Skip to main content

Multi-view Classification for Identification of Alzheimer’s Disease

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9352))

Included in the following conference series:


In this paper, we propose a multi-view learning method using Magnetic Resonance Imaging (MRI) data for Alzheimer’s Disease (AD) diagnosis. Specifically, we extract both Region-Of-Interest (ROI) features and Histograms of Oriented Gradient (HOG) features from each MRI image, and then propose mapping HOG features onto the space of ROI features to make them comparable and to impose high intra-class similarity with low inter-class similarity. Finally, both mapped HOG features and original ROI features are input to the support vector machine for AD diagnosis. The purpose of mapping HOG features onto the space of ROI features is to provide complementary information so that features from different views can not only be comparable (i.e., homogeneous) but also be interpretable. For example, ROI features are robust to noise, but lack of reflecting small or subtle changes, while HOG features are diverse but less robust to noise. The proposed multi-view learning method is designed to learn the transformation between two spaces and to separate the classes under the supervision of class labels. The experimental results on the MRI images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset show that the proposed multi-view method helps enhance disease status identification performance, outperforming both baseline methods and state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Censor, Y.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press (1997)

    Google Scholar 

  2. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 56(2), 766–781 (2011)

    Article  Google Scholar 

  3. Harel, M., Mannor, S.: Learning from multiple outlooks. In: ICML, pp. 401–408 (2011)

    Google Scholar 

  4. Jin, Y., Shi, Y., Zhan, L., Gutman, B.A., de Zubicaray, G.I., McMahon, K.L., Wright, M.J., Toga, A.W., Thompson, P.M.: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics. NeuroImage 100, 75–90 (2014)

    Article  Google Scholar 

  5. Li, J., Jin, Y., Shi, Y., Dinov, I.D., Wang, D.J., Toga, A.W., Thompson, P.M.: Voxelwise spectral diffusional connectivity and its applications to alzheimer’s disease and intelligence prediction. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 655–662. Springer, Heidelberg (2013)

    Google Scholar 

  6. Sanroma, G., Wu, G., Gao, Y., Shen, D.: Learning to rank atlases for multiple-atlas segmentation. IEEE Transactions Meddical Imaging 33(10), 1939–1953 (2014)

    Article  Google Scholar 

  7. Suk, H.I., Lee, S.W., Shen, D.: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure and Function 220(2), 841–859 (2013)

    Article  Google Scholar 

  8. Thung, K., Wee, C., Yap, P., Shen, D.: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion. NeuroImage 91, 386–400 (2014)

    Article  Google Scholar 

  9. Tong, T., Wolz, R., Gao, Q., Guerrero, R., Hajnal, J.V., Rueckert, D.: Multiple instance learning for classification of dementia in brain MRI. Medical Image Analysis 18(5), 808–818 (2014)

    Article  Google Scholar 

  10. Wan, J., Zhang, Z., Yan, J., Li, T., Rao, B.D., Fang, S., Kim, S., Risacher, S.L., Saykin, A.J., Shen, L.: Sparse bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in alzheimer’s disease. In: CVPR, pp. 940–947 (2012)

    Google Scholar 

  11. Zhan, L., Jahanshad, N., Jin, Y., Toga, A.W., McMahon, K., de Zubicaray, G.I., Martin, N.G., Wright, M.J., Thompson, P.M.: Brain network efficiency and topology depend on the fiber tracking method: 11 tractography algorithms compared in 536 subjects. In: ISBI, pp. 1134–1137 (2013)

    Google Scholar 

  12. Zhan, L., Zhou, J., Wang, Y., Jin, Y., Jahanshad, N., Prasad, G., Nir, T.M., Leonardo, C.D., Ye, J., Thompson, P.M.: Comparison of 9 tractography algorithms for detecting abnormal structural brain networks in alzheimers disease. Frontiers in Aging Neuroscience 7(48), 401–408 (2015)

    Google Scholar 

  13. Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)

    Article  MathSciNet  Google Scholar 

  14. Zhu, X., Huang, Z., Shen, H.T., Cheng, J., Xu, C.: Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recognition 45(8), 3003–3016 (2012)

    Article  Google Scholar 

  15. Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification. IEEE Transactions on Cybernetics (2015)

    Google Scholar 

  16. Zhu, X., Suk, H.I., Shen, D.: Matrix-similarity based loss function and feature selection for alzheimer’s disease diagnosis. In: CVPR, pp. 3089–3096 (2014)

    Google Scholar 

  17. Zhu, X., Suk, H.I., Shen, D.: A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. NeuroImage 100, 91–105 (2014)

    Article  Google Scholar 

  18. Zhu, X., Suk, H.-I., Shen, D.: A novel multi-relation regularization method for regression and classification in AD diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part III. LNCS, vol. 8675, pp. 401–408. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Zhu, X., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding approach to hashing. IEEE Transactions on Image Processing 23(9), 3737–3750 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhu, X., Suk, HI., Zhu, Y., Thung, KH., Wu, G., Shen, D. (2015). Multi-view Classification for Identification of Alzheimer’s Disease. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds) Machine Learning in Medical Imaging. MLMI 2015. Lecture Notes in Computer Science(), vol 9352. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24887-5

  • Online ISBN: 978-3-319-24888-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics