) in midcontinental United States: population genetic analysis of an ongoing invasion. Am J Bot 95:1584–1595

    CrossRef  Google Scholar 

  • Schlotterer C (2004) The evolution of genetic markers—just a matter of fashion? Nat Rev Genet 5:63–69

    CrossRef  CAS  Google Scholar 

  • Scott JW, Meyer SE, Merrill KR et al (2010) Local population differentiation in Bromus tectorum L. in relationship to habitat-specific selection regimes. Evol Ecol 24:1061–1080

    CrossRef  Google Scholar 

  • Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness of plants and other organisms. Biol Invasions 11:1093–1105

    CrossRef  Google Scholar 

  • Schneider J, Doring E, Hilu KW et al (2009) Phylogenetic structure of the grass subfamily Pooideae based on comparison of plastid matK gene – 3′ trnK exon and nuclear ITS sequences. Taxon 58:405–424

    Google Scholar 

  • Sexton JP, McKay JK, Sala A (2002) Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecol Appl 12:1651–1660

    CrossRef  Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102

    CrossRef  Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368

    CrossRef  Google Scholar 

  • Smith PM (1970) Taxonomy and nomenclature of the brome-grasses (Bromus L. s.l.). Notes from the Royal Botanical Garden Edinburgh 30: 361–375

    Google Scholar 

  • Smith PM (1980) Bromus L. In: Tutin TG, Heywood VH, Burges NA et al (eds) Florae europaea, vol 5. Cambridge University Press, Cambridge, pp 182–189

    Google Scholar 

  • Sork VL, Nason J, Campbell DR (1999) Landscape approaches to historical and contemporary gene flow in plants. Trends Ecol Evol 14:219–224

    CrossRef  Google Scholar 

  • Sperry LJ, Belknap J, Evans RD (2006) Bromus tectorum invasion alters nitrogen dynamics in undisturbed arid grassland ecosystems. Ecology 87:603–615

    CAS  CrossRef  Google Scholar 

  • Stebbins GL (1957) Self-fertilization and population variability in higher plants. Am Nat 91:337–354

    CrossRef  Google Scholar 

  • Stewart G, Hull AC (1949) Cheatgrass (Bromus tectorum L.)—an ecological intruder in southern Idaho. Ecology 30:58–74

    CrossRef  Google Scholar 

  • Stinchcombe JR, Hoekstra HE (2008) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158–170

    CAS  CrossRef  Google Scholar 

  • Suarez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Mol Ecol 17:351–360

    CrossRef  Google Scholar 

  • Sumners WH, Archibold OW (2007) Exotic plant species in the southern boreal forest of Saskatchewan. For Ecol Manag 251:156–163

    CrossRef  Google Scholar 

  • Valliant MT, Mack RN, Novak SJ (2007) Introduction history and population genetics of the invasive grass Bromus tectorum (Poaceae) in Canada. Am J Bot 94:1156–1169

    CAS  CrossRef  Google Scholar 

  • Van Kleunen M, Fischer M, Schmidt B (2000) Clonal integration in Ranunculus reptans: by-product or adaptation? J Evol Biol 13:237–248

    CrossRef  Google Scholar 

  • Vergeer P, Rengelink R, Ouborg NJ et al (2003) Effects of population size and genetic variation on the response of Succisa pratensis to eutrophication and acidification. J Ecol 91:600–609

    CrossRef  Google Scholar 

  • von Holle B, Simberloff D (2005) Ecological resistance to biological invasions overwhelmed by propagule pressure. Ecology 86:3212–3218

    CrossRef  Google Scholar 

  • Wares JP, Hughes AR, Grosberg RK (2005) Mechanisms that drive evolutionary change: insights from species introductions and invasions. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution and biogeography. Sinauer, Sunderland, MA, pp 229–257

    Google Scholar 

  • Wittenberg R, Cock MJW (2005) Best practices for the prevention and management of invasive alien species. In: Mooney HA, Mack RN, McNeely JA et al (eds) Invasive alien species, a new synthesis. Island Press, Washington, DC, pp 209–232

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  Google Scholar 

  • Xu C-Y, Julien MH, Fatemi M et al (2010) Phenotypic divergence during the invasion of Phyla canescens in Australia and France: evidence for selection-driven evolution. Ecol Lett 13:32–44

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

It would not have possible to conduct the research summarized in this chapter without the assistance of countless people who over the years collected population samples of B. tectorum around the world. We thank them all. In addition, we thank our graduate students at Washington State University and Boise State University who have played a major role in many of these studies: Elizabeth Bartlett, Morgan Valliant, Lauren Schachner, Temsha Huttanus, and Angela Pawlak. We gratefully thank Rich Scott for his work on the figures (maps) presented in this chapter, and we especially thank him for his interest in this research over the years. SJN completed portions of this chapter while on sabbatical leave at and visiting the European Biological Control Laboratory, USDA-ARS, Montferrier-sur-Lez, France. He is extremely grateful to the personnel of this laboratory, especially Rene Francois Henri Sforza, Daniel Strickman, and Kim Hoelmer, for the opportunity to work at the lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Novak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Novak, S.J., Mack, R.N. (2016). Mating System, Introduction and Genetic Diversity of Bromus tectorum in North America, the Most Notorious Product of Evolution Within Bromus Section Genea . In: Germino, M., Chambers, J., Brown, C. (eds) Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US. Springer Series on Environmental Management. Springer, Cham. https://doi.org/10.1007/978-3-319-24930-8_4

Download citation