Skip to main content

Rehabilitation Technologies Application in Stroke and Traumatic Brain Injury Patients

  • Chapter
  • First Online:
Emerging Therapies in Neurorehabilitation II

Abstract

Neurorehabilitation plays a crucial role in the multidisciplinary management of brain injury patients. Emergent therapies based on rehabilitation technologies such as robots, bci, FES, and virtual reality could facilitate cognitive and sensorimotor recovery by supporting and motivating patients to practice-specific tasks on high repetitive levels during different stages of rehabilitation. Robots have become a promising task-oriented tool intended to restore upper limb function and a more normal gait pattern. Virtual reality environments by providing powerful sensorimotor feedback and increasing user interaction with a virtual scenario could improve gait, balance, and upper limb motor function. This chapter will provide an overview on the rationale of introducing rehabilitation technologies-based therapies into clinical settings and discuss their evidence for effectiveness, safety, and value for stroke and traumatic brain injury patients. In addition, recommendations for goal setting and practice of training based on disease-related symptoms and functional impairment are summarized together with reliable functional assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon, G., Levitt, A.F., McCarthy, P.A.: Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study. Neurorehabil. Neural Repair 21(3), 207–215 (2007). doi:10.1177/1545968306297871

    Google Scholar 

  2. Alon, G., McBride, K., Ring, H.: Improving selected hand functions using a noninvasive neuroprosthesis in persons with chronic stroke. J. Stroke Cerebrovasc. Dis.?: Off. J. Natl. Stroke Assoc. 11(2), 99–106 (2002). doi:10.1053/jscd.2002.127107

    Google Scholar 

  3. Altman, J., Das, G.D.: Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965)

    Article  Google Scholar 

  4. Ang, K.K., Guan, C., Chua, K.S., Ang, B.T., Kuah, C., Wang, C., Phua, K.S., Chin, Z.Y., Zhang, H.: Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 5549–5552 (2010)

    Google Scholar 

  5. Aprile, I., Di Stasio, E., Romitelli, F., Lancellotti, S., Caliandro, P., Tonali, P., Alessandro Gilardi, A., Padua, L.: Effects of rehabilitation on quality of life in patients with chronic stroke, Brain Inj. 22(6), 451–456 (2008)

    Google Scholar 

  6. Arya, K.N., Pandian, S., Verma, R., Garg, R.K.: Movement therapy induced neural reorganization and motor recovery in stroke: a review. J. Bodyw. Mov. Ther. 15, 528–537 (2011)

    Article  Google Scholar 

  7. Astrup, J., Siesjo, B.K., Symon, L.: Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12, 723–725 (1981)

    Article  Google Scholar 

  8. Bajd, T., Crt, M., Munih, M.: Functional electrical stimulation with surface electrodes. J. Autom. Control 18(2), 3–9 (2008). doi:10.2298/JAC0802003B

    Article  Google Scholar 

  9. Beebe, J.A., Lang, C.E.: Active range of motion predicts upper extremity function 3 months after stroke. Stroke 40, 1772–1779 (2009)

    Article  Google Scholar 

  10. Beer, R.F., Dewald, J.P., Rymer, W.Z.: Deficits in the coordination of multijoint arm movements in patients with hemiparesis; evidence for disturbed control of limb dynamics. Exp. Brain Res. 131, 305–319 (2000)

    Article  Google Scholar 

  11. Biernaskie, J., Corbett, D.: Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J. Neurosci. 21,5272–5280 (2001)

    Google Scholar 

  12. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kubler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398, 297–298 (1999)

    Article  Google Scholar 

  13. Birbaumer, N., Murguialday, A.R., Cohen, L.: Brain-computer interface in paralysis. Curr. Opin. Neurol. 21, 634–638 (2008)

    Article  Google Scholar 

  14. Broderick, B., Breen, P., Ólaighin, G.: Electronic stimulators for surface neural prosthesis. J. Autom. Control 18(2), 25–33 (2008). doi:10.2298/JAC0802025B

    Article  Google Scholar 

  15. Buccino, G., Solodkin, A., Small, S.L.: Functions of the mirror neuron system: implications for neurorehabilitation. Cogn. Behav. Neurol. 19, 55–63 (2006)

    Article  Google Scholar 

  16. Buch, E., Weber, C., Cohen, L.G., Braun, C., Dimyan, M.A., Ard, T., Mellinger, J., Caria, A., Soekadar, S., Fourkas, A., Birbaumer, N.: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)

    Article  Google Scholar 

  17. Burdea, G.C.: Virtual rehabilitation. Benefits and challenges. Methods Inf. Med. 42, 519–523 (2003)

    Google Scholar 

  18. Burgar, C.G., Lum, P.S., Shor, P.C., Van der loos, H. M.: Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 37(6), 663–674 (2000)

    Google Scholar 

  19. Cameirao, M.S., Bermudez-Badia, S., Duarte, E., Frisoli, A., Verschure, P.: The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke 43, 2720–2728 (2012)

    Article  Google Scholar 

  20. Carmichael, S.T.: Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann. Neurol. 59, 735–742 (2006)

    Article  Google Scholar 

  21. Casadio, M., Giannoni, P., Masia, L., Morasso, P., Sandini, G., Sanguineti, V., Vergaro, E.: Robot therapy of the upper limb in stroke patients: preliminary experiences for the principle-based use of this technology. Funct. Neurol. 24(4), 195 (2009)

    Google Scholar 

  22. Casadio, M., Giannoni, P., Morasso, P., Sanguineti, V.: A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients. Clini. Rehabil. 23(3), 217–228 (2009)

    Article  Google Scholar 

  23. Chae, J., Sheffler, L., Knutson, J.: Neuromuscular electrical stimulation for motor restoration in hemiplegia. Top. Stroke Rehabil. 15(5), 412–426 (2008). doi:10.1310/tsr1505-412

    Article  Google Scholar 

  24. Cho, K.H., Lee, W.H.: Virtual walking training program using a real- world video recording for patients with chronic stroke: a pilot study. Am. J. Phys. Med. Rehabil. 92, 371–380 (2013)

    Article  Google Scholar 

  25. Colombo, G., Joerg, M., Schreier, R., Dietz, V.: Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 37, 693–700 (2000)

    Google Scholar 

  26. Coote, S., Stokes, E., Murphy, B., Harwin, W.: The Effect of GENTLE/s robot-mediated Therapy on Upper Extremity Dysfunction Post Stroke, pp. 59–61 (2003)

    Google Scholar 

  27. da Cunha, I.T.J., Lim, P.A., Qureshy, H., Henson, H., Monga, T., Protas, E.J.: Gait outcomes after acute stroke rehabilitation with supported treadmill ambulation training: a randomized controlled pilot study. Arch. Phys. Med. Rehabil. 83, 1258–1265 (2002)

    Article  Google Scholar 

  28. Cherng, R.J., Liu, C.F., Lau, T.W., Hong, R.B.: Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy. Am. J. Phys. Med. 86, 548–555 (2007)

    Article  Google Scholar 

  29. Daly, J.J., Cheng, R., Rogers, J., Litinas, K., Hrovat, K., Dohring, M.: Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J. Neurol. Phys. Ther. 33, 203–211 (2009)

    Article  Google Scholar 

  30. DeJong, G., Horn, S.D., Conroy, B., Nichols, D., Healton, E.B.: Opening the black box of post-stroke rehabilitation: stroke rehabilitation patients, processes, and outcomes. Arch. Phys. Med. Rehabil. 86(12 suppl 2), S1–S7 (2005)

    Article  Google Scholar 

  31. Dobkin, B., Apple, D., Barbeau, H., et al.: Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology 66, 484–493 (2006)

    Article  Google Scholar 

  32. Donnan, G.A., Fisher, M., Macleod, M., Davis, S.M.: Stroke. Lancet 371, 1612–1623 (2008)

    Article  Google Scholar 

  33. Dromerick, A.W., Lum, P.S., Hidler, J.: Activity-based therapies. NeuroRx 3, 428–438 (2006)

    Article  Google Scholar 

  34. Duncan, P.W., Goldstein, L.B., Matchar, D., Divine, G.W., Feussner, J.: Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 23, 1084–1089 (1992)

    Article  Google Scholar 

  35. Duncan, P.W., Zorowitz, R., Bates, B., Choi, J.Y., Glasberg, J.J., Graham, G.D., Katz, R.C., Lamberty, K., Reker, D.: Management of adult stroke rehabilitation care—A clinical practice guideline. Stroke 36, E100–E143 (2005)

    Article  Google Scholar 

  36. Duncan, P.W., Sullivan, K.J., Behrman, A.L., et al.: Body-weight-supported treadmill rehabilitation after stroke. N. Engl. J. Med. 364, 2026–2036 (2011)

    Article  Google Scholar 

  37. El Saddik, A.: Still only in its infancy, haptics promises to be a revolution in how we interact in the virtual world. IEEE Instrum. Measur. Mag. 1094(6969/07) (2007)

    Google Scholar 

  38. El Saddik, A.: Haptics Technologies: Bringing Touch to Multimedia. Springer, Berlin (2011)

    Google Scholar 

  39. Ferrucci, L., Bandinelli, S., Guralnik, J.M., Lamponi, M., Bertini, C., Falchini, M., Baroni, A.: Recovery of functional status after stroke. A postrehabilitation follow-up study. Stroke 24, 200–205 (1993)

    Article  Google Scholar 

  40. Esquenazi, A., Lee, S., Packel, A.T., Braitman, L.: A randomized comparative study of manually assisted versus robotic-assisted body weight supported treadmill training in persons with a traumatic brain injury. PMR 5, 280–290 (2013)

    Google Scholar 

  41. Fernando, C.K., Basmajian, J.V.: Biofeedback in physical medicine and rehabilitation. Biofeedback Self. Regul. 3(4), 435–455 (1978)

    Google Scholar 

  42. Fluet, G.G., Deutsch, J.E.: Virtual reality for sensorimotor rehabilitation post- stroke: the promise and current state of the field. Curr. Phys. Med. Rehabil. Rep. 1, 9–20 (2013)

    Article  Google Scholar 

  43. Freivogel, S., Mehrholz, J., Husak-Sotomayor, T., Schmalohr, D.: Gait training with the newly developed ‘LokoHelp’-system is feasible for nonambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 22, 625–632 (2008)

    Article  Google Scholar 

  44. Fritz, S.L., Peters, D.M., Merlo, A.M., Donley, J.: Active video-gaming effects on balance and mobility in individuals with chronic stroke: a randomized controlled trial. Top Stroke Rehabil. 20, 218–225 (2013)

    Article  Google Scholar 

  45. Goodnight, S.J., Harris, W.S., Connor, W.E.: The effects of dietary omega 3 fatty acids on platelet composition and function in man: a prospective, controlled study. Blood 58(5),880–885 (1981)

    Google Scholar 

  46. Guadagnoli, M.A., Lee, T.D.: Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J. Mot. Behav. 36, 212–224 (2004)

    Article  Google Scholar 

  47. Hafsteinsdóttir, T.B., Algra, A., Kappelle, L.J., Grypdonck, M.H., Group, D.N.S.: Neurodevelopmental treatment after stroke: a comparative study. J. Neurol. Neurosurg. Psychiatry 76, 788–792 (2005)

    Article  Google Scholar 

  48. Hallett, M.: Plasticity of the human motor cortex and recovery from stroke. Brain Res. Brain Res. Rev. 36, 169–174 (2001)

    Article  Google Scholar 

  49. Haugland, M. (1996). A flexible method for fabrication of nerve cuff electrodes. In: 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 359–360, Amsterdam

    Google Scholar 

  50. Henderson, A., Korner-Bitensky, N., Levin, M.: Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 14, 52–61 (2007)

    Article  Google Scholar 

  51. Hesse, S., Schulte-tigges, G., Konrad, M., Bardeleben, A., Werner, C.: Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch. Phys. Med. Rehabil. 84(6), 915–920 (2003)

    Article  Google Scholar 

  52. Holden, M.K., Dettwiler, A., Dyar, T., Niemann, G., Bizzi, E.: Retraining movement in patients with acquired brain injury using a virtual environment. In: Westwood, J.D. (ed.) Medicine Meets Virtual Reality, pp. 192–198. IO Press, Amsterdam (2001)

    Google Scholar 

  53. Hornby, T.G., Campbell, D.D., Kahn, J.H., Demott, T., Moore, J.L., Roth, H.R.: Enhanced gait-related improvements after therapist—versus roboticassisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 39, 1786–1792 (2008)

    Article  Google Scholar 

  54. Houwink, A., Nijland, R.H., Geurts, A.C., Kwakkel, G.: Functional recovery of the paretic upper limb after stroke: who regains capacity? Arch. Phys. Med. Rehabil. 94, 839–844 (2013)

    Article  Google Scholar 

  55. Inoue, Y., Takemoto, K., Miyamoto, T., Yoshikawa, N., Taniguchi, S., Saiwai, S., Nishimura, Y., Komatsu, T.: Sequential computed tomography scans in acute cerebral infarction. Radiology 135, 655–662 (1980)

    Article  Google Scholar 

  56. Jauch, E.C., Cucchiara, B., Adeoye, O., Meurer, W., Brice, J., Chan, Y., Gentile, N., Hazinski, M.F.: Part 11: adult stroke 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122, S818–S828 (2010)

    Article  Google Scholar 

  57. Jezernik, S., Schärer, R., Colombo, G., Morari, M.: Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals. Spinal Cord 41, 657–666 (2003)

    Article  Google Scholar 

  58. Jorgensen, H.S., Nakayama, H., Raaschou, H.O., Vivelarsen, J., Stoier, M., Olsen, T.S.: Outcome and time course of recovery in stroke. Part II: Time course of recovery. The Copenhagen stroke study. Arch. Phys. Med. Rehabili. 76, 406–412 (1995)

    Article  Google Scholar 

  59. Jueptner, M., Stephan, K.M., Frith, C.D., Brooks, D.J., Frackowiak, R.S., Passingham, R.E.: Anatomy of motor learning. I. Frontal cortex and attention to action. J. Neurophysiol. 77, 1313–1324 (1997)

    Google Scholar 

  60. Karni, A., Meyer, G., Jezzard, P., Adams, M.M., Turner, R., Ungerleider, L.G.: Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995)

    Article  Google Scholar 

  61. Keller, T., Kuhn, A.: Electrodes for transcutaneous (surface) electrical stimulation. J. Autom. Control 18(2), 35–45 (2008). doi:10.2298/JAC0802035K

    Article  Google Scholar 

  62. Keller, T., Lawrence, M., Kuhn, A., Morari, M.: Technology for rehabilitation. In: Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA, Aug 30–Sept 3, 2006, pp. 194–197 (2006)

    Google Scholar 

  63. Kim, J.H., Jang, S.H., Kim, C.S., Jung, J.H., You, J.H.: Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind randomized controlled study. Am. J. Phys. Med. Rehabil. 88, 693–701 (2009)

    Article  Google Scholar 

  64. Kiper, P., Agostini, M., Luque-Moreno, C., Tonin, P., Turolla, A.: Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. Biomed. Res. Int. 752128. doi:10.1155/2014/752128 (2014)

  65. Kitago, T., Krakauer, J.W.: Motor learning principles for neurorehabilitation. Handb. Clin. Neurol. 110, 93–103 (2013)

    Article  Google Scholar 

  66. Knutson, J.S., Harley, M.Y., Hisel, T.Z., Hogan, S.D., Maloney, M.M., Chae, J.: Contralaterally controlled functional electrical stimulation for upper extremity hemiplegia: an early-phase randomized clinical trial in subacute stroke patients. Neurorehabil. Neural Repair 26(3),239–246 (2012). doi:10.1177/1545968311419301

    Google Scholar 

  67. Kollen, B.J., Lennon, S., Lyons, B., et al.: The effectiveness of the Bobath concept in stroke rehabilitation: what is the evidence? Stroke 40, e89–e97 (2009)

    Article  Google Scholar 

  68. Krebs, H.I., Volpe, B.T.: Rehabilitation robotics. Handb. Clin. Neurol. 110, 283–294 (2013)

    Article  Google Scholar 

  69. Krebs, H.I., Ferraro, M., Buerger, S.P., Newbery, M.J., Makiyama, A., Sandmann, M., Hogan, N.: Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J. NeuroEng. Rehabil. 1(1), 5 (2004)

    Article  Google Scholar 

  70. De Kroon, J.: Therapeutic electrical stimulation of the upper extremity in stroke. University of Twente. Accessed http://eprints.eemcs.utwente.nl/18682/ (2005)

  71. Kunesch, E., Binkofsky, F., Steinmetz, H., Freund, H.J.: The pattern of motor deficits in relation to the site of stroke lesions. Eur. Neurol. 35, 20–26 (1995)

    Article  Google Scholar 

  72. Lambercy, O., Dovat, L., Gassert, R., Burdet, E., Teo, C.L., Milner, T.: A haptic knob for rehabilitation of hand function. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 356–366 (2007)

    Article  Google Scholar 

  73. Lange, B., Chang, C.Y., Suma, E., Newman, B., Rizzo, A.S., Bolas, M.: Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 1831–1834 (2011). doi:10.1109/iembs.2011.6090521

  74. Langhorne, P., Bernhardt, J., Kwakkel, G.: Stroke rehabilitation. Lancet 377, 1693–1702 (2011)

    Article  Google Scholar 

  75. Langhorne, P., Coupar, F., Pollock, A.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8, 741–754 (2009)

    Article  Google Scholar 

  76. Langlois, J.A., Rutland-Brown, W., Wald, M.M.: The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21, 375–378 (2006)

    Article  Google Scholar 

  77. Laufer, Y., Dickstein, R., Chefez, Y., Marcovitz, E.: The effect of treadmill training on the ambulation of stroke survivors in the early stages of rehabilitation: a randomized study. J. Rehabil. Res. Dev. 38, 69–78 (2001)

    Google Scholar 

  78. Laver, K.E., George, S., Thomas, S., Deutsch, J.E., Crotty, M.: Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 9, CD008349 (2011)

    Google Scholar 

  79. Leblanc, S., Paquin, K., Carr, K., Horton, S.: Non-immersive virtual reality for fine motor rehabilitation of functional activities in individuals with chronic stroke: a review. Aging Sci. 1, 105 (2013). doi:10.4172/jasc.1000105

    Google Scholar 

  80. Lennon, S., Ashburn, A., Baxter, D.: Gait outcome following outpatient physiotherapy based on the Bobath concept in people post stroke. Disabil. Rehabil. 28, 873–881 (2006)

    Article  Google Scholar 

  81. Lo, R.C.: Recovery and rehabilitation after stroke. Can. Fam. Physician 32, 1851–1853 (1986)

    Google Scholar 

  82. Lohse, K.R., Hilderman, C.G.E., Cheung, K.L., Tatla, S., Van der Loos, H.F.M.: Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS one 9(3), e93318 (2014). doi:10.1371/journal.pone.0093318

    Article  Google Scholar 

  83. Lucca, L.F.: Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress? J. Rehabil. Med. 41, 1003–1006 (2009)

    Article  Google Scholar 

  84. Mackay, J., Mensah, G.A.: The atlas of heart disease and stroke. The atlas of heart disease and stroke (2004)

    Google Scholar 

  85. Mayr, A., Kofler, M., Quirbach, E., Matzak, H., Fröhlich, K., Saltuari, L.: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil. Neural Repair 21, 307–314 (2007)

    Google Scholar 

  86. Manganotti, P., Acler, M., Zanette, G.P., Smania, N., Fiaschi, A.: Motor cortical disinhibition during early and late recovery after stroke. Neurorehabil. Neural Repair 22, 396–403 (2008)

    Article  Google Scholar 

  87. Martin, S., Nick, H.: Characterisation of the Novint Falcon haptic device for application as a robot manipulator. Australas. Conf. Robot. Autom. (2009)

    Google Scholar 

  88. Massie, T.H., Salisbury, J.K.: The phantom haptic interface: a device for probing virtual objects. In: Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, vol. 55, No. 1, pp. 295–300 (1994, November)

    Google Scholar 

  89. McClanachan, N.J., Gesch, J., Wuthapanich, N., Fleming, J., Kuys, S.S.: Feasibility of gaming console exercise ant its effect on endurance, gait and balance in people with an acquired brain injury. Brain Inj. 27, 1402–1408 (2013)

    Article  Google Scholar 

  90. Mattia, D., Molinari, M.: Brain-computer interfaces and therapy. In: Grubler, G., Hildt, E. (eds.) Brain-Computer-Interfaces in their Ethical, Social and Cultural Contexts, pp. 49–59. Springer, Netherlands (2014)

    Google Scholar 

  91. McEwen, D., Taillon-Hobson, A., Bilodeau, M., Sveistrup, H., Finestone, H.: Virtual reality exercise improves mobility after stroke: an inpatient randomized controlled trial. Stroke 45, 1853–1855 (2014)

    Article  Google Scholar 

  92. Mehrholz, J., Werner, C., Kugler, J., Pohl, M.: Electromechanical-assisted training for walking after stroke (review). Cochrane Database Syst. Rev. (4), CD006185 (2007)

    Google Scholar 

  93. Mirelman, A., Patritti, B.L., Bonato, P., Deutsch, J.E.: Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture 31, 433–437 (2010)

    Article  Google Scholar 

  94. Morone, G., Pisotta, I., Pichiotti, F., Kleih, S., Paolucci, S., Molinari, M., Cincotti, F., Kubler, A., Mattia, D.: Proof of principle of a brain-computer interface approach to support poststroke arm rehabilitation in hospitalized patients: design, acceptability, and usability. Arch. Phys. Med. Rehabil. 96(3 supp1), S71–S78 (2015)

    Google Scholar 

  95. Mumford, N., Duckworth, J., Thomas, P.R., et al.: Upper limb virtual rehabilitation for traumatic brain injury: a preliminary within-group evaluation of the elements system. Brain Inj. 26, 166–176 (2012)

    Article  Google Scholar 

  96. Nakayama, H., Jorgensen, H.S., Raaschou, H.O., Olsen, T.S.: Recovery of upper extremity function in stroke patients: the Copenhagen stroke study. Arch. Phys. Med. Rehabil. 75, 394–398 (1994)

    Article  Google Scholar 

  97. Nef, T., Riener, R.: ARMin-design of a novel arm rehabilitation robot. In: 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, pp. 57–60, IEEE (2005, June)

    Google Scholar 

  98. Neumann, N., Kubler, A., Kaiser, J., Hinterberger, T., Birbaumer, N.: Conscious perception of brain states: mental strategies for brain-computer communication. Neuropsychologia 41, 1028–1036 (2003)

    Article  Google Scholar 

  99. NICE (National Institute for Health and Care Excellence) Stroke rehabilitation: long-term rehabilitation after stroke. National Institute for Health and Care Excellence, London (2013)

    Google Scholar 

  100. Norouzi-Gheidari, N., Archambault, P.S., Fung, J.: Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J. Rehabil. Res. Dev. 49, 479–496 (2012)

    Article  Google Scholar 

  101. NUDO, R.J.: Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J. Rehabil. Med. 7–10 (2003)

    Google Scholar 

  102. O’ Dwyer, N.J., Ada, L., Nielson, P.D.: Spasticity and muscle contracture following stroke. Brain 119, 1737–1749 (1996)

    Article  Google Scholar 

  103. Ochi, F., Esquenazi, A., Hirai, B., et al.: Temporal-spatial feature of gait alter traumatic brain injury. J. Head Trauma Rehabil. 14, 105–115 (1999)

    Article  Google Scholar 

  104. Paolucci, S., Antonucci, G., Grasso, M.G., et al.: Functional outcome of ischemic and hemorrhagic stroke patients after inpatient rehabilitation a matched comparison. Stroke 34,2861–2865 (2003)

    Google Scholar 

  105. Pascual-Leone, A., Grafman, J., Hallett, M.: Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263, 1287–1289 (1994)

    Article  Google Scholar 

  106. Peckham, P.H., Knutson, J.S.: Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 7, 327–360 (2005). doi:10.1146/annurev.bioeng.6.040803.140103

    Article  Google Scholar 

  107. Pfurtscheller, G., Neuper, C.: Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 239, 65–68 (1997)

    Article  Google Scholar 

  108. Pichiorri, F., Petti, M., Toppi, J., et al.: YIA2: different brain network modulation following motor imagery BCI-assisted training after stroke. Clin. Neurophysiol. 125, S24 (2014)

    Article  Google Scholar 

  109. Ploughman, M., Windle, V., MacLellan, C.L., White, N., Dore, J.J., Corbett, D.: Brain-derived neurotrophic factor contributes of recovery of skilled reaching after focal ischemia in rats. Stroke 40, 1490–1495 (2009)

    Article  Google Scholar 

  110. Popović, D.B., Sinkjaer, T.: Control of movement for the physically disabled, 2nd edn, p. 488. Center for Sensory Motor Interaction; Aalborg University, Denmark, Aalborg (2003)

    Google Scholar 

  111. Popovic, D.B., Popovic, M.B., Sinkjaer, T.: Neurorehabilitation of upper extremities in humans with sensory-motor impairment. Neuromodulation?: J. Int. Neuromodulat. Soc. 5(1), 54–66. doi:10.1046/j.1525-1403.2002._2009.x (2002)

  112. Popovic, D.B., Popovic, M.B., Sinkjaer, T., Stefanovic, A., Schwirtlich, L.: Therapy of paretic arm in hemiplegic subjects augmented with a neural prosthesis: a cross-over study. Can. J. Physiol. Pharmacol. 82(8–9), 749–756 (2004). doi:10.1139/y04-057

    Article  Google Scholar 

  113. Popovic, M., Curt, A., Keller, T., Dietz, V.: Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord 39, 403–412 (2001)

    Article  Google Scholar 

  114. Prange, G.B., Jannink, M.J., Groothuis-oudshoorn, C.G., Hermens, H.J., Ijzerman, M.J.: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev. 43(2), 171 (2006)

    Article  Google Scholar 

  115. Prasad, G., Herman, P., Coyle, D., McDonough, S., Crosbie, J.: Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J. Neuroeng. Rehabil. 7, 60 (2010)

    Article  Google Scholar 

  116. Reinkensmeyer, D.J., Kahn, L.E., Averbuch, M., Mckenna-cole, A., Schmit, B.D., Rymer, W.Z.: Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J. Rehabil. Res. Dev. 37(6), 653–662 (2000)

    Google Scholar 

  117. Reinkensmeyer, D.J., Housman, S.J.: ““If I can’t do it once, why do it a hundred times?”: connecting volition to movement success in a virtual environment motivates people to exercise the arm after stroke,” Virtual Rehabil. pp. 44, 48 (2007)

    Google Scholar 

  118. Richards, L.G., Stewart, K.C., Woodbury, M.L., Senesac, C., Cauraugh, J.H.: Movement-dependent stroke recovery: a systematic review and meta-analysis of TMS and fMRI evidence. Neuropsychologia 46, 3–11 (2008)

    Article  Google Scholar 

  119. Richards, C.L., Malouin, F., Wood-Dauphinee, S., Williams, J.I., Bouchard, J.P., Brunet, D.: Task-specific physical therapy for optimization of gait recovery in acute stroke patients. Arch. Phys. Med. Rehabil. 74, 612–620 (1993)

