Skip to main content

Toward the Development of a Neuro-Controlled Bidirectional Hand Prosthesis

  • Conference paper
  • First Online:
  • 895 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9359))

Abstract

The hand is a powerful tool and its loss causes severe physical and often mental debilitation. Surveys on artificial hands reveal that 30 to 50% amputees do not use their prosthetic hand regularly, due to its low functionality. The fundamental issue is therefore to improve the voluntarily-controlled dexterity to allow amputee to perform tasks that are necessary for activities of daily living and that cannot yet be done with the state-of-the-art artificial limbs. The NEBIAS project, launched at the start of November 2013, aims at developing and clinically evaluating a neuro-controlled upper limb prosthesis intuitively controlled and felt by the amputee as the natural one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badia, J., Raspopovic, S., Carpaneto, J., Micera, S., Navarro, X.: Spatial and Functional Selectivity of Peripheral Nerve Signal Recording With the Transversal Intrafascicular Multichannel Electrode (TIME). IEEE Trans. Neural Syst. Rehabil. Eng. (in press) (2015)

    Google Scholar 

  2. Biddiss, E., Beaton, D., Chau, T.: Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2(6), 346–57 (2007)

    Article  Google Scholar 

  3. Carboni, C., Bisoni, L., Carta, N., Barbaro, M.: Compact, multi-channel, electronic interface for PNS recording and stimulation. In: Proc. Int. Conf. Biomed. Eng. (BioMed), Zurich (2014)

    Google Scholar 

  4. Carta, N., Meloni, P., Tuveri, G., Pani, D., Raffo, L.: A Custom MPSoC Architecture With Integrated Power Management for Real-Time Neural Signal Decoding. IEEE J. Trans. Emerg. Sel. Topics Circuits Syst. 4(2), 230–241 (2014)

    Article  Google Scholar 

  5. del Valle, J., de la Oliva, N., Mueller, M., Stieglitz, T., Navarro, X.: Biocompatibility evaluation of parylene C and polyimide as substrates for peripheral nerve interfaces. In: Proc. 7th Conf. IEEE/EMBS Neural Engineering (NER), Montpellier (2015)

    Google Scholar 

  6. Micera, S., Carpaneto, J., Raspopovic, S.: Control of hand prostheses using peripheral information. IEEE Rev. Biomed. Eng. 3, 48–68 (2010)

    Article  Google Scholar 

  7. Montagnani, F., Controzzi, M., Cipriani, C.: Is it Finger or Wrist Dexterity That is Missing in Current Hand Prostheses? IEEE Trans. Neural Syst. Rehabil. Eng. 23(4), 600–609 (2015)

    Google Scholar 

  8. Mueller, M., Ulloa Suarez, M.A., Schuettler, M., Stieglitz, T.: Development of a single-sided parylene C based intrafascicular multichannel electrode for peripheral nerves. In: Proc. 7th Conf. IEEE/EMBS Neural Engineering (NER), Montpellier (2015)

    Google Scholar 

  9. Raspopovic, S., Capogrosso, M., et al.: Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6(222), 222ra19 (2014)

    Article  Google Scholar 

  10. Rossini, P.M., Micera, S., et al.: Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin. Neurophysiol. 121(5), 777–783 (2010)

    Article  Google Scholar 

  11. Schaffelhofer, S., Agudelo-Toro, A., Scherberger, H.: Decoding a wide range of hand configurations from macaque motor, premotor, and parietal cortices. J. Neurosci. 35(3), 1068–1081 (2015)

    Article  Google Scholar 

  12. Spigler, G., Oddo, C.M., Carrozza, M.C.: Soft-neuromorphic artificial touch for applications in neuro-robotics. In: Proc. 4th IEEE RAS/EMBS (BioRob), Rome (2012)

    Google Scholar 

  13. Stieglitz, T., Boretius, T., Navarro, X., et al.: Development of a neurotechnological system for relieving phantom limb pain using transverse intrafascicular electrodes (TIME). Biomed. Tech. (Berl) 57(6), 457–465 (2012)

    Google Scholar 

  14. Quispe, A.H., Ben Amor, H., Christensen, H.: Supplement to: a taxonomy of benchmark tasks for bimanual manipulators. In: Proc. Intl. Conf. Robotics Research (ISRR), Sestri Levante (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Carpaneto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Micera, S. et al. (2015). Toward the Development of a Neuro-Controlled Bidirectional Hand Prosthesis. In: Blankertz, B., Jacucci, G., Gamberini, L., Spagnolli, A., Freeman, J. (eds) Symbiotic Interaction. Symbiotic 2015. Lecture Notes in Computer Science(), vol 9359. Springer, Cham. https://doi.org/10.1007/978-3-319-24917-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24917-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24916-2

  • Online ISBN: 978-3-319-24917-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics