Human Computer Interaction Meets Psychophysiology: A Critical Perspective

  • Michiel M. SpapéEmail author
  • Marco Filetti
  • Manuel J. A. Eugster
  • Giulio Jacucci
  • Niklas Ravaja
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9359)


Human computer interaction (HCI) groups are more and more often exploring the utility of new, lower cost electroencephalography (EEG) interfaces for assessing user engagement and experience as well as for directly controlling computers. While the potential benefits of using EEG are considerable, we argue that research is easily driven by what we term naïve neurorealism. That is, data obtained with psychophysiological devices have poor reliability and uncertain validity, making inferences on mental states difficult. This means that unless sufficient care is taken to address the inherent shortcomings, the contributions of psychophysiological human computer interaction are limited to their novelty value rather than bringing scientific advance. Here, we outline the nature and severity of the reliability and validity problems and give practical suggestions for HCI researchers and reviewers on the way forward, and which obstacles to avoid. We hope that this critical perspective helps to promote good practice in the emerging field of psychophysiology in HCI.


HCI EEG Psychophysiology Reliability Validity Naïve Neurorealism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, H.: Über das elektroencephalogramm des menschen. Psychiatry 87, 527–570 (1929)Google Scholar
  2. 2.
    Karbowski, K.: Hans berger (1873–1941). J. Neurol. 249(8), 1130–1131 (2002)CrossRefGoogle Scholar
  3. 3.
    Miller, G.A., Crocker, L.D., Spielberg, J.M., Infantolino, Z.P., Heller, W.: Issues in localization of brain function: the case of lateralized frontal cortex in cognition, emotion, and psychopathology. Frontiers in Integrative Neuroscience 7 (2013)Google Scholar
  4. 4.
    Sutton, S., Braren, M., Zubin, J., John, E.: Evoked-potential correlates of stimulus uncertainty. Science 150(3700), 1187–1188 (1965)CrossRefGoogle Scholar
  5. 5.
    Linden, D.E.J.: The p300: Where in the brain is it produced and what does it tell us? The Neuroscientist 11, 563–576 (2005)CrossRefGoogle Scholar
  6. 6.
    Farwell, L., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology 70(6), 510–523 (1988)CrossRefGoogle Scholar
  7. 7.
    Campbell, A., Choudhury, T., Hu, S., Lu, H., Mukerjee, M.K., Rabbi, M., Raizada, R.D.: Neurophone: brain-mobile phone interface using a wireless EEG headset. In: MobiHeld 2010 Proceedings of the Second ACM SIGCOMM Workshop on Networking, Systems, and Applications on Mobile Handhelds, pp. 3–8 (2010)Google Scholar
  8. 8.
    Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(10), 1175–1191 (2001)CrossRefGoogle Scholar
  9. 9.
    Fairclough, S.H.: Fundamentals of physiological computing. Interacting with Computers 21(1), 133–145 (2009)CrossRefGoogle Scholar
  10. 10.
    Fairclough, S.H., Ewing, K.C., Roberts, J.: Measuring task engagement as an input to physiological computing. In: 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, ACII 2009, pp. 1–9 (2009)Google Scholar
  11. 11.
    Angelakis, E., Stathopoulou, S., Frymiare, J.L., Green, D.L., Lubar, J.F., Kounios, J.: Eeg neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. The Clinical Neuropsychologist 21(1), 110–129 (2007)CrossRefGoogle Scholar
  12. 12.
    Rabipour, S., Raz, A.: Training the brain: fact and fad in cognitive and behavioral remediation. Brain Cogn. 79(2), 159–179 (2012)CrossRefGoogle Scholar
  13. 13.
    Larsen, P.O., Von Ins, M.: The rate of growth in scientific publication and the decline in coverage provided by science citation index. Scientometrics 84(3), 575–603 (2010)CrossRefGoogle Scholar
  14. 14.
    Junghöfer, M., Elbert, T., Leiderer, P., Berg, P., Rockstroh, B.: Mapping eeg-potentials on the surface of the brain: a strategy for uncovering cortical sources. Brain Topogr. 9(3), 203–217 (1997)CrossRefGoogle Scholar
  15. 15.
    Acar, Z.A., Makeig, S.: Neuroelectromagnetic forward head modeling toolbox. J. Neurosci. Methods 190(2), 258–270 (2010)CrossRefGoogle Scholar
  16. 16.
    Pascual-Marqui, R.D.: Review of methods for solving the eeg inverse problem. International Journal of Bioelectromagnetism 1(1), 75–86 (1999)Google Scholar
  17. 17.
    Walter, W.G., Cooper, R., Aldridge, V., McCallum, W., Winter, A.: Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature 8(203), 380–384 (1964)CrossRefGoogle Scholar
  18. 18.
    Luck, S.: An Introduction to the Event-related Potential Technique. MIT Press, Cambridge (2005)Google Scholar
  19. 19.
    Gratton, G., Coles, M., Donchin, E.: A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology 55(4), 468–484 (1983)CrossRefGoogle Scholar
  20. 20.
    Jung, T.P., Humphries, C., Lee, T.W., Makeig, S., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Removing electroencephalographic artifacts: comparison between ICA and PCA. In: Proceedings of the 1998 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing VIII, pp. 63–72 (1998)Google Scholar
  21. 21.
    Delorme, A., Makeig, S.: Eeglab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)CrossRefGoogle Scholar
  22. 22.
    Whitton, J.L., Lue, F., Moldofsky, H.: A spectral method for removing eye movement artifacts from the EEG. Electroencephalography and Clinical Neurophysiology 44(6), 735–741 (1978)CrossRefGoogle Scholar
  23. 23.
    Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18(1), 555–586 (1995)CrossRefGoogle Scholar
  24. 24.
    Lutz, A., Greischar, L.L., Rawlings, N.B., Ricard, M., Davidson, R.J.: Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc. Natl. Acad. Sci. USA 101(46), 16369–16373 (2004)CrossRefGoogle Scholar
  25. 25.
    Keizer, A.W., Verment, R.S., Hommel, B.: Enhancing cognitive control through neurofeedback: A role of gamma-band activity in managing episodic retrieval. Neuroimage 49(4), 3404–3413 (2010)CrossRefGoogle Scholar
  26. 26.
    Muthukumaraswamy, S.D.: High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Frontiers in Human Neuroscience 7 (2013)Google Scholar
  27. 27.
    Whitham, E.M., Pope, K.J., Fitzgibbon, S.P., Lewis, T., Clark, C.R., Loveless, S., Broberg, M., Wallace, A., DeLosAngeles, D., Lillie, P.: Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20hz are contaminated by emg. Clin. Neurophysiol. 118(8), 1877–1888 (2007)CrossRefGoogle Scholar
  28. 28.
    Lemm, S., Blankertz, B., Dickhaus, T., Müller, K.R.: Introduction to machine learning for brain imaging. Neuroimage 56(2), 387–399 (2011). CrossRefGoogle Scholar
  29. 29.
    Blankertz, B., Lemm, S., Treder, M.S., Haufe, S., Müller, K.R.: Single-rial analysis and classification of ERP components - A tutorial. NeuroImage 56(2), 814–825 (2011). CrossRefGoogle Scholar
  30. 30.
    Eugster, M.J.A., Hothorn, T., Leisch, F.: Domain-based benchmark experiments: Exploratory and inferential analysis. Austrian Journal of Statistics 41(1), 5–26 (2012). Google Scholar
  31. 31.
    Weisberg, D.S., Keil, F.C., Goodstein, J., Rawson, E., Gray, J.R.: The seductive allure of neuroscience explanations. J. Cogn. Neurosci. 20(3), 470–477 (2008)CrossRefGoogle Scholar
  32. 32.
    Poldrack, R.A.: Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences 10(2), 59–63 (2006)CrossRefGoogle Scholar
  33. 33.
    Duncan, J.: An adaptive coding model of neural function in prefrontal cortex. Nat. Rev. Neurosci. 2(11), 820–829 (2001)CrossRefGoogle Scholar
  34. 34.
    Poldrack, R.A.: The role of fMRI in cognitive neuroscience: where do we stand? Curr. Opin. Neurobiol. 18(2), 223–227 (2008)CrossRefGoogle Scholar
  35. 35.
    Chai, Jing, Ge, Yan, Liu, Yanfang, Li, Wen, Zhou, Lei, Yao, Lin, Sun, Xianghong: Application of frontal EEG asymmetry to user experience research. In: Harris, Don (ed.) EPCE 2014. LNCS, vol. 8532, pp. 234–243. Springer, Heidelberg (2014)Google Scholar
  36. 36.
    Brouwer, A.M., Zander, T.O., Van Erp, J.B.F., Korteling, H., Bronkhorst, A.W.: Using neurophysiological signals that reflect cognitive or affective state: Six recommendations to avoid common pitfalls. Frontiers in Neuroscience 9(136) (2015).
  37. 37.
    Novak, D., Mihelj, M., Munih, M.: A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing. Interact. Comput. 24(3), 154–172 (2012)CrossRefGoogle Scholar
  38. 38.
    Cacioppo, J.T., Tassinary, L.G., Berntson, G.: Handbook of Psychophysiology. Cambridge University Press (2007)Google Scholar
  39. 39.
    Cui, X., Bray, S., Bryant, D.M., Glover, G.H., Reiss, A.L.: A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 54(4), 2808–2821 (2011)CrossRefGoogle Scholar
  40. 40.
    Ferrari, M., Quaresima, V.: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63(2), 921–935 (2012)CrossRefGoogle Scholar
  41. 41.
    Paulesu, E., Sambugaro, E., Torti, T., Danelli, L., Ferri, F., Scialfa, G., Sberna, M., Ruggiero, G., Bottini, G., Sassaroli, S.: Neural correlates of worry in generalized anxiety disorder and in normal controls: a functional MRI study. Psychological Medicine 40(01), 117–124 (2010)CrossRefGoogle Scholar
  42. 42.
    Royet, J.P., Koenig, O., Gregoire, M.C., Cinotti, L., Lavenne, F., Le Bars, D., Costes, N., Vigouroux, M., Farget, V., Sicard, G.: Functional anatomy of perceptual and semantic processing for odors. J. Cogn. Neurosci. 11(1), 94–109 (1999)CrossRefGoogle Scholar
  43. 43.
    Wong, D., Pisoni, D.B., Learn, J., Gandour, J.T., Miyamoto, R.T., Hutchins, G.D.: Pet imaging of differential cortical activation by monaural speech and nonspeech stimuli. Hearing Research 166(1), 9–23 (2002)CrossRefGoogle Scholar
  44. 44.
    Rogers, R.D., Owen, A.M., Middleton, H.C., Williams, E.J., Pickard, J.D., Sahakian, B.J., Robbins, T.W.: Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. The Journal of Neuroscience 19(20), 9029–9038 (1999)Google Scholar
  45. 45.
    Isaacson, B.: Mind control: How EEG devices will read your brain waves and change your world (2012). (retrieved on May 22, 2015)
  46. 46.
    Le, T.: A headset that reads your brainwaves (2010). (retrieved on May 22, 2015)
  47. 47.
    Li, S.: Mind reading is on the market (2010). (retrieved on May 25, 2015)
  48. 48.
    Debener, S., Minow, F., Emkes, R., Gandras, K., de Vos, M.: How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49(11), 1617–1621 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michiel M. Spapé
    • 1
    Email author
  • Marco Filetti
    • 1
  • Manuel J. A. Eugster
    • 1
    • 2
  • Giulio Jacucci
    • 3
  • Niklas Ravaja
    • 1
    • 4
  1. 1.Helsinki Institute for Information Technology HIITAalto UniversityEspooFinland
  2. 2.Department of Computer ScienceAalto UniversityEspooFinland
  3. 3.Department of Computer Science, Helsinki Institute for Information Technology HIITUniversity of HelsinkiHelsinkiFinland
  4. 4.Department of Social ResearchUniversity of HelsinkiHelsinkiFinland

Personalised recommendations