    Article  Google Scholar 

  120. Rosati, G., Gallina, P., Masiero, S., Rossi, A.: Design of a new 5 dof wire-based robot for rehabilitation. In: 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, pp. 430–433, IEEE (2005, July)

    Google Scholar 

  121. Rossini, P.M., Calautti, C., Pauri, F., Baron, J.C.: Post-stroke plastic reorganisation in the adult brain. Lancet Neurol. 2, 493–502 (2003)

    Article  Google Scholar 

  122. Sainburg, R.L., Ghilardi, M.F., Poizner, H., Ghez, C.: The control of limb dynamics in normal subjects and patients without propioception. J. Neurophysiol. 73, 820–835 (1995)

    Google Scholar 

  123. Sanes, J.N.: Skill learning: motor cortex rules for learning and memory. Curr. Biol. 10, R495–R497 (2000)

    Article  Google Scholar 

  124. Saposnik, G., Levin, M.: Stroke outcome research Canada working group. Virtual reality in stroke rehabilitation. A meta-analysis and implications for clinicians. Stroke 42, 1380–1386 (2011)

    Article  Google Scholar 

  125. Saposnik, G., Teasell, R., Mamdani, M., Hall, J., McIlroy, W., Cheung, D., Bayley, M.: Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke 41(7), 1477–1484 (2010) doi:10.1161/strokeaha.110.584979

    Google Scholar 

  126. Schuhfried, O., Crevenna, R., Fialka-Moser, V., Paternostro-Sluga, T.: Non-invasive neuromuscular electrical stimulation in patients with central nervous system lesions: an educational review. J. Rehabil. Med. 44(2), 99–105 (2012). doi:10.2340/16501977-0941

    Article  Google Scholar 

  127. Schwartz, I., Sajin, A., Fisher, M., et al.: The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM R 1, 516–523 (2009)

    Article  Google Scholar 

  128. Sharma, N., Simmons, L.H., Jones, P.S., Day, D.J., Carpenter, T.A., Pomeroy, V.M., Warburton, E.A., Baron, J.C.: Motor imagery after subcortical stroke: a functional magnetic resonance imaging study. Stroke 40, 1315–1324 (2009)

    Article  Google Scholar 

  129. Sheffler, L.R., Chae, J.: Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 35(5), 562–590 (2007). doi:10.1002/mus.20758

    Article  Google Scholar 

  130. Shelton, F.N., Reding, M.J.: Effect of lesion location on upper limb motor recovery after stroke. Stroke 32, 107–112 (2001)

    Article  Google Scholar 

  131. Soekadar, S., Birbaumer, N., Cohen, L.: Brain-computer interfaces in the rehabilitation of stroke and neurotrauma. In: Kansaku, K., Cohen, L. (eds.) Systems Neuroscience and Rehabilitation. Springer, Japan (2011)

    Google Scholar 

  132. Sommerfeld, D.K., Eek, E.U., Svensson, A.K., Holmqvist, L.W., Von Arbin, M.H.: Spasticity after stroke:its occurrence and association with motor impairments and activity limitations. Stroke 35, 134–139 (2004)

    Article  Google Scholar 

  133. Sperazza, P.D., CPRP, Lynda Jeanine, Dauenhauer, P.D., MSW, Jason, Banerjee, P. D., Priya.: Tomorrow’s seniors: technology and leisure programming. 8, (2012)

    Google Scholar 

  134. Stroemer, R.P., Kent, T.A., Hulsebosch, C.E.: Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke 26, 2135–2144 (1995)

    Article  Google Scholar 

  135. Strong, K., Mathers, C., Bonita, R.: Preventing stroke: saving lives around the world. Lancet Neurol. 6, 182–187 (2007)

    Article  Google Scholar 

  136. Sukal, T.M., Ellis, M.D., Dewald, J.P.: Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Exp. Brain Res. 183(2), 215–223 (2007)

    Article  Google Scholar 

  137. Sullivan, K.J., Knowlton, B.J., Dobkin, B.H.: Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch. Phys. Med. Rehabil. 83, 683–691 (2002)

    Article  Google Scholar 

  138. Sveistrup, H., McComas, J., Thornton, M., et al.: Experimental studies of virtual reality- delivered compared to conventional exercise programs for rehabilitation. Cyberpsychol. Behav. 6.245–6.249 (2003)

    Google Scholar 

  139. Swayne, O.B., Rothwell, J.C., Ward, N.S., Greenwood, R.J.: Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. Cereb. Cortex 18, 1909–1922 (2008)

    Article  Google Scholar 

  140. Takeuchi, N., Izumi, S.-I.: Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res. Treat. 2013, 13 (2013)

    Google Scholar 

  141. Thornton, M., Marshall, S., McComas, J., et al.: Benefits of activity and virtual reality based balance exercise programmes for adults with traumatic brain injury: perceptions of participants and their caregivers. Brain Inj. 19, 989–1000 (2005)

    Article  Google Scholar 

  142. Toth, A., Fazekas, G., Arz, G., Jurak, M., Horvath, M.: Passive robotic movement therapy of the spastic hemiparetic arm with REHAROB: report of the first clinical test and the follow-up system improvement. In: 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, pp. 127–130, IEEE (2005, June)

    Google Scholar 

  143. Ustinova, K.I., Leonard, W.A., Cassavaugh, N.D., Ingersoll, C.D.: Development of a 3D immersive videogame to improve arm- postural coordination in patients with TBI. J. Neuroeng. Rehabil. 8, 61 (2011)

    Article  Google Scholar 

  144. Ustinova, K.I., Perkins, J., Leonard, W.A., Hausbeck, C.J.: Virtual reality game-based therapy for treatment of postural and coordination abnormalities secondary to TBI: a pilot study. Brain Inj. 28, 486–495 (2014)

    Article  Google Scholar 

  145. Vachranukunkiet, T., Esquenazi, A.: Pathophysiology of gait disturbance in neurologic disorders and clinical presentations. Phys. Med. Rehabil. Clin. North Am. 24, 233–246 (2013)

    Article  Google Scholar 

  146. Van der loos Prof, H.M.: Rehabilitation and health care robotics. In: Springer Handbook of Robotics, pp. 1223–1251. Springer, Berlin (2008)

    Google Scholar 

  147. van Diest, M., Lamoth, C.J., Stegenga, J., Verkerke, G.J., Postema, K.: Exergaming for balance training of elderly: state of the art and future developments. J. Neuroeng. Rehabil. 10, 101 (2013). doi:10.1186/1743-0003-10-101

    Google Scholar 

  148. Van Peppen, R.P., Kwakkel, G., Wood-Dauphinee, S., Hendriks, H.J., Van der Wees, P.J., Dekker, J.: The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin. Rehabil. 18, 833–862 (2004)

    Article  Google Scholar 

  149. Visintin, M., Barbeau, H., Korner-Bitensky, N., Mayo, N.E.: A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 29, 1122–1128 (1998)

    Article  Google Scholar 

  150. Ward, N.S., Brown, M.M., Thompson, A.J., Frackowiak, R.S.J.: Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126, 2476–2496 (2003)

    Article  Google Scholar 

  151. Weisman, S.: Computer games for the frail elderly. Gerontologist 23(4), 361–363 (1983)

    Google Scholar 

  152. WHO 2012. World Health Statistics

    Google Scholar 

  153. Wirz, M., Zemon, D.H., Rupp, R., et al.: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch. Phys. Med. Rehabil. 86, 672–680 (2005)

    Article  Google Scholar 

  154. Wolbrecht, E.T., Chan, V., Reinkensmeyer, D.J., Bobrow, J.E.: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 16(3), 286–297 (2008)

    Article  Google Scholar 

  155. Wolf, S.L.: Electromyographic biofeedback applications to stroke patients. A Crit. Rev. Phys. Ther. 63(9), 1448–1459 (1983)

    Google Scholar 

  156. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)

    Article  Google Scholar 

  157. Woodford, H., Price, C.: EMG biofeedback for the recovery of motor function after stroke. Cochrane Database Syst. Rev. Cd004585 (2007)

    Google Scholar 

  158. Xu, J.-X., Guo, Z.-Q., Lee, T.H.: Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot ieee transactions on industrial electronics. 61(7), (2014)

    Google Scholar 

  159. You, S.H., Jang, S.H., Kim, Y., Hallett, M., Ahn, S.H., Kwon, Y., et al.: Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke. An experimental-blind randomized study. Stroke 36, 1166–1171 (2005)

    Article  Google Scholar 

  160. World Health Organization Library Cataloguing-in Publication Data: International Classification of Functioning. Disability and Health, Geneva (2001)

    Google Scholar 

  161. Zimmermann-Schlatter, A., Schuster, C., Puhan, M.A., Siekierka, E., Steurer, J.: Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. J. Neuroeng. Rehabil. 5, 8 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Molinari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Molinari, M. et al. (2016). Rehabilitation Technologies Application in Stroke and Traumatic Brain Injury Patients. In: Pons, J., Raya, R., González, J. (eds) Emerging Therapies in Neurorehabilitation II. Biosystems & Biorobotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-24901-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24901-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24899-8

  • Online ISBN: 978-3-319-24901-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics