Advertisement

Taphonomy and Site Formation of Azokh 1

  • M. Dolores Marin-Monfort
  • Isabel Cáceres
  • Peter Andrews
  • Ana C. Pinto-Llona
  • Yolanda Fernández-Jalvo
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

This chapter aims to describe the complete scenario that existed during the Middle Pleistocene in Azokh Caves and the Lesser Caucasus area from the evidence provided by the fossil assemblages recovered from excavations between 2002 and 2009. In the case of Azokh 1, taphonomic studies are particularly relevant since there is no such information from the early phase of excavations (1960–1980), during which much of the sediment was removed. This study, based on the taphonomy of large mammals, has allowed us to distinguish two sources of the large mammal fauna. Cave bear remains accumulated as a result of hibernation, and some of the carcasses were butchered by hominins in situ. The other faunal remains, mainly herbivores, were brought by hominins, but butchering took place somewhere else, not at the rear of the cave where they have been found. There is no evidence for simultaneous occupation of the cave by bears and hominins. There is also no evidence of human occupation at the rear of the cave, and they may have occupied the mouth of the cave during summer time. Cave bears could enter in winter-spring and occupied the rear of the cave. When the cave sediments reached close to the cave roof, bats occupied areas previously inhabited by bears and visited by hominins. Minerals neo-formed in fossils and sediments indicate seasonal changes in humidity and temperature inside the cave during the Pleistocene. Bat guano and corrosive fluid percolation caused strong corrosion on fossils after burial, damaging bones to such an extent that some of them could not be recovered. Bat guano was especially harmful to collagen, which is not preserved in most bones. Finally, during the Holocene, the top of the sequence was eroded by high energy water that removed the upper part of the sediments and opened the cave again to humans and animals.

Keywords

Large mammal taphonomy Lesser Caucasus Bat guano Fossilization Ursus spelaeus Pleistocene Fossil humans 

Резюме

Тафономия представляет собой исследование процессов фоссилизации и “истории жизни” окаменелостей. Она изучает, в частности, причины смерти житвотных, каким образом их останки сохранились до наших дней и как расшифровать информацию, находящуюся на поверхности костей, в тканях, гео- и биохимическом составе. Расшифрованная информация рассказывает нам об экологических условиях прошлого, о вымерших животных и растениях и, в целом, о природе и изменениях в древних экосистемах и климате. Таким образом, тафономия является наукой, которая использует закодированную информацию и сохранившиеся следы деятельности человека для описания естественной “жизни” окаменелостей и восстановления объективной палеобиолого-палеоэкологической и другой палеонтологической информации с целью детальной реконструкции прошлого.

Целью данной главы является, в частности, описание максимально полного сценария событий, имевших место в течение среднего плейстоцена в Азохской пещере. Тафономические исследования на данной стоянке направлены на восстановление исходной информации с ранних фаз раскопок (1960–1980 гг.), в течение которых бóльшая часть седиментов была перемещена из пещеры. Сегодня мы обладаем ограниченными данными (иногда они полностью отсутствует) для выяснения контекстовых и постседиментных процессов, а также о том, каким образом формировалась пещера. Данное исследование, основанное на тафономии крупных млекопитающих, позволило нам выделить два источника происхождения этих форм животных. Причиной многочисленных останков пещерных медведей является их спячка, и в ряде случаев их туши были разделаны in situ. Другие останки фауны, относящиеся главным образом к травоядным, были привнесены гоминидами, но разделка туш происходила не у задней стены пещеры, где были обнаружены кости. Никаких следов проживания человека не было найдено в тыльной части стоянки; люди, возможно, находились у входа в пещеру главным образом в летнее время. Гигантский пещерный медведь (Ursus spelaeus) проживал в пещере в зимне-весенний период, занимая ее тыльную часть.

После того как отложения достигли потолка пещеры, летучие мыши заняли пространство в ее задней части, ранее принадлежащее медведям и время от времени посещаемое человеком. Новые формы минералов в окаменелостях и седиментах указывают на сезонные изменения во влажности и температуре внутри пещеры в эпоху плейстоцена. Но гуано и просачивание едкой жидкости вызвало сильное разъедание останков после их погребения, и некоторые из них сегодня невозможно восстановить. Особенно вредным было воздействие гуано на коллаген. И наконец, в эпоху голоцена поверхность седиментной последовательности подверглась эрозии за счет высокой энергии водных потоков, которые вымыли верхние слои седиментов и снова открыли пещеру людям и животным.

Notes

Acknowledgements

This chapter is based in part on the PhD Thesis investigation by DMM. We are deeply grateful to the authorities of Nagorno-Karabakh for the support and permissions to work at Azokh Caves and to analyze these fossils. We are grateful to Manuel Nieto who has greatly helped with the statistical treatments of this extensive data base, as well as to M.D. Pesquero for taphonomic discussions. Thanks also to Jesús Muñoz and Fernando Señor of the Photo Unit of the Museo Nacional de Ciencias Naturales. We also thank the EMUnit, Laura Tormo, Marta Furió, and Alberto Jorge, as well as Rafael Gómez (XRD analyses) for their professional work and deep involvement in the analysis of some of these samples. The authors are grateful for constructive comments from the three anonymous reviewers and the editor in charge (Tania King) which greatly improved this chapter. These taphonomic investigations have been made possible through funded research projects by the Spanish Ministry of Science (BTE2000-1309, BTE2003-01552, BTE 2007-66231 and CGL2010-19825).

References

  1. Andrews, P. (1990). Owls, caves and fossils. London: Natural History Museum.Google Scholar
  2. Andrews, P. (1995). Experiments in taphonomy. Journal of Archaeological Science, 22, 147–153.CrossRefGoogle Scholar
  3. Andrews, P., & Armour-Chelu, M. (1998). Taphonomic observations on a surface bone assemblage in a temperate environment. Bulletin of the Geological Society of France, 169, 433–442.Google Scholar
  4. Andrews, P., & Cook, J. (1985). Natural modifications to bones in a temperate setting. Man (N.S.) 20, 675–691.Google Scholar
  5. Andrews, P., & Fernández-Jalvo, Y. (1997). Surface modifications of the Sima de los Huesos fossil humans. Journal of Human Evolution, 33, 191–217.CrossRefGoogle Scholar
  6. Andrews, P., & Turner, A. (1992). Life and death of the Westbury bears. Annales Zoologici Fennici, 28, 139–149.Google Scholar
  7. Andrews, P., & Whybrow, P. (2005). Taphonomic observations on a camel skeleton in a desert environment in Abu Dhabi. Palaeontologia Electronica. http://palaeo-electronica.org/paleo/2005_1/andrews23/issue1_05.htm.
  8. Andrews, P., Hixson A. S., King, T., Fernández-Jalvo, Y., & Nieto-Díaz, M. (2016). Palaeoecology of Azokh 1. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 305–320). Dordrecht: Springer.Google Scholar
  9. Appendix: Fernández-Jalvo, Y., Ditchfield, P., Grün, R., Lees, W., Aubert, M., Torres, T., et al. (2016). Dating methods applied to Azokh cave sites. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 321–339). Dordrecht: Springer.Google Scholar
  10. Asryan, L., Moloney, N., & Ollé, A. (2016). Lithic assemblages recovered from Azokh 1. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 85–101). Dordrecht: Springer.Google Scholar
  11. Behrensmeyer, A. K. (1975). The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya. Bulletin of the Museum of Comparative Zoology, 146, 473–578.Google Scholar
  12. Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4, 150–162.CrossRefGoogle Scholar
  13. Behrensmeyer, A. K., & Hill, A. (1981). Fossils in the making. Chicago: University Chicago Press.Google Scholar
  14. Behrensmeyer, A. K., Gordon, K. D., & Yanagi, G. T. (1986). Trampling as a cause of bone surface damage and pseudo cutmarks. Nature, 319, 768–771.CrossRefGoogle Scholar
  15. Bell, L. S. (1990). Paleopathology and diagenesis: An SEM evaluation of structural changes using backscattered electron imaging. Jorunal of Archaeological Science, 17, 85–102.CrossRefGoogle Scholar
  16. Bell, L. S., Skinner, M. F., & Jones, S. J. (1996). The speed of postmortem change to the human skeleton and its taphonomic significance. Forensic Science International, 82, 129–140.CrossRefGoogle Scholar
  17. Bennett, E. A., Gorgé, O., Grange, T, Fernández-Jalvo, Y., & Geigl, E. M. (2016) Coprolites, paleogenomics and bone content analysis. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 271–286). Dordrecht: Springer.Google Scholar
  18. Binford, L. R. (1981). Bones, ancient men and modern myths. New York: Academic Press.Google Scholar
  19. Blasco, R., Rosell, J. Fernández, Peris, J., Cáceres, I., & Vergès, J. M. (2008). A new element of trampling: An experimental application on the Level XII faunal record of Bolomor Cave (Valencia, Spain). Journal of Archaeological Science, 35, 1605–1618.CrossRefGoogle Scholar
  20. Blott, S. J., & Pye, K. (2008). Particle shape: A review and new methods of characterization and classification. Sedimentology, 55, 31–63.Google Scholar
  21. Blumenschine, R. J. (1986). Early Hominid Scavenging Opportunities: Implications of Carcass Availability in the Serengeti and Ngorongoro Ecosystems. International Series 283. Oxford: British Archaeological Reports.Google Scholar
  22. Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15, 483–502.CrossRefGoogle Scholar
  23. Blumenschine, R. J. (1995). Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. Journal of Human Evolution, 29, 21–51.CrossRefGoogle Scholar
  24. Blumenschine, R. J., & Selvaggio, M. M. (1988). Percussion marks on bone surfaces as a new diagnostic on hominid behavior. Nature, 333, 763–765.CrossRefGoogle Scholar
  25. Boaz, N. T. (1982). American research on australopithecines and early Homo, 1925–1980. In F. Spencer (Ed.), A history of american physical anthropology, 1930–1980 (pp. 239–260). New York: Academic.Google Scholar
  26. Boaz, N. T., & Behrensmeyer, A. K. (1976). Hominid taphonomy: Transport of human skeletal parts in an artificial fluviatile environment. American Journal of Physical Anthropology, 45, 53–60.CrossRefGoogle Scholar
  27. Bocherens, H., Fizet, M., & Mariotti, A. (1994). Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: Implications for Pleistocene bears. Palaeogeography, Palaeoclimatology, Palaeoecology, 107, 213–225.CrossRefGoogle Scholar
  28. Bocherens, H., Billiou, D., Patou-Mathis, M., Bonjean, D., Otte, M., & Mariotti, A. (1997). Paleobiological implications of the isotopic signatures (13C,15N) of fossil mammal collagen in Scladina Cave (Sclayn, Belgium). Quaternary Research, 48, 370–380.CrossRefGoogle Scholar
  29. Bocherens, H., Drucker, D. G., Billiou, D., Geneste, J.-M., & van der Plicht, J. (2006). Bears and Humans in Chauvet Cave (Vallon-Pont-d’Arc, Ardèhe, France): Insights from stable isotopes and radiocarbon dating of bone collagen. Journal of Human Evolution, 50, 370–376.CrossRefGoogle Scholar
  30. Bonnichsen, R. (1979). Pleistocene bone technology in the beringian refugium. Mercury series 89. Ottawa: National Museum of Man.Google Scholar
  31. Brain, C. K. (1969). The contribution of Namib desert Hottentots to an understanding of australopithecine bone accumulations. Scientific Papers of the Namib Desert Research Station, 39, 13–22.Google Scholar
  32. Brain, C. K. (1981). The hunters or the hunted? An introduction to African Cave taphonomy. Chicago: University of Chicago Press.Google Scholar
  33. Britt, B. B., Scheetz, R. D., & Dangerfield, A. (2005) Jurassic dinosaurs and insects: The paleoecological role of Termites as carcass feeders. Geological Society of America 2005 Salt Lake City Annual Meeting (October 16–19, 2005).Google Scholar
  34. Britt, B. B., Scheetz, R. D., & Dangerfield, A. (2008). A suite of dermestid beetle traces on dinosaur bone from the Upper Jurassic Morrison Formation, Wyoming, USA. Ichnos, 15, 59–71.CrossRefGoogle Scholar
  35. Bromage, T. G., & Boyde, A. (1984). Microscopic criteria for the determination of directionality of cutmarks on bone. American Journal of Physical Anthropology, 65, 357–366.CrossRefGoogle Scholar
  36. Brothwell, D. (1976). Further evidence of bone chewing by ungulates: The sheep of North Ronaldsay, Orkney. Journal of Archaeological Science, 3, 179–182.CrossRefGoogle Scholar
  37. Bunn, H. T. (1983). Evidence on the diet and subsistence patterns of Plio-Pleistocene hominids at Koobi Fora, Kenya, and Olduvai Gorge, Tanzania. In J. Clutton-Brock & C. Grigson (Eds.) Animals and Archaeology (Vol. 163, pp. 21–30). International Series. Oxford: British Archaeological Reports.Google Scholar
  38. Cáceres, I. (2002). Tafonomía de yacimientos antrópicos en Karst. Complejo Galería (Sierra de Atapuerca, Burgos), Vanguard Cave (Gibraltar) y Abric Romaní (Capellades, Barcelona). PhD dissertation, Universitat Rovira i Virgili.Google Scholar
  39. Cáceres, I., Bravo, P., Esteban, M., Expósito, I., & Saladié, P. (2002). Fresh and heated bones breakage. An experimental approach. In M. De Renzi, M.V. Pardo Alonso, M. Belinchón, E. Peñalver, P. Montoya, A. Márquez-Aliaga (Eds.), Current Topics on Taphonomy and Fossilization (pp. 471–479). Valencia: Ayunatmiento de Valencia.Google Scholar
  40. Cáceres, I., Esteban-Nadal, M., Bennàsar, M., & Fernández-Jalvo, Y. (2011). Was it the deer or the fox? Journal of Archaeological Science, 38, 2767–2774.CrossRefGoogle Scholar
  41. Capaldo, S. D. (1995). Inferring hominid and carnivore behaviour from dual patterned archaeofaunal assemblages. PhD dissertation, Rutgers University, New Brunswick, New Jersey.Google Scholar
  42. Capaldo, S. D. (1997). Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. Journal of Human Evolution, 33, 555–597.CrossRefGoogle Scholar
  43. Capaldo, S. D. (1998). Methods, marks, and models for inferring hominids and carnivore behavior. Journal of Human Evolution, 35, 323–326.CrossRefGoogle Scholar
  44. Delaney-Rivera, C., Plummer, T. W., Hodgson, J. A., Forrest, F., Hertel, F., & Oliver, J. S. (2009). Pits and pitfalls: Taxonomic variability and patterning in tooth mark dimensions. Journal of Archaelogical Science, 36, 2597–2608.CrossRefGoogle Scholar
  45. Denys, C., Fernández-Jalvo, Y., & Dauphin, Y. (1995). Experimental taphonomy: Preliminary results of the digestion of micromammal bones in laboratory. Comptes Rendues de l’Academie Scientifique, série II a (Paris), 321, 803–809.Google Scholar
  46. Denys, C., Schuster, M., Guy, F., Mouchelin, G., Vignaud, P., Viriot, L., et al. (2007). Taphonomy in present day desertic environment: The case of the Djourab (Chad) Plio-Pleistocene deposits. Journal of Taphonomy, 5, 177–204.Google Scholar
  47. Díez, J. C., Fernández-Jalvo, Y., Rosell, J., & Cáceres, I. (1999). Zooarchaeology and taphonomy of Aurora stratum (Gran Dolina, Sierra de Atapuerca, Spain). Journal of Human Evolution, 37, 623–652.CrossRefGoogle Scholar
  48. Dodson, P. (1973). The significance of small bones in paleoecological interpretation. Contributions to Geology, University of Wyoming, 12, 15–19.Google Scholar
  49. Domínguez-Rodrigo, M. (1997). Meat-eating by early hominids at the FLK 22 Zinjanthropus site, Olduvai Gorge (Tanzania): An experimental approach using cut-mark data. Journal of Human Evolution, 33, 669–690.CrossRefGoogle Scholar
  50. Domínguez-Rodrigo, M. (1999). Flesh availability and bone modifications in carcasses consumed by lions: Palaecological relevance in hominid foraging patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 149, 373–388.CrossRefGoogle Scholar
  51. Domínguez-Rodrigo, M., & Barba, R. (2006). New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: The carnivore-hominid-carnivore hypothesis falsified. Journal of Human Evolution, 50, 170–194.CrossRefGoogle Scholar
  52. Domínguez-Rodrigo, M., & Piqueras, A. (2003). The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. Journal of Archaelogical Science, 30, 1385–1391.CrossRefGoogle Scholar
  53. Dominguez-Rodrigo, M., de Juana, S., Galan, A., & Rodriguez, M. (2009). A new protocol to differentiate trampling marks from butchery marks. Journal of Archaeological Science, 36, 2643–2654.CrossRefGoogle Scholar
  54. Efremov, I. A. (1940). Taphonomy: New branch of paleontology. Pan-American Geologist, 74, 81–93.Google Scholar
  55. Efremov, I. A. (1950). Taphonomy and geological annals. Book 1. Burial of terrestrial fauna in the Paleozoic. Trudy Paleontologicheskogo instituta AN SSSR, vol. 24, pp. 1–177. (in Russian). Translated in 1953 in Annales du Centre d’Études et de Documentation Paléontologiques, 4, 1–196.Google Scholar
  56. Egeland, A. G., Egeland, C. P., & Bunn, H. T. (2008). Taphonomic analysis of a modern spotted hyena (Crocuta crocuta) den from Nairobi. Kenya. Journal of Taphonomy, 6(3–4), 301–335.Google Scholar
  57. Fernández, D. (1998). Biogeoquímica isotópica (13C, 15N) del Ursus Spelaeus del yacimiento de Cova Eiró s, Lugo. Cadernos do Laboratorio Xeolóxico de Laxe, 23, 237–249.Google Scholar
  58. Fernández, D., Vila, M., & Grandal, A. (2001). Stable isotopes data (delta 13C, delta 15N) from the cave bear (Ursus spelaeus): A new approach to its palaeoenvironment and dormancy. Proceedings of the Royal Society of Biological Sciences, 268B, 1159–1164.CrossRefGoogle Scholar
  59. Fernández-Jalvo, Y., & Andrews, P. (2003). Experimental effects of water abrasion on bone fragments. Journal of Taphonomy, 1(3), 147–163.Google Scholar
  60. Fernández-Jalvo, Y., & Andrews, P. (2011). When humans chew bones. Journal of Human Evolution, 60, 117–123.CrossRefGoogle Scholar
  61. Fernández-Jalvo, Y., & Andrews, P. (2016). Atlas of Taphonomic Identifications. Dordrecht: Springer.Google Scholar
  62. Fernández-Jalvo, Y., & Marin-Monfort, M. D. (2008). Experimental taphonomy in museums: Preparation protocols for skeletons and fossil vertebrates under the scanning electron microscopy. Geobios, 41(1), 157–181.CrossRefGoogle Scholar
  63. Fernández-Jalvo, Y., Denys, C., Andrews, P., Williams, C. T., Dauphin, Y., & Humphrey, L. (1998). Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania). Journal of Human Evolution, 34, 137–172.CrossRefGoogle Scholar
  64. Fernández-Jalvo, Y., Sánchez Chillón, B., Andrews, P., Fernández-López, S., & Alcalá Martínez, L. (2002). Morphological taphonomic transformations of fossil bones in continental environments, and repercussions on their chemical composition. Archaeometry, 44(3), 353–361.CrossRefGoogle Scholar
  65. Fernández-Jalvo, Y., Andrews, P., Pesquero, D., Smith, C., Marin-Monfort, D., Sánchez, B., et al. (2010a). Early bone diagenesis in temperate environments part I: Surface features and histology. Palaeogeography, Palaeoclimatology, Palaeoecology, 288, 62–81.CrossRefGoogle Scholar
  66. Fernández-Jalvo, Y., King, T., Andrews, P., Yepiskoposyan, L., Moloney, N., Murray, J., et al. (2010b). The Azokh Cave complex: Middle Pleistocene to holocene human occupation in the Caucasus. Journal of Human Evolution, 58, 103–109.CrossRefGoogle Scholar
  67. Fernández-Jalvo, Y., Valli, A. M. F., Marin-Monfort, D., & Pesquero M. D. (submitted). The taphonomy of Senèze. In E. Delson, M. Faure & C. Guérin (Eds). Senèze: Life in central france two million years ago. New York: Springer.Google Scholar
  68. Fernández-López, S. R. (1981). La evolución tafonómica (un planteamiento neodarwinista). Boletín de la Real Sociedad Española de Historia Natural, 79, 243–254.Google Scholar
  69. Fernández-López, S. R. (1991). Taphonomic concepts for a theoretical biochronology. Revista Española de Paleontología, 6, 37–49.Google Scholar
  70. Fernández-López, S. R. (1995). Taphonomie et interprétation des paléoenvironnements. Geobios, 18, 137–154.CrossRefGoogle Scholar
  71. Fernández-López, S. R. (2000). Temas de tafonomia. Madrid: Universidad Complutense de Madrid.Google Scholar
  72. Fernández-López, S. R. (2006). Taphonomic alteration and evolutionary taphonomy. Journal of Taphonomy, 4, 111–142.Google Scholar
  73. Figueirido, B., Palmqvist, P., & Pérez-Claros, J. A. (2009). Ecomorphological correlates of craniodental variation in bears and paleobiological implications for extinct taxa: An approach based on geometric morphometrics. Journal of Zoology, 277, 70–80.CrossRefGoogle Scholar
  74. Fiorillo, A. R. (1989). An experimental study of trampling: Implications for the fossil record. In R. Bonnichsen & M. H. Sorg (Eds.), Bone modification (pp. 61–71). Orono: University of Maine Center for the Study of the First Americans.Google Scholar
  75. Francillont-Viellot, H., Buffrenil, V. D. E., Castanet, J., Geraudie, J., Meunier, F. J., Sire, J. Y. et al., (1989) Microstructure and mineralization of vertebrate skeletal tissues. In J.G.Carter (Ed.), Skeletalb biomineralization: Patterns, processes and evolutionary trends (pp. 175–234). Washington D.C.: American Geophysical Union.Google Scholar
  76. Frostick, L., & Reid, I. (1983). Taphonomic significance of sub-aerial transport of vertebrate fossils on steep semi-arid slopes. Lethaia, 16, 157–164.CrossRefGoogle Scholar
  77. Gordon, C. C., & Buikstra, J. E. (1981). Soil pH, bone preservation and sampling bias at mortuary sites. American Antiquity, 46, 566–571.CrossRefGoogle Scholar
  78. Grandal d’Anglade, A., & López-González, F. (2005). Sexual dimorphism and autogenetic variation in the skull of the cave bear (Ursus spelaeus Rosenmüller) of the European upper pleistocene. Geobios, 38, 325–338.Google Scholar
  79. Grasman, B. T., & Hellgren, E. C. (1993). Phosphorus-nutrition in white-tailed deer nutrient balance, physiological-responses, and antler growth. Ecology, 74, 2279–2296.CrossRefGoogle Scholar
  80. Hackett, C. J. (1981). Microscopical focal destruction (tunnels) in excavated human bones. Medicine, Science and Law, 21, 243–265.Google Scholar
  81. Haynes, G. (1980). Evidence of carnivore gnawing on Pleistocene and recent mammalian bones. Paleobiology, 6, 341–351.CrossRefGoogle Scholar
  82. Haynes, G. (1983). A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology, 9, 164–172.CrossRefGoogle Scholar
  83. Hedges, R. M., Millars, A. R., & Pike, A. W. G. (1995). Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science, 22, 201–209.CrossRefGoogle Scholar
  84. Hillson, S. (1992). Mammal bones and teeth: An introduction guide methods of identification. London: Institute of Archaeology, University College London.Google Scholar
  85. Huchet, J.-B., Deverly, D., Gutierrez, B., & Chaucha, C. (2011). Taphonomic evidence of a human skeleton gnawed by termites in a Moche-civilisation grave at huaca de la luna, Peru. International Journal of Osteoarchaeology, 21, 92–102.CrossRefGoogle Scholar
  86. Jans, M. M. E. (2005). Histological characterization of diagenetic alteration of archaeological bone (vol. 4). Geoarchaeological and bioarchaeological studies. Amsterdam: Institute for Geo and Bioarchaeology, Vrije Universiteit.Google Scholar
  87. Jans, M. M., Kars, H., Nielsen-Marsh, C. M., Smith, C. I., Nord, A. G., Arthur, P., et al. (2002). In situ preservation of archaeological bone: A histological study within multidisciplinary approach. Archaeometry, 44(3), 343–352.CrossRefGoogle Scholar
  88. Johnson, E. (1985). Current developments in bone technology. In M. B. Schiffer (Ed.), Advances in archaeological method and theory (Vol. 8, pp. 157–235). New York: Academic Press.CrossRefGoogle Scholar
  89. Karkanas, P., Bar-Yosef, O., Goldberg, P., & Weiner, S. (2000). Diagenesis in prehistoric caves: The use of minerals that form in situ to assess the completeness of the archaeological record. Journal of Archaeological Science, 27, 915–929.CrossRefGoogle Scholar
  90. Kibii, M. J. (2009). Taphonomic aspects of African porcupines (Hystrix cristata) in the Kenyan Highlands. Journal of Taphonomy, 7, 21–27.Google Scholar
  91. King, T., Compton, T., Rosas, A., Andrews, P. Yepiskoyan, L., & Asryan, L. (2016). Azokh Cave hominin remains. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 103–106). Dordrecht: Springer.Google Scholar
  92. Kitching, J. W. (1980). On some fossil arthropoda from the limeworks Makapansgat, Potgietersrus. Palaeontologica Africana, 23, 63–68.Google Scholar
  93. Klippel, W. E., & Synstelien, J. A. (2007). Rodents as taphonomic agents: Bone gnawing by brown rats and gray squirrels. Journal of Forensic Science, 52, 765–773.CrossRefGoogle Scholar
  94. Korth, W. W. (1979). Taphonomy of microvertebrate fossil assemblages. Annals of the Carnegie Museum, 48, 235–285.Google Scholar
  95. Kreutzer, L. A. (1992). Bison and deer bone mineral densities: Comparisons and implications for the interpretation of archaeological faunas. Journal of Archaeological Science, 19, 271–294.CrossRefGoogle Scholar
  96. Kurtén, B. (1958). Life and death of the Pleistocene cave bear. Acta Zool. Fennica, 95, 1–59.Google Scholar
  97. Kurtén, B. (1976). The cave bear story. New York: Columbia University Press.Google Scholar
  98. Lam, Y. M., Chen, X., Marean, C. W., & Frey, C. J. (1998). Bone density and long bone representation in archaeological faunas: Comparison results from CT and photon densitometry. Journal of Archaeological Science, 25, 559–570.CrossRefGoogle Scholar
  99. Leroi-Gourhan, A., & Brezillon, M. (1972). Fouilles de Pincevent: Essay d’analyse ethnographique d’un habitat Magdalénien. VIII (Supplement): Gallia-Préhistoire.Google Scholar
  100. López-González, F., Grandal-d’Anglade, A., & Ramón Vidal-Romaní, J. (2006). Deciphering bone depositional sequences in caves through the study of manganese coating. Journal of Archaeological Science, 33, 707–717.Google Scholar
  101. Lyman, R. L. (1984). Bone density and differential survivorship of fossil classes. Journal of Anthropological Archaeology, 3, 259–299.CrossRefGoogle Scholar
  102. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  103. Magela da Costa, G., & Rúbia Ribeiro, V. (2001). The occurrence of tinsleyite in the archaeological site of Santana do Riacho, Brazil. Mineralogical Society of America, 86, 1053–1056.Google Scholar
  104. Marincea, S., Dumitras, D., & Gibert, R. (2002). Tinsleyite in the ‘‘dry’’ Cioclovina Cave (Sureanu Mountains, Romania): The second occurrence. European Journal of Mineralogy, 14, 157–164.CrossRefGoogle Scholar
  105. Markova, A. K. (1982). Microteriofauna iz paleoliticheskoy peschernoy stoyanki Azikh. Palaeontoligischeskoy sb.-k Moskwa, 19, 14–28. (In Russian).Google Scholar
  106. Martin, F. M. (2008). Bone crunching felids at the end of the Pleistocene in Fuego-Patagonia. Chile Journal of Taphonomy, 6(3–4), 337–372.Google Scholar
  107. Mattson, D. J. (1998). Diet and morphology of extant and recently extinct northern bears. Ursus, 10, 479–496.Google Scholar
  108. Mayne, P. M. (1997). Fire modification of bone: A review of the literature. In W. D. Haglund & M. H. Sorg (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 275–293). Boca Ratón: CRC Press.Google Scholar
  109. Mazza, P., Rustioni, M., & Boscagli, G. (1995). Evolution of ursid dentition; with inferences on the functional morphology of the masticatory apparatus in the genus Ursus. In J. Moggi-Cecchi (Ed.), Aspects of dental biology: Palaeontology, anthropology and evolution (pp. 147–157). Florence: International Institute for the study of man.Google Scholar
  110. Molleson T. (1990). The accumulation of trace metals in bone during fossilization. In N.D.Priest & F.L.Van der Vyver (Eds.), Trace Metals and Fluoride in Bones and Teeth (pp. 341–365). Boca Ratón: C.R.C. Press.Google Scholar
  111. Murray, J., Lynch, E. P., Domínguez-Alonso, P., & Barham, M. (2016). Stratigraphy and sedimentology of Azokh Caves, South Caucasus. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 27–54). Dordrecht: Springer.Google Scholar
  112. Nabaglo, L. (1973). Rats in the diet of the Barn owl. Journal of Zoology of London, 189, 540–545.Google Scholar
  113. Noe-Nygaard, N. (1989). Man-made trace fossils on bones. Human Evolution, 4, 461–491.CrossRefGoogle Scholar
  114. Olsen, S. L., & Shipman, P. (1988). Surface modification on bone: Trampling versus butchery. Journal of Archaeological Science, 15, 535–553.CrossRefGoogle Scholar
  115. Peigné, S., Goillot, C., Germonpré, M., Blondel, C., Bignon, O., & Merceron, G. (2009). Predormancy omnivory in European Cave bears evidenced by a dental microwear analysis of Ursus spelaeus from Goyet, Belgium. Proceedings of the National Academy of Sciences USA, 106, 15390–15393.CrossRefGoogle Scholar
  116. Pesquero, M. D., Ascaso, C., Alcalá, L., & Fernández-Jalvo, Y. (2010). A new taphonomic bioerosion in a Miocene lakes hore environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 295, 192–198.CrossRefGoogle Scholar
  117. Pickering, T., & Wallis, J. (1997). Bone modifications resulting from captive chimpanzee mastication: Implications for the interpretation of Pliocene archaeological faunas. Journal of Archaeological Science, 24, 1115–1127.CrossRefGoogle Scholar
  118. Pinto, A. C., & Andrews, P. (2002). Taphonomy and palaeocology of quaternary bears from Northern Spain. Oviedo: FAO, NHM & DuPont/Grafisa.Google Scholar
  119. Pinto, A. C., & Andrews, P. J. (2004). Scavenging behaviour patterns in cave bears Ursus spelaeus. Revue de Paléobiologie, 23, 845–853.Google Scholar
  120. Pinto Llona, A. C., Andrews, P. J., & Etxebarría, F. (2005). Tafonomía y paleoecología de Úrsidos cuaternarios cantábricos. Oviedo: Fundación Oso de Asturias.Google Scholar
  121. Plummer, T. W., & Stanford, C. B. (2000). Analysis of a bone assemblage made by chimpanzees at Gombe National Park, Tanzania. Journal of Human Evolution, 39, 345–365.CrossRefGoogle Scholar
  122. Pobiner, B. (2008). Paleoecological information in predator tooth marks. Journal of Taphonomy, 6, 373–397.Google Scholar
  123. Pobiner, B. L., DeSilva, J., Sanders, W. J., & Mitani, J. C. (2007). Taphonomic analysis of skeletal remains from chimpanzee hunts at Ngogo, Kibale National Park, Uganda. Journal of Human Evolution, 52, 614–636.CrossRefGoogle Scholar
  124. Rabal-Garcés, R., Cuenca-Bescós, G., Canudo, J. I., & Torres, T. (2011). Was the European bear an occasional scavenger? Lethaia, 45(1), 96–108.CrossRefGoogle Scholar
  125. Rabinovich, R., & Horwitz, L. K. (1994). An experimental approach to the study of porcupine damage to bones. Taphonomie/Bone Modification. Treignes (Belgium): Editions du CEDARC.Google Scholar
  126. Richards, M. P., Pacher, M., Stiller, M., Quilès, J., Hofreiter, M., Constantin, S., et al. (2008). Isotopic evidence for omnivory among European cave bears: Late Pleistocene Ursus spelaeus from the Peştera cu Oase, Romania. Proceedings of the National Academy of Sciences of the United States of America, 105, 600–604.CrossRefGoogle Scholar
  127. Rodríguez, J. (1997). Análisis de la estructura de las communidades de maníferos del Pleistoceno de la Sierra de Atapuerca. Revisión de metodologías. PhD dissertation. Universidad Autónoma de Madrid.Google Scholar
  128. Saladié, P. (2009). Experimental Chewing and Gnawing of Humans and Other Primates Compared to Canids, Suids and Felids. PhD dissertation. Universitat Rovira i Virgili (Tarragona, Spain).Google Scholar
  129. Saladié, P., Rodríguez-Hiraldo, A., Díez, C., Martín-Rodríguez, P., & Carbonell, E. (2013). Range of bone modifications by human chewing. Journal of Archaeological Science, 40, 380–397.CrossRefGoogle Scholar
  130. Selvaggio M. M. (1994). Evidence from carnivore tooth marks and stone-tool-butchery marks for scavenging by hominids at FLK Zinjanthropus Olduvai Gorge, Tanzania. PhD dissertation, Rutgers University, New Brunswick.Google Scholar
  131. Selvaggio, M. M. (1998). Concernig the three stage model of carcass processing at FLK Zinjanthropus: A reply to Capaldo. Journal of Human Evolution, 35, 319–321.CrossRefGoogle Scholar
  132. Selvaggio, M. M., & Wilder, J. (2001). Identifying the involvement of multiple carnivore taxa with archaeological bone assemblages. Journal of Archaeological Science, 28, 465–470.CrossRefGoogle Scholar
  133. Shipman, P. (1981). Life History of a Fossil: An introduction to taphonomy and paleoecology. Cambridge: Harvard University Press.Google Scholar
  134. Shipman, P., & Rose, J. (1983). Early hominid hunting, butchering, and carcass-processing behaviors: Approaches to the fossil record. Journal of Anthropological Archaeology, 2, 57–98.CrossRefGoogle Scholar
  135. Shipman, P., & Rose, J. J. (1988). Bone tools: An experimental Approach. In S. Olsen (Ed.), Scanning electron microscopy in archaeology (pp. 303–335). Oxford: British Archaeological Reports International Series 452.Google Scholar
  136. Shipman, P., Foster, G., & Schoeninger, M. (1984). Burnt bones and teeth: An experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science, 11, 307–325.CrossRefGoogle Scholar
  137. Smith, K. G. V. (1986). A manual of forensic entomology. London: British Museum (Natural History) Publications.Google Scholar
  138. Smith, C. I., Faraldos, M., & Fernández-Jalvo Y. (2016). Bone diagenesis at Azokh Caves. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 251–269). Dordrecht: Springer.Google Scholar
  139. Smith, C. I., Nielsen-Marsh, C. M., Jans, M. M. E., Arthur, P., Nord, A. G., & Collins, M. J. (2002). The strange case of Apigliano: Early ‘fossilization’ of medieval bone in southern Italy. Archaeometry, 44, 405–415.CrossRefGoogle Scholar
  140. Stiner, M. C., Weiner, S., Bar-Yosef, O., & Kuhn, S. L. (1995). Differential burning, recrystallization and fragmentation of archaeological bone. Journal of Archaeological Science, 22, 223–237.CrossRefGoogle Scholar
  141. Sutcliffe, A. J. (1970). Spotted hyaenas: Crusher, gnawer, digester and collector of bones. Nature, 227, 1110–1113.CrossRefGoogle Scholar
  142. Sutcliffe, A. J. (1973). Similarity of bones and antlers gnawed by deer to human artefacts. Nature, 246, 428–430.CrossRefGoogle Scholar
  143. Sutcliffe, A. J. (1977). Further notes on bones and antlers chewed by deer and other ungulates. Deer, 4, 73–82.Google Scholar
  144. Tappen, M. (1994). Bone weathering in the tropical rain forest. Journal of Archaeological Science, 21, 667–673.CrossRefGoogle Scholar
  145. Thompson, C. E. L., Ball, S., Thompson, T. J. U., & Gowland, R. (2011). The abrasion of modern and archaeological bones by mobile sediments: The importance of transport modes. Journal of Archaeological Science, 38, 784–793.CrossRefGoogle Scholar
  146. Tong, H. W., Zhang, S., Chen, F., & Li, Q. (2008). Rongements sélectifs des os par les porcs-épics et autres rongeurs: Cas de la grotte Tianyuan, un site avec des restes humains fossiles récemment découvert près de Zhoukoudian (Choukoutien). L’Anthropologie, 111, 353–369.CrossRefGoogle Scholar
  147. Trueman, C. N., & Martill, D. M. (2002). The long-term survival of bone: The role of bioerosion. Archaeometry, 44, 371–382.CrossRefGoogle Scholar
  148. Trueman, C. N. G., Behrensmeyer, A. K., Tuross, N., & Weiner, S. (2004). Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science, 31, 721–739.CrossRefGoogle Scholar
  149. Turner, A. (1983). The quantification of relative abundances in fossil and subfossil bone assemblages. Annals of the Transvaal Museum, 33, 311–321.Google Scholar
  150. Tütken, T., & Vennemann, T. W. (2011). Fossil bones and teeth: Preservation or alteration of biogenic compositions? Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 1–8.CrossRefGoogle Scholar
  151. Van der Made, J., Torres, T., Ortiz, J. E., Moreno-Pérez, L., & Fernández-Jalvo, Y. (2016). The new material of large mammals from Azokh and comments on the older collections. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 117–159). Dordrecht: Springer.Google Scholar
  152. Vila Taboada, M., Fernández Mosquera, D., López González, F., Grandal d’Anglade, A., & Vidal Romaní, J. R. (1999). Paleoecological implications inferred from stable isotopic signatures (d13C, d15 N) in bone collagen of Ursus spelaeus ROS.-HEIN. Cadernos do Laboratorio Xeolóxico de Laxe, 24, 73–87.Google Scholar
  153. Vila Taboada, M., Fernández Mosquera, D., & Grandal d’Anglade, A. (2001) Cave bear’s diet: A new hypothesis based on stable isotopes. Cadernos do Laboratorio Xeolóxico de Laxe, 26, 431–439.Google Scholar
  154. Villa, P., & Mahieu, E. (1991). Breakage patterns of human long bones. Journal of Human Evolution, 21, 27–48.CrossRefGoogle Scholar
  155. Villa, P., Bouville, C., Courtin, J., Helmer, D., Mahieu, E., Shipman, P., et al. (1986). Cannibalism in the Neolithic. Science, 233, 431–436.CrossRefGoogle Scholar
  156. Voorhies, M. R. (1969). Taphonomy and population dynamics of an early Pliocene vertebrate fauna Knox County, Nebraska. Contributions to Geology, University of Wyoming Special Paper, 1, 1–69.Google Scholar
  157. Wedl, C. (1864). Uber einen im Zahnbein und Knochen keimenden Pilz. Akademi der Wissenschaften in Wien. Fitzungsbereichte Naturwissenschaftliche ABI. Mineralogi, biologi erdkunde, 50, 171–193.Google Scholar
  158. Weigelt, J. (1927). Resente Wirbeltierleichten und ihre Paläobiologische Bedeutung. Max Weg Verlag, Leipzig, p. 227. Translated in 1989 Recent Vertebrate Carcasses and their Paleobiological Implications. Chicago: University Chicago Press.Google Scholar
  159. Wentworth, C. K. (1919). A laboratory and field study of cobble abrasion. Journal of Geology, 27, 507–521.CrossRefGoogle Scholar
  160. White, T. D. (1992). Prehistoric Cannibalism at Mancos 5MTUMR-2346. Princeton: Princeton University Press.CrossRefGoogle Scholar
  161. White, W. B., & Culver, D. C. (2012). Encyclopedia of caves. Dordrecht: Springer.Google Scholar
  162. Wyckoff, R. W. G. (1972). The biochemistry of animal fossils. Bristol: Scientechnica Ltd.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. Dolores Marin-Monfort
    • 1
  • Isabel Cáceres
    • 2
    • 3
  • Peter Andrews
    • 4
  • Ana C. Pinto-Llona
    • 5
  • Yolanda Fernández-Jalvo
    • 1
  1. 1.Museo Nacional de Ciencias Naturales (CSIC)MadridSpain
  2. 2.Àrea de Prehistòria, Universitat Rovira I Virgili (URV)TarragonaSpain
  3. 3.IPHES, Institut Català de Paleoecologia Humana I Evolució SocialTarragonaSpain
  4. 4.Natural History MuseumLondon SW7 5BDUK
  5. 5.Instituto de Historia (CCHS-CSIC)MadridSpain

Personalised recommendations