Advertisement

Signal Propagation in Unidirectionally Coupled Systems

  • Shanmuganathan Rajasekar
  • Miguel A. F. Sanjuan
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

A network is defined as a collection of points (called nodes or vertices) joined together in pairs by lines called edges. Many systems in physics, engineering, biology and social sciences can be thought of as networks. An array of coupled systems can be considered as a network where the nodes represent the elements or units of the system and the edges represent the interactions or couplings between them. Networks of coupled systems are used to model biological oscillator networks [1–5], excitable media [6], neural networks [7–10] and genetic networks [11–13]. A network composed of a number of interacting systems (identical or nonidentical) often forms a complex dynamical system with new fascinating properties that are not realizable in the individual systems. The fascinating properties include synchronous oscillations, induced oscillations, fast system response, computational power and so on.

Keywords

Coupling Strength Response Amplitude Stochastic Resonance Couple Oscillator Bistable System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.T. Winfree, The Geometry of Biological Time (Springer, New York, 1980)CrossRefzbMATHGoogle Scholar
  2. 2.
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984)CrossRefzbMATHGoogle Scholar
  3. 3.
    S.H. Strogatz, I. Stewart, Sci. Am. 269, 102 (1993)CrossRefGoogle Scholar
  4. 4.
    P.C. Bressloff, S. Coombes, B. De Souza, Phys. Rev. Lett. 79, 2791 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    M.E.J. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    M. Gerhardt, H. Schuster, J.J. Tysor, Science 247, 1563 (1990)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Joya, M.A. Atencia, F. Sandovai, Neuro Comput. 43, 219 (2002)Google Scholar
  8. 8.
    Z. Wang, Y. Wang, Y. Liu, IEEE Trans. Neural Netw. 21, 11 (2010)CrossRefGoogle Scholar
  9. 9.
    J.J. Collins, C.C. Chow, T.T. Imhoff, Nature 376, 236 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    L.E. Abbott, C. van Vreeswijk, Phys. Rev. E 48, 1483 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    H. Bolouri, E.H. Davidson, BioEssays 24, 1118 (2002)CrossRefGoogle Scholar
  12. 12.
    H. De Jong, J. Comput. Biol. 9, 67 (2002)CrossRefGoogle Scholar
  13. 13.
    F. Ren, J. Cao, Neurocomputing 71, 834 (2008)CrossRefGoogle Scholar
  14. 14.
    D. Bray, J. Theor. Biol. 143, 215 (1990)CrossRefGoogle Scholar
  15. 15.
    D. Alon, Science 301, 1866 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    V. In, A.R. Bulsara, A. Palacios, P. Longhini, A. Kho, Phys. Rev. E 72, 045104 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    B. Razavi, Fundamentals of Microelectronics (Wiley, New York, 2008)Google Scholar
  18. 18.
    A. Locquet, C. Masoller, C.R. Mirasso, Phys. Rev. E 65, 56205 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    V. In, A. Kho, J.D. Neff, A. Palacios, P. Longhini, B.K. Meadows, Phys. Rev. Lett. 91, 244101 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    A.R. Bulsara, V. In, A. Kho, P. Longhini, A. Palacios, W. Rappel, J. Acerbron, S. Baglio, B. Ando, Phys. Rev. E 70, 036103 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    V. In, A.R. Bulsara, A. Palacios, P. Longhini, A. Kho, Phys. Rev. E 72, 045104 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    J.F. Linder, A.R. Bulsara, Phys. Rev. E 74, 020105 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    T. Dauxois, M. Payrard, Physics of Solitons (Cambridge University Press, Cambridge, 2006)Google Scholar
  24. 24.
    J.M. Carcione, Wave Fields in Inelastic, Porous and Electromagnetic Media (Elsevier, Amsterdam, 2007)Google Scholar
  25. 25.
    J.F. Lindner, K.M. Patton, P.M. Odenthal, J.C. Gallagher, B.J. Breen, Phys. Rev. E 78, 066604 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    B.J. Breen, A.B. Doud, J.R. Grimm, A.H. Tanasse, S.J. Tanasse, J.E. Lindner, K.J. Maxted, Phys. Rev. E 83, 037601 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    C. Yao, M. Zhan, Phys. Rev. E 81, 061129 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    C. Jeevarathinam, S.Rajasekar, M.A.F. Sanjuan, Chaos 23, 013136 (2013)Google Scholar
  29. 29.
    S. Rajasekar, J. Used, A. Wagemakers, M.A.F. Sanjuan, Commun. Nonlinear Sci. Numer. Simul. 17, 3435 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    M.B. Elowitz, S. Leibler, Nature 403, 335 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    K.Y. Kim, D. Lepzelter, J. Wang, J. Chem. Phys. 126, 034702 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    O. Buse, R. Perez, Phys. Rev. E 81, 066206 (2010)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    S. Muller, J. Hofbauer, L. Endler, C. Flamm, S. Widder, P. Schuster, J. Math. Biol. 53, 905 (2006)MathSciNetCrossRefGoogle Scholar
  34. 34.
    N. Strelkowa, M. Barahona, J. R. Soc. Interface 7, 1071 (2010)CrossRefGoogle Scholar
  35. 35.
    N. Strelkowa, M. Barahona, Chaos 21, 023104 (2011)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    S. Rajamani, S. Rajasekar, Phys. Scr. 88, 015010 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    L.A. Pipes, L.R. Harvill, Applied Mathematics for Engineers and Physics (McGraw-Hill, New York, 1970)Google Scholar
  38. 38.
    J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchisoa, A.R. Bulsara, Phys. Rev. Lett. 75, 3 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    M. Locher, G.A. Johnson, E.R. Hunt, Phys. Rev. Lett. 77, 4698 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, A.R. Bulsara, Phys. Rev. E 53, 2081 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    N. Sungar, J.P. Sharpe, S. Weber, Phys. Rev. E 62, 1413 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    O. Kwon, H.T. Moon, Phys. Lett. A 298, 319 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    A. Pikovsky, A. Zaikin, M.A. de la Casa, Phys. Rev. Lett. 88, 050601 (2001)CrossRefGoogle Scholar
  44. 44.
    M. Ozer, M. Uzuntarla, T. Kayikcioglu, L.J. Graham, Phys. Lett. A 372, 6498 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    M. Perc, Phys. Rev. E 78, 036105 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    M. Ozer, M. Perc, M. Uzuntarla, Phys. Lett. A 375, 965 (2009)Google Scholar
  47. 47.
    A. Zaikin, J. Kurths, L. Schimansky-Geier, Phys. Rev. Lett. 85, 227 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    H. Hong, B.J. Kim, M.Y. Choi, Phys. Rev. E 66, 011107 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    F.D. Duan, F. Chapeau-Blondeau, D. Abbott, Phys. Lett. A 372, 2159 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    A. Krawiecki, Physica A 333, 505 (2004)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    A. Krawiecki, Int. J. Mod. Phys. B 18, 1759 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    A.L. Barabasi, R. Albert, Science 286, 509 (1999)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    J.A. Acebron, S. Lozano, A. Arenas, Phys. Rev. Lett. 99, 128701 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    D. Rousseau, F. Chapeau-Blondeau, Phys. Lett. A 321, 280 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    P. McGraw, M. Menzinger, Phys. Rev. E 83, 037102 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    T.S. Bellows, J. Anim. Ecol. 50, 139 (1981)MathSciNetCrossRefGoogle Scholar
  57. 57.
    K. Masutani, Bull. Math. Biol. 55, 1 (1993)CrossRefGoogle Scholar
  58. 58.
    S. Sinha, P.K. Das, Pramana J. Phys. 48, 87 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    M. Perc, Phys. Rev. E 76, 066203 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    M. Gosak, D. Korosak, M. Marhl, New J. Phys. 13, 013012 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shanmuganathan Rajasekar
    • 1
  • Miguel A. F. Sanjuan
    • 2
  1. 1.School of PhysicsBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of PhysicsUniversidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations