Experimental Observation of Vibrational Resonance

  • Shanmuganathan Rajasekar
  • Miguel A. F. Sanjuan
Part of the Springer Series in Synergetics book series (SSSYN)


This chapter focuses on the experimental observation of vibrational resonance. One of the first examples where vibrational resonance was experimentally observed was in Baltanas et al. [1]. The authors considered an analog simulation of the overdamped Duffing oscillator with two stable equilibrium states and one unstable equilibrium state. The system is driven by a biharmonic force. A resonant-like behaviour was realized when the amplitude or the frequency of the high-frequency component was varied. The experimental result was confirmed by the numerical simulation. Later, Ullner et al. [2] reported the occurrence of vibrational resonance in an excitable electronic circuit. Also Chizhevsky and his collaborators [3, 4] presented an experimental observation of vibrational resonance in a vertical cavity surface emitting laser. This device is capable of displaying a bistability of polarization states of the emitted field that can be monitored by the applied injection current. It has been shown that observed resonance can be used for the detection of low-level noisy signals. Occurrence of stochastic resonance in this system was also reported [5, 6]. In nonlinear circuit analysis, the bistable Chua’s circuit is commonly used as a prototype circuit to investigate a variety of dynamics. Experimental evidences for vibrational resonance in a single Chua’s circuit and enhanced signal transmission in a system of unidirectionally coupled n Chua’s circuits driven by a biharmonic signal were reported [7].


  1. 1.
    J.P. Baltanas, L. Lopez, I.I. Blechman, P.S. Landa, A. Zaikin, J. Kurths, M.A.F. Sanjuan, Phys. Rev. E 67, 066119 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    E. Ullner, A. Zaikin, J. Garcia-Ojalvo, R. Bascones, J. Kurths, Phys. Lett. A 312, 348 (2003)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    V.N. Chizhevsky, E. Smeu, G. Giacomelli, Phys. Rev. Lett. 91, 220602 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    V.N. Chizhevsky, G. Giacomelli, Phys. Rev. A 71, 011801(R) (2005)Google Scholar
  5. 5.
    G. Giacomelli, F. Marin, I. Rabbiosi, Phys. Rev. Lett. 82, 675 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    S. Barbay, G. Giacomelli, F. Marin, Phys. Rev. E 61, 157 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    R. Jothimurugan, K. Thamilmaran, S. Rajasekar, M.A.F. Sanjuan, Int. J. Bifurcation Chaos 23, 1350189 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    G. Giacomelli, F. Marin, Quantum Semiclassical Opt. 10, 469 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Collins, C.C. Chow, T.T. Imhoff, Phys. Rev. E 52, R3321 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    R. Bascones, G. Garcia-Ojalvo, J.M. Sancho, Phys. Rev. E 65, 061108 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    C. Yao, M. Zhan, Phys. Rev. E 81, 061129 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    I. Ozden, S. Venkataramani, M.A. Long, B.W. Connors, A.V. Nurmikko, Phys. Rev. Lett. 93, 158102 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Y.S. Heo, J.W. Jung, J.M. Kim, M.K. Jo, H.J. Song, J. Korean Phys. Soc. 60, 1140 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    J.C. Zhou, H.J. Song, J. Korean Phys. Soc. 61, 1303 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    P.W. Tuinenga, SPICE-A Guide to Circuit Simulation and Analysis Using PSpice (Prentice Hall, New Jersey, 1995)zbMATHGoogle Scholar
  16. 16.
    G.W. Roberts, A.S. Sedra, SPICE (Oxford University Press, New York, 1995)Google Scholar
  17. 17.
    M. Bordet, S. Morfu, Chaos Solitons Fractals 54, 82 (2013)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shanmuganathan Rajasekar
    • 1
  • Miguel A. F. Sanjuan
    • 2
  1. 1.School of PhysicsBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of PhysicsUniversidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations