Skip to main content

Coprolites, Paleogenomics and Bone Content Analysis

  • Chapter
  • First Online:
Azokh Cave and the Transcaucasian Corridor

Abstract

Coprolites are fossil scats and provide indirect witness of the activity of past animals of a given area, whether or not fossil bones of these animals are present in the site. The shape, size, inclusions and geo- and bio-chemical composition are criteria for identification of the animal that left the coprolite. Unit II from Azokh 1 has yielded two complete undamaged coprolites one of which contained partially digested fossil bones. Taphonomic and taxonomic indications from this coprolite could not conclusively identify the origin of the coprolites. Analysis of targeted mitochondrial DNA, performed on one of the coprolites, has provided evidence for the presence of hyena DNA, but this finding was not supported by further investigation using next-generation high throughput sequencing. The most parsimonious interpretation of the results of the genetic analyses is that the highly sensitive PCR assay reveals contamination of the coprolite with minute amounts of modern brown hyena DNA presumably originating from brown hyena scats sampled recently in South Africa.

Резюме

Следы активности травоядных и плотоядных животных главным образом распознаются по отпечаткам конечностей и экскрементам. Стоянки с хорошей сохранностью древних останков могут содержать копролиты (окаменелые экскременты животных) и следы троп травоядных и плотоядных, как это наблюдается в плио-плейстоценовой стоянке Летоли (Танзания). Наиболее часто, однако, встречаются копролиты плотоядных (среди них, главным образом, гиен), чем травоядных. Первые грызут и поедают кости, включая тем самым фосфат кальция в органические остатки фекалий, в то время как последние поедают растительные волокна и семена, которые разлагаются намного легче. Форма, размер, включения, гео- и биохимический состав являются основными критериями для идентификации животного, оставившего эти фекалии. В подразделении II из Азох 1 найдены два неповрежденных копролита. Тафономические и таксономические признаки не были достаточно убедительными для надежного установления их происхождения. При проведении сайт-специфичной реакции полимеразной цепи (РПЦ) в одном из копролитов обнаружены последовательности митохондриальной ДНК бурой гиены (Hyaena brunnea). Последующее секвенирование не выявило значительного присутствия эндогенной ДНК хищника; в основном были найдены бактериальные последовательности со следами человеческой ДНК – возможно, по причине контаминации. Наибоее простым объяснением результатов генетического анализа является то, что чувствительный метод РПЦ идентифицирует контаминацию копролитов ничтожно малым количеством ДНК бурой гиены, привнесенным, возможно, из современных экскрементов данного вида, собранных в Южной Африке. Высокопроизводительное секвенирование не обнаружило эндогенной ДНК хищника. В целом, несохранность эндогенной ДНК характерна для всех биологических останков в Азохской пещере, проанализированных до настоящего времени, поскольку мы не смогли найти данный субстрат и в многочисленных костях пещерного медведя.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albaugh, G. P., Iyengar, V., & Lohani, A. (1992). Isolation of exfoliated colonic epithelial cells, a novel non-invasive approach to the study of cellular markers. International Journal of Cancer, 52, 347–350.

    Article  Google Scholar 

  • Andrews, P. (1990). Owls, caves and fossils. London: Natural History Museum.

    Google Scholar 

  • Andrews, P., & Fernández-Jalvo, Y. (1998). 101 uses for fossilized faeces. Nature, 393, 629–630.

    Article  Google Scholar 

  • Appendix: Fernández-Jalvo, Y., Ditchfield, P., Grün, R., Lees, W., Aubert, M., Torres, T., Ortiz, J.E., Díaz Bautista, A. & Pickering, R. (2016). Dating methods applied to Azokh cave sites (Appendix). In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 321–339). Dordrecht: Springer.

    Google Scholar 

  • Bennett, E. A., Massilani, D., Lizzo, G., Daligault, J., Geigl, E.-M., & Grange, T. (2014). Library construction for ancient genomics: Single strand or double strand? Biotechniques, 56, 289–300.

    Google Scholar 

  • Binford, L. S. (1980). Bones: Ancient men and modern myths. Dordrecht: Academic Press.

    Google Scholar 

  • Bocherens, H., Fizet, M., & Mariotti, A. (1994). Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: Implications for Pleistocene bears. Palaeogeography, Palaeoclimatology, Palaeoecology, 107, 213–225.

    Article  Google Scholar 

  • Bon, C., Berthonaud, V., Maksud, F., Labadie, K., Poulain, J., Artiguenave, F., et al. (2012). Coprolites as a source of information on the genome and diet of the cave hyena. Proceedings of Biological Science, 279(1739), 2825–2830.

    Article  Google Scholar 

  • Cáceres, I., Esteban-Nadal, M., Bennàsar, M., & Fernández-Jalvo, Y. (2011). Was it the deer or the fox? Journal of Archaeological Science, 38, 2767–2774.

    Article  Google Scholar 

  • Champlot, S., Berthelot, C., Pruvost, M., Bennett, E. A., Grange, T., & Geigl, E.-M. (2010). An efficient multistrategy dna decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS ONE, 5(9), e13042.

    Article  Google Scholar 

  • Charruau, P., Fernandes, C., Orozco-Ter Wengel, P., Peters, J., Hunter, L., Ziaie, H., et al. (2010). Phylogeography, genetic structure and population divergence time of cheetahs in Africa and Asia: Evidence for long-term geographic isolation. Molecular Ecology, 20, 706–724.

    Article  Google Scholar 

  • Dalen, L., Götherström, A., & Angerbjörn, A. (2004). Identifying species from pieces of faeces. Conservation Genetics, 5, 109–111.

    Article  Google Scholar 

  • Delaney-Rivera, C., Plummer, T. W., Hodgson, J. A., Forrest, F., Hertel, F., & Oliver, J. S. (2009). Pits and pitfalls: Taxonomic variability and patterning in tooth mark dimensions. Journal of Archaelogical Science, 36, 2597–2608.

    Article  Google Scholar 

  • Denys, C., Fernández-Jalvo, Y.. & Dauphin, Y. (1995). Experimental Taphonomy: Preliminary results of the digestion of micromammal bones in laboratory. Comptes Rendues de l’Academie des Sciences, 321 (série II): 803–809.

    Google Scholar 

  • Diedrich, C. J. (2012). Cave bear killers and scavengers from the last ice age of central Europe: Feeding specializations in response to the absence of mammoth steppe fauna from mountainous regions. Quaternary International, 255, 59–78.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., & Piqueras, A. (2003). The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. Journal of Archaelogical Science, 30, 1385–1391.

    Article  Google Scholar 

  • Fernández, D. (1998). Biogeoquímica isotópica (13C, 15N) del Ursus Spelaeus del yacimiento de Cova Eiró s, Lugo. Cadernos do Laboratorio Xeolóxico de Laxe, 23, 237–249.

    Google Scholar 

  • Fernández, D., Vila, M., & Grandal, A. (2001). Stable isotopes data (delta 13C, delta15N) from the cave bear (Ursus spelaeus): A new approach to its palaeoenvironment and dormancy. Proceedings of the Royal Society B: Biological Sciences, 268, 1159–1164.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., Scott, L., Carrión, J. S., Gil-Romera, G., Brink, J., Neumann, F., & Rossouw, L. (2010a). Pollen taphonomy of hyaena coprolites: an experimental approach. In E. Baquedano & J. Rosell (Eds.), Zona Arqueológica. Actas de la 1ª Reunión de científicos sobre cubiles de hiena (y otros grandes carnívoros) en los yacimientos arqueológicos de la Península Ibérica (pp. 148–156). Alcalá de Henares: Museo Arqueológico Regional.

    Google Scholar 

  • Fernández-Jalvo, Y., Andrews, P., Pesquero, D., Smith, C., Marin-Monfort, D., Sánchez, B., et al. (2010b). Early bone diagenesis in temperate environments Part I: Surface features and histology. Palaeogeography, Palaeoclimatology, Palaeoecology, 288, 62–81.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., King, T., Andrews, P., Yepiskoposyan, L. (2016). Introduction: Azokh Cave and the Transcaucasian Corridor. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 1–26). Dordrecht: Springer.

    Google Scholar 

  • Figueirido, B., Palmqvist, P., & Pérez-Claros, J. A. (2009). Ecomorphological correlates of craniodental variation in bears and paleobiological implications for extinct taxa: An approach based on geometric morphometrics. Journal of Zoology, 277, 70–80.

    Article  Google Scholar 

  • Gilbert, M. T. P., Jenkins, D. L., Götherstrom, A., Naveran, N., Sanchez, J. J., Hofreiter, M., et al. (2008). DNA from Pre-Clovis Human Coprolites in Oregon, North America Science, 320 (5877), 786–789.

    Google Scholar 

  • Grandal d’Anglade, A., & López-González, F. (2005). Sexual dimorphism and autogenetic variation in the skull of the cave bear (Ursus spelaeus Rosenmüller) of the European Upper Pleistocene. Geobios, 38, 325–338.

    Google Scholar 

  • Grandal d’Anglade, A., & Fernández-Mosquera, D. (2008). Hibernation can also cause high δ15 N values in cave bears: A response to Richards et al., Proceedings of The National Academy of Sciences of the USA, 105, 11.

    Google Scholar 

  • Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52(5), 696–704.

    Article  Google Scholar 

  • Harrison, T. (2011). Coprolites: Taphonomic and paleoecological implications. In T. Harrison (Ed.), Paleontology and Geology of Laetoli: Human Evolution in Context (Vol. 1, pp. 279–292). Geology, Geochronology, Paleoecology and Paleoenvironment Dordrecht: Springer.

    Chapter  Google Scholar 

  • Haynes, G. (1980). Prey bones and predators: potential ecologic information from analyses of bone sites. OSSA, 7, 75–97.

    Google Scholar 

  • Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.

    Article  Google Scholar 

  • Krause, J., Unger, T., Nocon, A., Malaspinas, A. S., Kolokotronis, S. O., Stiller, M., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evolutionary Biology, 8, 220.

    Article  Google Scholar 

  • Keiler, J.A., 2001. Die koprolithen aus dem Unterpleistozän von Untermaßfeld. In R.-D. Kahlke (Ed.), Das Pleistozän von Untermaßfeld bei Meiningen (Thüringen), (pp. 691–698) Teil 2. Dr. Rudolf Habelt GMBH, Bonn

    Google Scholar 

  • King, T., Compton, T., Rosas, A., Andrews, P. Yepiskoyan, L., & Asryan, L. (2016). Azokh Cave Hominin Remains. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 103–106). Dordrecht: Springer.

    Google Scholar 

  • Kolska Horwitz, L. (1990). The origin of partially digested bones recovered from archaeological contexts in Israel. Paléorient, 16, 97–106.

    Article  Google Scholar 

  • Kolska Horwitz, L., & Goldbergb, P. (1989). A study of Pleistocene and Holocen hyaena coprolites. Journal of Archaeological Science, 16, 71–94.

    Article  Google Scholar 

  • Kurtén, B. (1976). The cave bear story. Dordrecht: Columbia University Press.

    Google Scholar 

  • Larkin, N. R., Alexander, J., & Lewis, M. (2000). Using experimental studies of recent faecal material to examine hyaena coprolites from the West Runton Freshwater Bed, Norfolk, U.K. Journal of Archaeological Science, 27, 19–31.

    Article  Google Scholar 

  • LeGeros, R. Z. (1994). Biological and Synthetic Apatites. In P. W. Brown & B. Constantz (Eds.), Hydroxyapatite and Related Materials (pp. 3–28) Boca Raton: CRC Press.

    Google Scholar 

  • Lewis, M. (2011). Pleistocene hyaena coprolite palynology in Britain: implications for the environments of early humans. In N. M. Ashton, S. G. Lewis & C. B. Stringer (Eds.), The Ancient Human Occupation of Britain (pp. 263–278). Amsterdam: Elsevier

    Google Scholar 

  • Lewis, M., Pacher, M., & Turner, A. (2010). The larger carnivora of teh West Runton Freshwater Bed. Quaternary International, 228, 116–135.

    Article  Google Scholar 

  • Macdonald, D. W., & Barrett, P. (1993). Field Guide of Mammals. Britain and Europe London: HarperCollins.

    Google Scholar 

  • Maguire, J. M., Pemberton, D., & Collett, M. H. (1980). The Makapansgat limeworks grey breccia: Hominids, hyaenas, hystricds or hillwash? Paleontologia Africana, 23, 75–98.

    Google Scholar 

  • Marin-Monfort, M. D., Cáceres, I., Andrews, P., Pinto, A. C., & Fernández-Jalvo, Y. (2016). Taphonomy and Site Formation of Azokh1. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 211–249). Dordrecht: Springer.

    Google Scholar 

  • Matthews, T. (2000). Predators, prey and the palaeoenvironment. South African Journal of Science, 96, 23–24.

    Google Scholar 

  • Matthews, T. (2006). Taphonomic characteristics of micromammals predated by small mammalian carnivores in South Africa: Application to fossil accumulations. Journal of Taphonomy, 4, 143–160.

    Google Scholar 

  • Mattson, D. J. (1998). Diet and morphology of extant and recently extinct northern bears. Ursus, 10, 479–496.

    Google Scholar 

  • Mazza, P., Rustioni, M., & Boscagli, G. (1995). Evolution of ursid dentition; with inferences on the functional morphology of the masticatory apparatus in the genus Ursus. In J. Moggi-Cecchi (Ed.), Aspects of dental biology: palaeontology, anthropology and evolution (pp. 147–157). Florence: International Institute for the Study of Man.

    Google Scholar 

  • Miotto, R. A., Ciocheti, G. Rodrigues, F. P., & Galetti, Jr. P. M. (2007). Identification of pumas (Puma concolor (Linnaeus, 1771) through faeces: A comparison between morphological and molecular methods. Brazilian Journal of Biology, 67 (4, Suppl.), 963–965.

    Google Scholar 

  • Mondini, M. (2002). Carnivore Taphonomy and the Early Human Occupations in the Andes. Journal of Archaeological Science, 29, 791–801.

    Article  Google Scholar 

  • Montalvo, C. I., Pessino, M. E. M., & González, V. H. (2007). Taphonomic analysis of remains of mammals eaten by pumas (Puma concolor Carnivora, Felidae) in central Argentina. Journal of Archaeological Science, 34, 2151–2160.

    Article  Google Scholar 

  • Mulla, S. M., Phale, P. S., Saraf, M. R. (2012). Use of X-Ray diffraction technique for polymer characterization and studying the effect of optical accesories. AdMet 2012 Paper No. OM006, 1–6.

    Google Scholar 

  • Murray, D., Bunce, M., Cannell, B. L., Oliver, R., Houston, J., White, N. E., et al. (2011). DNA-based faecal dietary analysis: A comparison of qPCR and high throughput sequencing approaches. PLoS ONE, 6, 25776.

    Article  Google Scholar 

  • Murray, J., Lynch, E. P., Domínguez-Alonso, P., & Barham, M. (2016). Stratigraphy and Sedimentology of Azokh Caves, South Caucasus. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 27–54). Dordrecht: Springer.

    Google Scholar 

  • Nelson, R. A., Wahner, H. W., Fones, J. J., Ellefson, R. D., & Zollman, P. E. (1973). Metabolism of bears before, during and after winter sleep. American Journal of Physiology, 224, 491–496.

    Google Scholar 

  • Parfitt, S., & Larkin, N. R. (2010). Appendix. Exceptionally large hyaena coprolites from West Runton and the possible presence of the giant short-faced hyaena (Pachycrocuta brevirostris). Quaternary International, 228, 131–135.

    Google Scholar 

  • Payne, S., & Munson, P. J. (1985). Ruby and how many squirrels? The destruction of bones by dogs. In N. R. J. Fieller, D. D. Gilbert-Sov & N. G. A. Ralph (Eds.), Paleobiological Investigations (pp. 31–46). BAR Int. Ser. 266, Oxford.

    Google Scholar 

  • Peigné, S., Goillot, C., Germonpré, M., Blondel, C., Bignon, O., & Merceron, G. (2009). Predormancy omnivory in European cave bears evidenced by a dental microwear analysis of Ursus spelaeus from Goyet, Belgium. Proceedings of the National Academy of Sciences USA, 106, 15390–15393.

    Article  Google Scholar 

  • Pesquero, M. D., Salesa, M. J., Espílez, E., Mampel, L., Siliceo, G., & Alcalá, L. (2011). An exceptionally rich hyaena coprolites concentration in the Late Miocene mammal fossil site of La Roma 2 (Teruel, Spain): Taphonomical and palaeoenvironmental inferences. Palaeogeography, Palaeoclimatology, Palaeoecology, 311, 30–37.

    Article  Google Scholar 

  • Pickering, T. R. (2002). Reconsideration of criteria for differentiating daunal assemblages accumuulated by hienas and hominids. International Journal of Osteoarchaeology, 12, 127–174.

    Article  Google Scholar 

  • Pobiner, B. (2008). Paleoecological information in predator tooth marks. Journal of Taphonomy, 6, 373–397.

    Google Scholar 

  • Poinar, H. N., Hofreiter, M., Spaulding, W. G., Martin, P. S., Stankiewicz, B. A., Bland, H., et al. (1998). Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science, 281, 402–406.

    Article  Google Scholar 

  • Pokines, T. T., & Peterhans, J. C. K. (2007). Spotted hyena (Crocuta crocuta) den use and taphonomy in the Masai Mara National Reserve, Kenya. Journal of Archaeological Science, 34, 1914–1931.

    Article  Google Scholar 

  • Pruvost, M., & Geigl, E.-M. (2004). Real-time quantitative pcr to assess the authenticity of ancient DNA. Journal of Archaeological Science, 31, 1191–1197.

    Article  Google Scholar 

  • Pruvost, M., Grange, T., & Geigl, E.-M. (2005). Minimizing DNA-contamination by using UNG-coupled quantitative real-time PCR (UQPCR) on degraded DNA samples: Application to ancient DNA studies. BioTechniques, 38, 569–575.

    Article  Google Scholar 

  • Pruvost, M., Schwarz, R., Bessa Correia, V., Champlot, S., Braguier, S., Morel, N., et al. (2007). Freshly excavated fossil bones are best for ancient DNA amplification. Proceedings of the National Academy of. Science USA, 104(3), 739–744.

    Google Scholar 

  • Roberts, A. (1954). The mammals of South Africa. 2nd ed. Trustees of,The mammals of South Africa Book Fund, Johannesburg.

    Google Scholar 

  • Rohland, N., Pollack, J. L., Nagel, D., Beauval, C., Airvaux, J., Pääbo, S., & Hofreiter, M. (2005). The population history of extant and extinct hyenas. Molecular Biology and Evolution, 22, 2435–2443.

    Article  Google Scholar 

  • Richards, M. P., Pacher, M., Stiller, M., Quilès, J., Hofreiter, M., Constantin, S., et al. (2008). Isotopic evidence for omnivory among European cave bears: Late Pleistocene Ursus spelaeus from the Peştera cu Oase, Romania. Proceedings of the National Academy of Sciences of the USA, 105, 600–604.

    Article  Google Scholar 

  • Scott, L., Rossow, L., Cordova, C., & Risberg, J. (2016). Palaeoenvironmental Context of Coprolites and Plant Microfossils from Unit II. Azokh 1. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 287–295). Dordrecht: Springer.

    Google Scholar 

  • Selvaggio, M. M., & Wilder, J. (2001). Identifying the involvement of multiple carnivore taxa with archaeological bone assemblages. Journal of Archaeological Science, 28, 465–470.

    Article  Google Scholar 

  • Shehzad, W., Riaz, T., Nawaz, M. A., Miquel, C., Poillot, C., Shah, S. A., et al. (2012). Carnivore diet analysis based on next-generation sequencing: Application to the leopard cat (Prionailurus bengalensis) in Pakistan. Molecular Ecology, 21, 1951–1965.

    Article  Google Scholar 

  • Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21, 1794–1805.

    Article  Google Scholar 

  • Skinner, J. D. (1976). Ecology of the brown hyena Hyaena brunnea in the Transvaal with a distribution map for southern Africa. South African Journal of Science, 72, 262–269.

    Google Scholar 

  • Skinner, J. D., Haupt, M. A., Hoffmann, M., & Dott, H. M. (1998). Bone collection by brown hyaenas Hyaena brunnea in the Namib Desert: Rate of accumulation. Journal of Archeological Science, 25, 69–71.

    Article  Google Scholar 

  • Smith, C. I., Faraldos, M., & Fernández-Jalvo, Y. (2016). Bone Diagenesis at Azokh Caves. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 251–269). Dordrecht: Springer.

    Google Scholar 

  • Stuart, C., & Stuart, T. (1994). A field guide to the tracks and signs of southern and east african wildlife. Cape Town: Southern Book Publishers.

    Google Scholar 

  • Van der Made, J., Torres, T., Ortiz, J. E., Moreno-Pérez, L., & Fernández-Jalvo, Y. (2016). The new Material of Large Mammals from Azokh and Comments on the Older Collections. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 117–159). Dordrecht: Springer.

    Google Scholar 

  • Vila Taboada, M., Fernández Mosquera, D., López González, F., Grandal d’Anglade, A., & Vidal Romaní, J. R. (1999). Paleoecological implications inferred from stable isotopic signatures (d13C, d15 N) in bone collagen of Ursus spelaeus ROS.-HEIN. Cadernos do Laboratorio Xeolóxico de Laxe, 24, 73–87.

    Google Scholar 

  • Vila Taboada, M., Fernández Mosquera, D., & Grandal d’Anglade, A. (2001). Cave bear’s diet: A new hypothesis based on stable isotopes. Cadernos do Laboratorio Xeolóxico de Laxe, 26, 431–439.

    Google Scholar 

  • Walker, C. (1993). Signs of the wild. Cape Town: Struik Publishers.

    Google Scholar 

Download references

Acknowledgements

We are grateful to the authorities of Nagorno-Karabakh for permissions to work on these specimens. We thank the Electron Microscopy Unit of the Museo Nacional de Ciencias Naturales for their careful and professional work, Teresa Sanz for pictures taken of the coprolites before processing and Pablo Silva for pictures of modern bears. The authors are also grateful to M.D. Pesquero for providing coprolite measurements from La Roma site. We thank Corinne Esser from the Zoo Fauverie du Mont Faron, France, for providing hair and scats of brown hyenas. The authors are grateful to comments from Mark Lewis, Nigel Larkin, the three anonymous reviewers and the editor in charge (Peter Andrews) who greatly improved this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yolanda Fernández-Jalvo or Eva-Maria Geigl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bennett, E.A., Gorgé, O., Grange, T., Fernández-Jalvo, Y., Geigl, EM. (2016). Coprolites, Paleogenomics and Bone Content Analysis. In: Fernández-Jalvo, Y., King, T., Yepiskoposyan, L., Andrews, P. (eds) Azokh Cave and the Transcaucasian Corridor. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-24924-7_12

Download citation

Publish with us

Policies and ethics