Abstract
Orthognathic surgery is popular for patients with craniomaxillofacial (CMF) deformity. For orthognathic surgical planning, it is critical to have a patient-specific jaw reference model as guidance. One way is to estimate a normal jaw shape for the patient, by first searching for a normal subject with similar midface and then borrowing his/her (normal) jaw shape as reference. Intuitively, we can search for multiple normal subjects with similar midface and then linearly combine them as final reference. The respective coefficients for linear combination can be estimated, i.e., by sparse representation of patient’s midface by midfaces of all training normal subjects. However, this approach implicitly assumes that the representation of midface shapes is strongly correlated with the representation of jaw shapes, which is unfortunately difficult to meet in practice due to generally different data distributions of shapes of midfaces and jaws. To address this limitation, we propose to estimate the patient-specific jaw reference model in a coherent space. Specifically, we first employ canonical correlation analysis (CCA) to map the midface and jaw landmarks of training normal subjects into a coherent space, in which their correlation is maximized. Then, in the coherent space, the mapped midface landmarks of patient can be sparsely represented by the mapped midface landmarks of training normal subjects. Those learned sparse coefficients can now be used to combine the jaw landmarks of training normal subjects for estimating the normal jaw landmarks for patient and then building normal jaw shape reference model. Moreover, we also iteratively maximize the correlation between the midface and the jaw shapes in the new coherent space with a multi-layer mapping and refinement (MMR) process. Experimental results on real clinical data show that the proposed method can more accurately reconstruct the normal jaw shape for patient than the competing methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Xia, J.J., Gateno, J., Teichgraeber, J.F.: New clinical protocol to evaluate craniomaxillofacial deformity and plan surgical correction. J. Oral Maxillofac. Surg. 67(10), 2093–2106 (2009)
Ren, Y., Wang, L., Gao, Y., Tang, Z., Chen, K.C., Li, J., Shen, S.G., Yan, J., Lee, P.K., Chow, B., Xia, J.J., Shen, D.: Estimating anatomically-correct reference model for craniomaxillofacial deformity via sparse representation. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 73–80. Springer, Heidelberg (2014)
Swennen, G.R., Schutyser, F.A., Hausamen, J.E.: Three-dimensional cephalometry: a color atlas and manual. Springer (2005)
Wang, L., Chen, K.C., Gao, Y., Shi, F., Liao, S., Li, G., Shen, S.G.F., Yan, J., Lee, P.K.M., Chow, B., Liu, N.X., Xia, J.J., Shen, D.: Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. Medical Physics 41(4), 043503 (2014)
Xia, J.J., McGrory, J.K., Gateno, J., Teichgraeber, J.F., Dawson, B.C., Kennedy, K.A., Lasky, R.E., English, J.D., Kau, C.H., McGrory, K.R.: A new method to orient 3-dimensional com-puted tomography models to the natural head position: a clinical feasibility study. J. Oral Maxillofac. Surg. 69(3), 584–591 (2011)
Hotelling, H.: Relations between two sets of variates. Biometrika 28, 312–377 (1936)
Zou, H., Hastie, T.: Regularization and variable selection via the Elastic Net. J. R. Stat. Soc. B 67(2), 301–320 (2005)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 267–288 (1996)
Jiang, J., Hu, R., Wang, Z., Han, Z.: Face super-resolution via multilayer locality-constrained iterative neighbor embedding and intermediate dictionary learning. IEEE Trans. Image Process. 23(10), 4220–4231 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Li, Z., An, L., Zhang, J., Wang, L., Xia, J.J., Shen, D. (2015). Craniomaxillofacial Deformity Correction via Sparse Representation in Coherent Space. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds) Machine Learning in Medical Imaging. MLMI 2015. Lecture Notes in Computer Science(), vol 9352. Springer, Cham. https://doi.org/10.1007/978-3-319-24888-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-24888-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24887-5
Online ISBN: 978-3-319-24888-2
eBook Packages: Computer ScienceComputer Science (R0)